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Abstract  This paper considers two-dimensional (2D) discrete linear systems recursive
over the upper right quadrant described by well known state-space models. Included are
discrete linear repetitive processes that evolve over subset of this quadrant. A stability theory
exists for these processes based on a bounded-input bounded-output approach and there has
also been work on the design of stabilizing control laws, elements of which have led to the
assertion that this stability theory is too strong in many cases of applications interest. This
paper develops so-called strong practical stability as an alternative in such cases. The analysis
includes computationally efficient tests that lead directly to the design of stabilizing control
laws, including the case when there is uncertainty associated with the process model. The
results are illustrated by application to a linear model approximation of the dynamics of a
metal rolling process.

Keywords 2D information propagation - Recursive updating - Stability - Stabilization

1 Introduction

The systems theoretic properties of discrete linear systems recursive in the upper right quad-
rant of the 2D plane have been the subject of much investigation over the years using, in the
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main, the well known state-space models due to Roesser (1975) and Fornasini and Marchesini
(1978) respectively. In particular, asymptotic or bounded-input bounded-output (BIBO) sta-
bility has been formulated and many tests for this property now exist. Also there has been
substantial progress on other aspects of the systems theory for them.

Discrete linear repetitive processes are also recursive in the upper right quadrant of the 2D
plane but here information in one of the two directions of information propagation is limited
to a finite duration. In particular, the unique characteristic of such a process is a series of
sweeps, termed passes, through a set of dynamics defined over a fixed finite duration known
as the pass length. On each pass an output, termed the pass profile, is produced which acts as
a forcing function on, and hence contributes to, the dynamics of the next pass profile. This,
in turn, leads to the unique feature in that the output sequence of pass profiles generated can
contain oscillations that increase in amplitude in the pass-to-pass direction.

Physical examples of these processes in the process industries are detailed in Rogers et al.
(2007). Also in recent years applications have arisen where adopting a repetitive process
setting for analysis has distinct advantages over alternatives. Examples of these so-called
algorithmic applications include classes of iterative learning schemes in control/signal pro-
cessing (Amann et al. 1998) and iterative algorithms for solving nonlinear dynamic optimiza-
tion problems based on the maximum principle (Roberts 2002). In this last case, for example,
use of the repetitive process setting provides the basis for the development of highly reliable
and efficient iterative solution algorithms.

Repetitive process analysis starts from a stability theory (Rogers et al. 2007) which is of
the BIBO form, i.e. bounded inputs are required to produce bounded sequences (i.e. process
outputs) of pass profiles and (in its strongest form) is termed stability along the pass. Also it
is possible to write the dynamics of a large sub-class of discrete linear repetitive processes
in Roesser (or Fornasini-Marchesini) state-space model form and it has been shown that
stability along the pass of a given example is equivalent to asymptotic or BIBO stability of
its 2D Roesser (or Fornasini-Marchesini) model interpretation (Boland and Owens 1980).

In the 2D (and more generally nD, n > 3) discrete linear systems case there has been
work which has argued that asymptotic or BIBO stability is too strong in many cases of
practical interest. This raised the question of whether or not there is another useful definition
of this property and led to so-called practical BIBO stability for nD linear systems—see,
for example, Agathoklis and Bruton (1983); Xu et al. (1994, 1997). The stability equiv-
alence (Boland and Owens 1980) means that the practical stability analysis can also be
applied to discrete linear repetitive processes (obviously the same sub-class for which this
equivalence holds).

Here we first demonstrate that practical stability can be too weak when applied to discrete
linear repetitive processes and then proceed to develop a stronger concept termed strong
practical stability. We also show how this can be characterized by easily computed tests that
lead on to control law design algorithms, including the case when there is uncertainty asso-
ciated with the process model. Finally, we give and illustrative example based on a metal
rolling application.

