Multidim Syst Sign Process (2008) 19:477-488
DOI 10.1007/s11045-007-0044-x

On control laws for discrete linear repetitive processes
with dynamic boundary conditions

Lukasz Hladowski - Eric Rogers -
Krzysztof Galkowski - Virendra R. Sule

Received: 4 April 2007 / Revised: 4 November 2007 / Accepted: 6 November 2007 /
Published online: 20 December 2007
© Springer Science+Business Media, LLC 2007

Abstract Repetitive processes are characterized by a series of sweeps, termed passes,
through a set of dynamics defined over a finite duration known as the pass length. On each
pass an output, termed the pass profile, is produced which acts as a forcing function on, and
hence contributes to, the dynamics of the next pass profile. This can lead to oscillations in the
sequence of pass profiles produced which increase in amplitude in the pass-to-pass direction
and cannot be controlled by application of standard control laws. Here we give new results on
the design of physically based control laws for so-called discrete linear repetitive processes
which arise in applications areas such as iterative learning control.

Keywords Linear repetitive processes - Dynamic boundary conditions -
Behavioral approach

1 Introduction

The unique characteristic of a repetitive, or multipass, process is a series of sweeps, termed
passes, through a set of dynamics defined over a fixed finite duration known as the pass
length. On each pass an output, termed the pass profile, is produced which acts as a forcing
function on, and hence contributes to, the dynamics of the next pass profile. This, in turn,
leads to the unique control problem in that the output sequence of pass profiles generated
can contain oscillations that increase in amplitude in the pass-to-pass direction.
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To introduce a formal definition, let « < 400 denote the pass length (assumed constant).
Then in a repetitive process the pass profile yx(p),0 < p < o — 1, generated on pass k
acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile
Vt1(p),0<p<a—1,k=0.

Physical examples of these processes include long-wall coal cutting and metal rolling
operations (Edwards 1974). Also in recent years applications have arisen where adopting a
repetitive process setting for analysis has distinct advantages over alternatives. Examples of
these so-called algorithmic applications include classes of iterative learning control schemes
(Moore et al. 2005) and iterative algorithms for solving nonlinear dynamic optimal control
problems based on the maximum principle (Roberts 2000).

Attempts to control these processes using standard (or 1D) systems theory/algorithms fail
(except in a few very restrictive special cases) precisely because such an approach ignores
their key features, i.e. (i) information propagation occurs from pass-to-pass and along a given
pass, and (ii) the initial, or boundary, conditions are reset before the start of each new pass.
Of particular interest in this paper is the case when the initial conditions on each pass are an
explicit function of points along the previous pass—so-called dynamic boundary conditions.
In particular, it is known that such boundary conditions alone can cause instability (Owens
and Rogers 1999) (the analysis in this paper is for processes which are the natural counterparts
of those considered here). Here we will also show how dynamic boundary conditions can be
used in stabilization in a manner akin to boundary control for partial differential equations.

In seeking a rigorous foundation on which to develop a control theory for these processes,
it is natural to attempt to exploit structural links which exist between, in particular, the
class of so-called discrete linear repetitive processes and 2D linear systems described by
the extensively studied Roesser or Fornasini Marchesini state-space models (see the original
references cited in, for example Rogers and Owens (1992)). Dynamic boundary conditions
have no equivalent in these 2D discrete linear systems state-space models and hence systems
theory developed for them cannot be applied.

The next section gives the necessary background to the analysis in this paper.

2 Preliminaries

The state-space model of the discrete linear repetitive processes considered in this paper has
the following formover0 < p <o — 1,k >0,
X1 (p + 1) = Axgq1(p) + Bugt1(p) + Boyr(p)

Yir1(p) = Cxpq1(p) + Doy (p) ey
where on pass k xi(p) is the n x 1 state vector, yx(p) is the m x 1 pass profile vector, and
ur(p) is the r x 1 vector of control inputs.