Throughout this paper, the null and identity matrices with the required dimensions are
denoted by 0 and I respectively. Moreover, M > 0 (<0) denotes a real symmetric pos-
itive (negative) definite matrix, Sym{M} is used to denote M + M T and * is used to
denote transposed block entries in the symmetric Linear Matrix Inequalities (LMIs) that are
the means by which the necessary computations can be completed for a given numerical
example.
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2 Background

The state-space model of a discrete linear repetitive process (Rogers et al. 2007) has the
following formover0 < p <a — 1, k >0,

Xk+1(p + 1) = Axg1(p) + Bug41(p) + Boyr(p)

Vit 1(p) = Cxeg1 () + Ditgt (p) + Doyi(p) M

where o < 00 is the pass length and on pass k xx(p) € R” is the state vector, yx(p) € R”
is the pass profile vector, and ux(p) € R’ is the vector of control inputs. The boundary
conditions are the pass state initial vector sequence and the initial pass profile and here these
are assumed to be of the form

X1(0) = diy1, k=0, yo(p)=f(p), 0=p=<a—1 (@)

where the n x 1 vector di1 has known constant entries and f(p) is an m x 1 vector whose
entries are known functions of p.

The updating structure of both the state and pass profile (output) dynamics exhibits simi-
larities with the well known Roesser (1975) and Fornasini and Marchesini (1978) state-space
models for 2D quarter plane causal discrete linear systems and it is possible to solve some
systems theoretic problems by exploiting such links. In essence, the route for stability anal-

.. A By
ysis 1s to treat @ = [C Do
repetitive process dynamics.

Itis not true that all other systems theoretic problems for discrete linear repetitive processes
can be solved by recourse to a Roesser or Fornasini—-Marchesini model of the dynamics. For
example, some applications require that the initial state vector on each pass is a function of
points along the previous pass, and it is possible that these alone can cause instability. Such
conditions have no Roesser or Fornasini-Marchesini model counterparts. Also there is no
equivalent of the concept of pass profile controllability, i.e. the existence of a control input
sequence which will force the process to produce a pre-specified state or pass profile vector
on a specified pass. See Rogers et al. (2007) and the relevant cited references for a detailed
treatment of systems theoretic problems which are unique to repetitive processes.

The stability theory (Rogers et al. 2007) for linear repetitive processes is based on an
abstract model in a Banach space setting which includes a wide range of such processes as
special cases, including those described by (1) and (2). In terms of their dynamics it is the
pass-to-pass coupling (noting again their unique feature) which is critical. This is of the form
Yk+1 = Lo Yk, where y; € Ey (E, aBanach space withnorm ||-||) and L, is abounded linear
operator mapping E, into itself. (In the case considered here L, is a discrete convolution
operator.)

Asymptotic stability, i.e. BIBO stability over the fixed finite pass length o« > 0, requires
the existence of finite real scalars M, > 0 and A, € (0, 1) such that ||L§|| < Ma)\’é, k>0
(where || - || also denotes the induced operator norm). For processes described by (1) and (2)
this condition holds if, and only if, all eigenvalues of the matrix Do have modulus strictly
less than unity, written here as r (Do) < 1 where r(-) denotes the spectral radius of its matrix
argument.

Suppose that this condition holds and the input sequence applied {ux4}x>0 converges
strongly as k — oo (i.e. in the sense of the norm on the underlying function space) to .
Then the strong limit ys, := limy_ oo Vk is termed the limit profile corresponding to this
input sequence and its dynamics along the pass are described by

] as the system matrix in a Roesser model interpretation of the
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Xoo(p+1) = (A+ Bo(I — Do) ' C)xoo(p) + (B + Bo(I — Do) ' D)uco(p)
Yoo(p) = (I = Do) ™' Cxoo(p) + (I — Do) ™' Dutoo(p)
Xoo(0) = doo 3)

where dy is the strong limit of the sequence {dj };>1. In physical terms, this result states that
under asymptotic stability the repetitive dynamics can, after a ‘sufficiently large’ number of
passes have elapsed, be replaced by those of a 1D discrete linear system. In particular, this
property demands that the amplifying properties of the coupling between successive pass
profiles are completely damped out (in the k direction) after a sufficiently large number of
passes have elapsed.

To provide another interpretation of asymptotic stability, consider the case when p = 0
with di4+1 = 0, k > 1 and zero input signal on each pass. Then y; (0) = Dé v0(0) and hence
the process will be asymptotically stable provided the sequence of initial pass profile vectors
does not become unbounded. In particular, asymptotic stability is independent of the state
updating dynamics and this could be a source of major difficulty in at least some cases.

Note 1 The limit profile as k — oo is termed horizontal to distinguish it from the case
introduced below when p — oo that will be termed the vertical limit profile.

Although, we demand for the definition of the horizontal limit profile only a finite and
fixed pass length, it is straightforward to see from the state updating equation of (3) that it
can be treated as the 1D discrete linear system in the p direction. Consider also the case
when A = —0.5, B =1, Bp = 0.5+ 8, B areal scalar, C = 1 and D = Dy = 0. This
is an asymptotically stable process with resulting limit profile (with zero state initial vector
sequence) Yoo(p + 1) = BYoo(pP) + Uoso(p), Which is unstable as a 1D discrete linear system
if |B| > 1, i.e. the dynamic response increases in magnitude as p (the long the pass variable)
evolves over the finite interval [0, «]. In many cases, such a situation will not be acceptable,
e.g. in a control application where the task is to force the process to track a given target or
reference vector. For other cases, however, asymptotic stability will suffice or indeed is all
that can ever be achieved (see the application in Roberts 2002).

If a horizontal limit profile which is unstable in the 1D linear systems sense is not accept-
able then we demand the BIBO property for all possible values of the pass length. Mathemat-
ically, this can be analyzed by letting « — oo. This is stability along the pass, see Rogers
et al. (2007). Recall also that the repetitive processes here can be interpreted in 2D Roesser
or Fornasini—-Marchesini state-space model terms where for stability analysis the route is via
the matrix @ defined earlier in this section. Then it can be shown that stability along the
pass of the repetitive processes considered here is equivalent to asymptotic stability of its
2D discrete linear systems interpretation (Boland and Owens 1980; Rogers et al. 2007). This
stability equivalence does not hold for any other sub-classes of repetitive processes.

Stability along the pass must hold for k — oo and p — oo simultaneously and several
sets of necessary and sufficient conditions (Rogers et al. 2007) for this property are known,
such as the following.

Theorem 1 Suppose that the pair {A, By} is controllable and the pair {C, A} is observable.
Then a discrete linear repetitive process described by (1) and (2) is stable along the pass if,
and only if, r(Dg) < 1, r(A) < 1 and all eigenvalues of

G(z) =Czl — A~ 'By + Dy 4)

have modulus strictly less than unity V |z| = 1
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These conditions can, in principle, be tested by direct application of well known 1D
discrete linear systems tests. Application of them to the example given above shows that
stability along the pass also places a constraint on the state dynamics on both the current pass
(r(A) < 1) and (in the single-input single-output case for simplicity) the complete frequency
response of the transfer-function describing the contribution of the previous pass profile,
and not just on the matrix Dy (=lim;|— oo G(z)) (in particular, a constraint on the coupling
between the previous pass profile and current pass state dynamics through the By matrix).
Also it is easy to see that stability along the pass ensures that the resulting limit profile is
stable as a 1D discrete linear system, i.e. r(A + Bo(I — Dg)~'C) < 1 (or a limit profile
which is stable as a 1D linear system is a necessary condition for stability along the pass).