To complete the process description, it is necessary to specify the boundary conditions,
i.e. the initial pass profile and the pass state initial vector sequence. The simplest form of
these is

Xk+100) = dit1, k=0
yop) =y(p), 0=p=<a-—1 2
where dj41 is an n x 1 vector with constant entries and y(p) is anm x 1 vector whose entries

are known functions of p. In some cases, however, this form of x;1(0), k¥ > 0, must be
extended to adequately model the underlying process dynamics (even for initial simulation
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and/or control analysis). Instead, it is necessary to consider a state initial vector sequence
which is an explicit function of the previous pass profile. The most general case is

a—1

Xi1(0) = diyr + D i) 3)
j=0

where J; is an n X m matrix. A state initial vector sequence of this form is required in the
optimal control application (Roberts 2000).

The stability theory (Rogers and Owens 1992) for linear repetitive processes is based on
an abstract model in a Banach space setting which includes a wide range of examples as
special cases, including those considered here. In terms of their dynamics it is the pass-to-
pass coupling (noting again the unique control problem for them) which is critical. This is
of the form yx41 = Ly Yk, Where y; € E, (E, a Banach space with norm || - ||) and Ly is a
bounded linear operator mapping E,, into itself.

Two concepts of stability can be defined but here it is the first of these, so-called asymptotic
stability which is considered. This holds if, and only if there exist numbers M,>0 and
Aq € (0, 1) such that ||L§|| < Ma}‘]&’ k > 0 (where || - || also denotes the induced operator
norm) and can be interpreted as bounded-input bounded-output stability over the finite and
constant pass length. The second stability property, so-called stability along the pass, is
stronger in the sense that it demands this boundedness property uniformly, i.e. independent
of the pass length.

Asymptotic stability is a necessary condition for stability along the pass and there are cases
where only it can be achieved or is required. For example, in the optimal control application
(Roberts 2000) only asymptotic stability can ever hold (see also the discussion in the next
but one paragraph).

It is of interest to relate this theory to a physical example in the form of long-wall coal
cutting (see, e.g. the original references given in Rogers and Owens 1992) where the pass
profile is the thickness (relative to a fixed datum) of the coal left after the cutting machine
has moved along the pass length, i.e. the coal face. The stability problem here is caused by
the effects of the machine’s weight as it rests on the previous pass profile during the cutting
of the next pass profile. The resulting undulations can be very severe and result in productive
work having to stop to enable them to be removed. Asymptotic stability here means that
after a sufficient number of passes have elapsed the profile produced on each successive
pass is the same, i.e. convergence in the pass to pass (i.e. k) direction and this converged
value is termed the limit profile. However, this limit profile can contain growth along it, i.e.
nonconvergence in the p direction. Stability along this pass prevents this from happening by
demanding convergence in both directions.

It is important to note again that asymptotic stability is often all that is required or indeed
can be achieved. For example, in the optimal control example (Roberts 2000), it is never
possible for the resulting iterative solution algorithm to be stable along the pass. In such
cases there is a requirement to understand the mechanism(s) by which an example can be
asymptotically unstable and also to determine if it is possible to enforce this property by the
introduction of suitable control action. This is the subject area which is addressed in the rest
of this paper.

Asymptotic stability in the presence of boundary conditions of the form (2) holds (Rogers
and Owens 1992) if, and only if, (Do) <1 where r(-) denotes the spectral radius of its matrix
argument (i.e. compute the eigenvalues and then the spectral radius is the largest number
resulting from evaluating the modulus of each of these numbers). If, however, they are of the
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form (3) then asymptotic stability holds if, and only if, all solutions in z of

a—1
det (21, = > Jjz(zlm — Do) 'CIA + BoX;(2)] | =0 )
j=0

where
Xj(2) = [(zln — Do) ~'CV

have modulus strictly less than unity.

At this stage, we see that the structure of the pass state initial vector sequence has a crucial
effect on the asymptotic (and hence stability along the pass) stability property. In particular,
suppose that this sequence is modelled as (2) when it should have been modelled as a particular
case of (3). Then the example concerned could be treated as being asymptotically stable when
in fact it is not and hence any subsequent analysis will be incorrect.