The only difficulty with using this last result is that testing (4) could be computationally
intensive and, despite its Nyquist basis, it has not proved to be a starting point for onward
analysis, e.g. the design of a stabilizing control law, except in a few very restrictive special
cases. This is in contrast to the Nyquist stability test for 1D linear systems. The most effec-
tive way currently available for control systems/filter design is via LMIs, e.g. Galkowski
et al. (2002). This results in stability tests which can be implemented by computations with
matrices which have constant entries and also a straightforward extension is possible to, for
example, enable the design of control laws for stability along the pass and/or filter design
(Wu et al. 2009).

The price paid for this progress is that the LMI based analysis works on sufficient, as
opposed to necessary and sufficient conditions (such as those of Theorem 1) and hence there
will be a degree of conservativeness associated with all results and analysis that start from
this basis. There is hence great potential benefit in seeking an alternative approach that does
not have this undesirable feature. It is, of course, possible to work with asymptotic stability
alone but as we have already argued above it is much too weak in many cases.

As already noted in this paper, another way to consider stability of 2D systems, and hence
discrete linear repetitive processes of the form considered here, is to use the weaker concept
of practical stability (Agathoklis and Bruton 1983; Xu et al. 1994, 1997). Applying the result-
ing conditions to the 2D linear systems interpretation of processes described by (1) and (2)
gives the following result.

Lemma 1 A discrete linear repetitive process described by (1) is practically stable if, and
only if, r(Dg) < 1l and r(A) < 1.

In terms of applying this result to a given example, we simply need to complete two tests for
the 1D discrete linear systems property.

Consider now an industrial example such as a gantry robot whose task is to collect an
object from a location and place it on a moving conveyor belt after a finite time has elapsed,
then return to the original location to pick up the next one and so on. This is an obvious
application for iterative learning control (Ratcliffe et al. 2006), and hence repetitive process
theory, in that the time taken to complete the return journey can be used to update the control
law using previous pass information to sequentially improve performance. Maximum benefit
will arise here if this operation can be executed a very large number of times without the need
to stop and hence lose throughput. Hence we have the case when « is finite and k — oo and
for this we clearly need a form of stability where the horizontal limit profile, i.e. k — oo,
exists with stable along the pass dynamics and, ideally, acceptable tracking of the reference
signal can be achieved. We already know that this requires asymptotic stability plus a stable
limit profile where the latter requirement cannot be guaranteed by practical stability. (The
conditions of Lemma 1 do not guarantee a limit profile that is stable in the p direction as the
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example given earlier in this paper, i.e. A = —0.5, B = 1, By = 0.5 + B, B areal scalar,
C =1and D = Dy = 0) demonstrates).

In the remainder of this paper we develop strong practical stability as an alternative to the
property of Lemma 1 by removing the uniform boundedness requirement as both k — oo
and o — oo but still demanding this property when (i) both k and « are finite, (ii) the pass
index k — oo and the pass length « finite, and (iii) the pass index k is finite and the pass
length « — oo. Cases (i) and (ii) are already practically motivated and Case (iii) is the
mathematical formulation where the process completes a finite number of passes but the
pass length is ‘very long’ and there is a requirement to control the along the pass dynamics.
We also develop LMI based tests for the resulting necessary and sufficient conditions that
lead directly to control law design algorithms, including the case when there is uncertainty
associated with the process model.

3 Strong practical stability

Consider the case of p = 0 with zero state initial vector sequence and zero control input
vector. Then y;(0) = Dé y0(0) and hence we require r(Dp) < 1. Under this condition,
i.e. asymptotic stability, we achieve the limit profile (3) as k — oo that is stable when
r(A+ Bo(I — Dp)~'C) < 1.