In computational terms, it is easy to check asymptotic stability for the case when (2) is
the pass state initial vector sequence. If, however, we must use (3) then (4) is not a suitable
starting point and also provides no insight into how (if at all) control action could be employed
to guarantee asymptotic stability (and hence meaningful onward analysis). The rest of this
section shows how this problem can be overcome using the so-called behavioral approach
and, in particular, that specialized for application to discrete linear repetitive processes (Sule
and Rogers 2004).

The behavioral approach begins by constructing an equivalent 1D discrete linear systems
state-space equivalent model of the repetitive dynamics. This idea has been used in the
analysis of 2D/nD linear systems (e.g. Aravena et al. 1990) but the finite pass length property
of discrete linear repetitive processes releases further structure which can be exploited in
analysis.

Introduce the following vectors defined from the vector variables in (1) (where col denotes
a column vector with compatible dimension)

Y (k) = col (yx(0), ye(1) ... yi (e = 1))
U (k) = col (ur(0), ug(1) ... up( — 1))
X (k) = col (xx(0), xx(1) ... xp(x — 1))

and the vector W (k) as
W= [y uTw)]

which in the behavioral approach to analysis we treat as the vector valued manifest variable
and X (k) is known as the vector valued latent variable. Then (1) and (3) can be rewritten as
(taking di4+1 = 0, k > 0 without loss of generality)

0B K 0 _Jo
Ca-[ADro=r[drw  o

where o denotes the difference operator o f (k) = f(k+ 1) on sequences f (k). The matrices
in the above equation are given by (where diag denotes a block diagonal matrix of compatible
dimensions)

= diag {Do, Dy, ... Do}
=d

0
C = diag {C, C,...C}
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0 1
B0 —A I
A_| BO 0= —A
B 0 —Al
Jo J1 ... ... Jou—1
Bo
K= Bo (6)
By O

This completes the so-called latent variable (or hybrid) representation of the dynamics of
the discrete linear repetitive processes considered here. In particular, we have a linear time
invariant discrete time behavior with a finite number of manifest variables which are the
elements in the vector W (k).

In (5) the matrices are defined over the polynomial ring R[o] and let the collection of
all sequences f(k), k = 0,..., f(k) € R be denoted by V. Then V is a module over the
commutative ring R[o ] under the operation o f (k) = f(k + 1). The entries in the solution
trajectories of W (k) and X (k) are also such sequences. Hence the behavior of W is also
defined as a module over this ring. This allows all the techniques of behavioral theory to be
applied since the manifest and latent variables are defined over a finite Cartesian product of
the module V.

It is not required to give all elements of the behavioral theory for this case and instead we
can move to the following result which gives the kernel representation and is central to the
rest of this paper.

Lemma 1 (Sule and Rogers 2004) The behavior of W (k) has kernel representation
(@1 +(QoK — Do) o Qo)W (k) =0 @)

where
—C
—CA -C
Qo = : :
—CA*"! —CA*2 ... —C

In the behavioral setting, stability (asymptotic stability) of a behavior is characterized by
uniform boundedness (asymptotic decay) of all of its trajectories and is hence only applicable
to behaviors which are autonomous i.e. those which do not have free (or input) variables since
such variables can always be chosen as unbounded. The following result is Theorem 3 in
Sule and Rogers (2004).

Theorem 1 A discrete linear repetitive process described by (1) and (3) is asymptotically
stable if, and only if,

r(Dy — QoK) < 1
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At this stage, we have reduced the problem of determining the asymptotic stability property
of a process described by (1) and (3) to the same task as that for a process with (3) replaced
by (2), i.e. computing the eigenvalues of a matrix with constant entries. Next we proceed
to show that the existence of a control law to stabilize an asymptotically unstable process
described by (1) and (3) is equivalent to the standard discrete linear systems pole placement
problem.