Consider now any finite k. Then clearly (consider the case when there is no previous
pass profile contribution) we require that r(A) < 1. Also, again with zero state initial vector
sequence and zero control input vector, as p — 00

Yk+1(00) = (C(I — A)™' By + Do) yi(00) ®)

and hence we require »(C(I — A 1By+ Dy) < 1.In summary, therefore, strong practical
stability requires that the following conditions hold
[a] r(Do) <1
[b] r(A) <1
[c] (A + Bo(I — Dy)~'C) < 1, and
[d] r(C(I —A)~'By+ Dg) < 1

The conditions for strong practical stability can, assuming no numerical problems with
computing the eigenvalues of the matrices involved, be easily checked for a given example.
Suppose, however, that the task is to ensure this property by application of a control law (see
also the next section) of the form

ug+1(p) = Kixg+1(p) + K2yi(p) (6)

which is a combination of current pass state feedback plus a feedforward term from the pre-
vious pass profile (in keeping with the fact that use of only current pass state or pass profile
vector activated control laws cannot stabilize the process dynamics in all but a few restrictive
special cases). Then when this control law is applied the process state-space model matrices
A, By, C, Dg are mappedto A + BKy, By + FK>, C + DKy, and Dy + DK respectively.
Hence design to satisfy conditions [a] and [b] for the controlled process is simply two applica-
tions of the 1D pole placement problem for discrete linear systems. The case for conditions [c]
and [d] is far from clear and hence as a preliminary step to overall control law design we
make novel use of results from 1D singular discrete linear systems theory for the state-space
model

Ex(h+1) = Ax(h) + Bu(h) (7
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where E is a singular matrix. In particular, condition [c] is easily seen to be equivalent to
stability of the 1D singular linear system with state-space model

Eiz(h+1) = A1z(h) + Nu(h) (8)

|10 _|A By | B .. .. . .
where £ = |: 00| Al = |: CDo—1I ], I = |: D] . Similarly, condition [d] is equivalent

to stability of the 1D singular linear system

Exz(h + 1) = Azz(h) + Tu(h) 9
oo _[A-1 By
where E; = 01 , Ay = c D()i|.

We also need the following definition.

Definition 1 A 1D discrete singular ]mear system of the form (7) is termed admissible (Dal
1989)ifitis stable, regular, i.e. det (z E — A) isnotidentically zero, and deg (det (zE — A))
rank(E).

It is clear that 3 (with compatible dimensions) nonsingular matrices U and V such that

10
UEV=[OO] (10)

Also introduce E+ = V(I — UEV)U and E¥ = UT(I — UEV)U~T. Then we have the
following result (Chaabane et al. 2007).

Lemma 2 A 1D discrete singular linear system of the form (7) is admissible if, and only if,
A matrices X, Y and G (with compatible dimensions) such that the following LMI is feasible
fora given 8 > 1

_ T (gLlygHT A
[ O T [f i} <o

Note here that, with the aim of extending the analysis to stability and control law design
for uncertain processes (see Sect. 5), additional slack matrices have been introduced in the
above Lemma as in de Oliveira et al. (1999) or Peaucelle et al. (2000). This should lower the
level of conservativeness and assist in avoiding ill-conditioning of intermediate results that
can strongly affect the final outcome in numerical computations.

Now we can give the first new result of this paper in the form of computable necessary
and sufficient conditions for strong practical stability. (This result is subsequently used as a
basis for control law design, including the case when there is uncertainty associated with the
process model.)

Lemma 3 A discrete linear repetitive process described by (1)and (2) is szrongly practically
stablelf and only if, 3 matrices Wi > 0, W2 > 0, X21, X21, X11 =(x! l) 22 =X 2)T
Y121, Y22, 11 = (XH) X22 = (Xzz) Gi, G» (of compatible positions) such that the
following LMlIs are feasible for scalars 1 > 1, B2 > 1
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-w, wIDl
|:D0Wl [ <0 (12)
—W, W] AT
[A% P, | <0 (13)

—-xl, 0 0 0
0 0 0 )T
0 0 x|, xipT
0 Yy Xy X
o o0 @Hr oo

+Sym[|:A_16G;«]1:|[I/311]]<0 (14)

0 —-X3 0 0 A>G,
v 0 x3 (x3)r |tSym ” _G, } [U2 /32U2]] <0 (15)
Lo 0 X3 X5

where Uy := |:(I) (I)]