3 Stabilizing control law design

Rewrite (7) in the form
Y(k+1)=—MyY (k) — NoU (k)
where My = QoK — Do, Ng = Qo B and consider the application of the control law
U(k) = KY (k) ®)
to give
Y(k+1) = =(Mo + NoK)Y (k)

and this controlled process is asymptotically stable if, and only if, r(—Mp — NoK) < 1.
Moreover, a K exists provided the pair {M(, Ny} is controllable. This control law is activated
by the previous pass profile (recall the definition of the entries in the vector Y) which is the
process output and hence has already been computed. Here we require it to be stored (for
one complete pass) and we also assume that it is not corrupted by noise etc.

Controllability of the pair { M, No} (which here is also equivalent to reachability) requires
that

rank [z] + My | —Nol =am, VY |z €C )

A detailed investigation of controllability for discrete linear repetitive processes with dynamic
boundary conditions can be found in Rogers et al. (2002).

The control law design problem has now been reduced to the 1D discrete linear systems
pole placement problem. In particular, this problem has a solution if, and only if, there exists
a symmetric positive-definite matrix P, written P > 0, such that

ATPA-P <0 (10)
where A = —M — NoK . Now apply the well known Schur’s complement formula to this
last condition and then pre- and post-multiply the result by diag{/, P} to obtain

_p AT
If ATP <0
PA —P
or, equivalently,
—P (—My — NoK)T P <0
P(—My — NoK) —-P
Pre- and post-multiplying this last condition by diag{Z, P~'} now yields
—p! P~ Y(=Moy — KNop)T
-1 -1 <0
(—My — NoK) P —P
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Now let X = P~ ¥ = KP~', Ry = —Ny. Then solving the following LMI for the
unknowns X and Y

— —_ T  yT RT
[ X XMy +Y R0:|<0 (11

—MyX + Rol? —-X

gives K = ¥ X! as the stabilizing control law matrix.
As a numerical example to highlight the critical role of the boundary conditions and, in
particular, the initial pass state vector sequence consider the case when o =9 and

05 0 101 1000
A=[0 0.4] B=[00.50]’ B°=[0101]’

10 050 0 0
01 0040 0
C=1oo0|" Po=1030 06 0
01 1051 02

If the initial pass state vector is described by (2) then it follows immediately that the process
is asymptotically stable since (Dp) < 1. Suppose now that the initial pass state vector is of
the form (3) with

JO:[O.Z 000]’ 11:[_0'2000]

~0.1000 02000
5, _[o-0r00] _Too0.10
2= lo-0100" T 000.10

and J; =0, j=4,...,8. Then aroutine eigenvalue calculation shows that this process is asymp-
totically unstable and we now proceed to design a control law to ensure this property. On
completion of this we have Figs. 1 and 2 which are the uncontrolled and controlled responses
in Channel 3 (the others show the same conclusion and are hence omitted here) respectively
and clearly demonstrate that asymptotic stability has been achieved (but further attention
may be required in terms of the transient dynamics in the along the pass direction).

4 Stabilizing boundary conditions

Consider again a process described by (1) and (2). Then achieving asymptotic stability is
only part of the overall task and it may well be that a control law designed for asymptotic
stability conflicts with the requirements for stability along the pass and other performance
specifications. In fact, the absence of an explicit contribution from the input u;41(p) in the
equation for the pass profile yx+1(p) in (1) makes this situation highly likely (recall again
that asymptotic stability is completely determined by the matrix Dy). In such a case, it may
be necessary to invoke a multi-loop strategy and in this section we show how to achieve
asymptotic stability without using the control input vector u; (p). The route is to use a pass
state initial vector sequence of the form (3) (with dx4+1 = 0, k > 0), i.e. a form of boundary
control as in the theory of partial differential equations.
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Let

By = Bo and J = 0

and hence the matrix K of (6) can be written as K = Bg + J. Consequently we can write
Y(k+1) = (A+ BJ)Y (k) — NoU (k) (12)

where A = —QOBO—i-[So and B = —Qo. B
The control law design problem is now to chose J such that

r(A+BJ) <1 (13)

Hence, with the assumption that the pair {A, 1§} is controllable, and routine modifications to
the LMI analysis of the previous section which are omitted here, we have the requirement
that

-X XAT +yYTBT ~0
AX + BY —-X

where X = P~'and ¥ = JX. Also if this LMI is satisfied the control law matrix is given

by J = YX~!. Note here that the current pass input vector (in the form of U (k) in this

representation) plays no role in the stabilization problem.
As a numerical example, consider the case when

09 0 101 1000]
A:[o 0.9]’ 32[00.50]’ 302[0101_

10 150 0 07
01 0040 0
=100l Po=1030 06 0
01 1051 02

with a =9. This example is asymptotically unstable under the boundary conditions di+1 = 0,
yo(p) =1,0 < p <8,k > 0since r(Dg) = 1.5. Completing the above design shows that
(13) holds in the case when

—0.0146 —1.09 —-0.0153 —1.08 —0.0731 —1.1 —0.0662 —1.05

7 — —1.39 0.0676 —0.0102 0.0744 Jo— —1.53 0.0773 0.00373 0.0737
2710179 —0.954 —0.138 —0.853|" 7> T [ —-0.282 —0.674 —0.179 —0.547

Ji— —1.68 0.0594 0.0147 0.0485 Jo — —1.79 0.0311 0.0147 0.0209
= -0.317 —0.368 —0.156 —0.262 | 57 [-0.27 —0.147 —0.0932 —0.0873

J [—1.7 0.0106 0.00812 0.00541]
6=

J [ —1.12 0.00906 —0.00612 0.0138] [ —1.25 0.0363 —0.0138 0.0464]
O = 3 1 =

—0.18 —0.0403 —0.0374 —0.0182

7= —1.22  0.00206 0.00242 0.000624
7= [-0.0926 —0.00661 —0.0095 —0.00185
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T

35

15

points p 0 o passes k

Fig. 3 Controlled response in Channel 3

Je = —0.481 0.00015 —0.000312 —8.23- 107
8 =1 -0.0303 —0.000473 —0.00146 —2.69 1073

On completion of this we have Fig. 3 which shows the controlled response in Channel 3 (the
others show the same conclusion and are hence omitted here) and clearly asymptotic stability
has been achieved.

5 Conclusions

This paper has considered the influence of the boundary conditions on the stability and control
properties of discrete linear repetitive processes. In particular, the case when the pass state
initial vector sequence is an explicit function of the previous pass profile has been studied.
The presence of such boundary conditions can cause the process to be asymptotically unstable
(the weakest form of stability property) and the major new results in this paper show how
to design a control law to ensure this property. This control law is feed forward in the sense
that it is fully activated by the previous pass profile.

A second feature examined here relates to the fact that control law design for asymptotic
stability may conflict with other essential requirements, e.g. stability along the pass and tra-
cking performance. In such cases it may be necessary to consider a multi-loop control strategy.
Here we have developed a solution where control is introduced through the pass state initial
vector sequence, i.e. a form of boundary control as in partial differential equation (or distri-
buted parameter) control. One area to be investigated in further work is that of minimizing
the number previous pass points required for this task, i.e. can we use a control law matrix
which has some (but not all) zero sub-blocks and hence a more efficient implementation?
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A natural question to ask is if it is possible to undertake a robustness analysis? The answer
with the approach used here is negative due to the fact the block matrices M( and Ny contain
different products of matrices which prevent effective progress. Hence the development of
alternative settings for a robustness analysis of the processes considered here is an obvious
subject for further research. This again highlights the critical role of the boundary conditions
and, in particular, the pass state initial vector sequence in the analysis and control of discrete
linear repetitive processes since if they are of the form (2) a well developed robust control
theory is available—see Rogers et al. (2007) for the details. One possible approach here
would be to try to exploit the structure of so-called wave repetitive processes (see Rogers
et al. (2007) for the definition and currently available results) as a setting for analysis.
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