Proof The LMISs of (12) and (13) are commonly used in 1D linear systems stability theory.
Also interpreting the conditions of Lemma 2 in terms of (8) and (9) shows that LMIs (14)
and (15) are equivalent to requirements [c] and [d] respectively for strong practical stabil-
ity. (Note also that in Lemma 2 applied to both cases only the block entries Y121 and Y212
respectively in the (n 4+ m) x (n + m) matrix Y influence the final result). ]

To illustrate the differences between the various types of stability for discrete linear repeti-
tive processes considered in this paper, we now give some simulation examples where in each
case the pass profile and input vectors are scalars. Also all simulations have zero input signal
applied and hence we are examining the response to non-zero boundary conditions—note
again the critical role these have in the stability characteristics of these processes.

We begin with Fig. 1 that shows the pass profile sequence for an asymptotically unstable,
i.e. r(Dp) > 1, example and hence neither strong practical stability or stability along the
pass can hold.

i
20

10

30
20
10

along the pass direction % pass—to—pass direction

Fig. 1 Pass profile sequence for an asymptotically unstable process
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o 20
along the pass direction 0o 9 pass-to-pass direction

Fig. 2 Pass profile sequence for an asymptotically stable process

x 107

30

20
along the pass direction 00 10 pass—to—pass direction

Fig. 3 Pass profile sequence of a practically stable process

Figure 2 shows the pass profile sequence for an example which is asymptotically stable,
i.e. r(Dp) < 1, (and hence a limit profile described by a 1D discrete linear system exists)
but neither strong practical stability or stability along the pass hold. Here the pass profile
sequence converges in the pass-to-pass (k) direction but the resulting limit profile is unstable
in the along the pass (p) direction.

Figure 3 shows an example where practical stability, i.e. 7(Dg) < 1 and r(A) < 1, holds
and illustrates that under this property an unacceptable horizontal limit profile can result. In
particular, such a limit profile is unacceptable in terms of applications where control action
is applied to track a reference signal. This unacceptable behavior arises because practical
stability takes no account of the previous pass contributions (through the state-space model
matrices By and Do) to the current pass profile.
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Fig. 4 Pass profile sequence of a strong practically stable process

Figure 4 shows an example that is strongly practically stable. The key point here is that
the oscillations that arise are damped out as the process dynamics evolve in k. Clearly there
will be cases when even this is unacceptable and will need either control action applied or
stability along the pass with control action. For cases where strong practical stability (with
control action if required) the core problem of determining if this property holds for a given
example is much easier than the same task for stability along the pass (where in the latter
case we must also check the frequency domain condition (4)).

It is also possible to characterize strong practical stability in terms of the poles of the
example considered where it is first important to note that the concept of a pole for an nD
linear system is much more complex than in the 1D case (Wood et al. 2000). For the discrete
linear repetitive processes of the form considered here, however, the situation is less complex
and can be used to explain the differences between strong practical stability and stability
along the pass. The starting point is the characteristic polynomial for these processes defined

as
. 21l — A —By
p(z1, z2) = det ([ —C 2l — Do]) (16)

and the poles are the component-wise non-zero points in 2D complex space where the matrix
on the left-hand-side here fails to have full rank, i.e., they are given by

p(z1,22) =0 )

and the set {aj, ay} that satisfy this last equation is termed the pole-variety. Also stability
along the pass holds if, and only if,

p(z1,22) #0, |21l = 1, |22 = 1 (18)

The poles here are given by the vanishing of a single 2D non-unit polynomial and it is
guaranteed to be a 1D geometric set in 2D complex space. Note also that the pole variety
must be complex, even though the entries of the matrices A, Bg, C and Dg are real. This is
essential in order to capture the full exponential-type dynamics of the process. The poles of
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these processes can be interpreted in terms of exponential trajectories, which in which in the
case considered here have a clear physical interpretation.

Assume that (a1, az) € C?2 is such that p(ay,az) =0, and write a; = re'', ay = re
(with r; = 0 for a; = 0 and r, = 0 for a; = 0). Then the existence of such a pair guaran-
tees (Wood et al. 2000, Theorem/Definition 4.4) the existence of an exponential trajectory in
the process having the form

160

xe(p) = x0or L5 cos (01 p + 62k) + xyr {5 sin (61 p + 62k) (19)
ye(p) = yéorlprg cos (01 p + 62k) + yéorlpré‘sin(élp + 672k) (20)
up(p) =0 (21)

From this we conclude that stability along the pass requires no poles with |a;| > 1, |aa| > 1,
which is a direct generalization of the 1D linear systems case. For strong practical stability,
it is easy to see that condition [c] is equivalent to p(z1, 1) # 0, |z1| > 1, and condition [d]
to p(1,z2) # 0, |z2| > 1. Hence for this stability property the only exponential trajectories
considered are identical to those for a 1D discrete linear system, and these are clearly a subset
of those given in (19).

4 Guaranteeing strong practical stability

If the strong practical stability property is not present for a given example then in con-
trol and signal processing applications it will clearly be necessary to introduce regulation
action to guarantee it. One way of doing this is to use the control law (6), i.e. uxt1(p) =
Ki1xx+1(p) + Kayk(p), which is the sum of current pass state feedback and a ‘feedforward’
term from the previous pass. A simpler structure would result if current pass state feedback
alone could be used but it is known that this is only possible in a few very restrictive special
cases. Note also that the previous pass profile is a measured output and here we assume that
it not significantly corrupted by noise etc. Moreover, the current pass state vector in this
control law could be replaced by the current pass profile or estimated using an observer if
not all entries are available for measurement.
Application of (6) now gives the controlled process state-space model

Xit1(p+ 1) = (A+ BK)xi+1(p) + (Bo + BK2) yk(p) 22)
Vir1(p) = (C + DK)xpy1(p) + (Do + DK2) y(p)
To achieve asymptotic stability for the controlled process, only K7 needs to be selected by
solving the 1D discrete linear systems problem with state matrix Dy, input matrix D and
control law matrix K. For practical stability, we must add the solution of the 1D discrete
linear systems pole placement problem with state matrix A, input matrix B and control law
matrix K1, i.e. solve two independent 1D discrete linear systems pole placement problems.
Despite its obvious appeal in terms of simplicity of the control law design problem, a con-
trolled practically stable process may still exhibit the unacceptable response characteristics
illustrated in Fig. 3 (for an uncontrolled process). In such cases, the next approach (before
moving on to stability along the pass) is to design for strong practical stability and the fol-
lowing are necessary and sufficient conditions for this property (obtained by interpreting the
conditions for strong practical stability in terms of this last state-space model).
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Theorem 2 A controlled discrete linear repetitive process described by (22) is strongly prac-
tically stable if, and only if,

r(Dop+ DKj) <1 (23)
r(A+ BKj) <1 24
r((Bo + BK>)(I — Dg — DK>)~'(C + DK|) + (A+ BK))) < 1 (25)
r((C+ DK)(I — A — BK1)"'(Bo + BK3) + (Do + DK3)) < 1 (26)

The following result from 1D discrete singular linear systems theory is the basis for the
remaining analysis in this paper (basically the analysis which yielded necessary and sufficient
conditions for strong practical stability can be extended to allow control law design for this
property).

Lemma 4 (Chaabane et al. 2007) The 1D discrete singular linear system resulting from
applying the state feedback control law

u(h) = Kx(h) 27)

to (7) is admissible if, and only if, 3 matrices X, Y, G, and R such that the following LMI

—EXET (ELYEHT AG + BR oo
is feasible for a given B > 1. Also
K = RG™! (29)

results in a stable system.

Now we have the following result which gives a method for control law design to ensure
strong practical stability.

Theorem 3 A controlled discrete linear repetitive process described by (22) is strongly prac-
tically stable if the following LMIs

Wr— G, — Gl
|:DOG2+DR2 —W <0 (30)

Wi—Gi -Gl «
[AGl—i—BRl “wy | <0 GD

1
—-X;; 0.0 ?T AG, + BR, ByGy+ BR
0 0 0 (¥p) 4 Sym CG1+ DRy DoGy — Go + DR»
0 0 x|, xip” Y ~Gy 0
0 Yy X5 X 0 —G2
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AG1B1 + BR 1B ByG2B1 + BRy By
CG1B1 + DR B1 DoG2B1 — G281 + DRy

<0 32
—Gif 0 G2
0 —-G254
0 02 xPHr o AG| — G| + BR, ByG»+ BR>
0 -X3, 0 0 CGi+ DR;  DyGy+ DR,
+ S
Y121 0 X%l (X%I)T ym -G 0
0 0 X3 X3 0 -G
AG B2 — G1B2+ BR1B2 BoGafa + BR2S2
CG B2+ DR B2 DoG2B2 + DRy -0 (33)
-G 0
0 —G2B2

hold for given B1 > 1 and B > 1 and matrix variables Wi > 0, Wo > 0, X%l, X%l,
Xl = &IDT xl, = X)L YE, Y, X3 = (X3)T, X3, = (X3)7, G, Ga, Ry, Ry
When these conditions hold, then stabilizing control law matrices are given by

Ki = RG], K»=R:G;' (34)

Proof Conditions (30) and (31) ensure that r(A+ BK1) < 1 and (Do + DK3) < 1 respec-
tively hold. The proofs for the last two conditions follow from the same arguments in terms of
Lemma 2 as those relating to the use of Lemma 1 in establishing the corresponding conditions
for the uncontrolled case. For the first of these

_ __Gl 0 ]
R_[R1 Rz], G__O Gs |
and for the second
_ _-0 G|
R=[RyRi]. G__GZO_

Routine mathematical manipulations then yield the required LMIs and the proof is
complete. O

5 Robust stability and stabilization

Often an exact model of the process dynamics will not be available. Hence we must consider
control law design in the presence of uncertainty. Here we show how the analysis of the
previous section can be extended to this general problem area where, in common with other
areas of linear systems theory, we assume that the uncertainty present has one of two general
forms, i.e. norm bounded or polytopic.

Norm-bounded uncertainty In this case we assume that the uncertain process dynamics
are described by a state-space model of the following form

Xip1(p+ 1) = (A+ AA)xp1(p) + (B + AB)uk+1(p) + (Bo + ABo) yk(p)
YVk+1(p) = (C + AC)xk41(p) + (D + AD)up41(p) + (Do + ADo) yk(p) (35)

@ Springer



324 Multidim Syst Sign Process (2009) 20:311-331

where the matrices AA, AB, ABy, AC, AD and A Dg representing admissible uncertainties
are assumed to satisfy

|:AA ABy AB]

AC ADy AD (36)

H,
= [Hz]}“[Ml My M3 |
and H and M are known matrices with constant entries (and compatible dimensions) and the
unknown matrix F satisfies

Flr<I (37)

We will also require the following well known result

Lemma 5 Suppose we are given known real matrices H, M and an unknown matrix F which
satisfies FT F < I. Then, for any € > 0,

HFM +MTFTHT <cHHT + éMTM (38)

Suppose now that a process described by (35) for which (36) and (37) hold is asymp-
totically stable. Then extending the previous control law design analysis to this case is not
straightforward since, in particular, the limit profile stability conditions depend in a very
complex way on the matrices defining the uncertainty. Further analysis, however, leads to
the following result which allows control law design.

Theorem 4 Suppose that a control law of the form (6) is applied to a discrete linear repet-
itive process described by (35) with uncertainty satisfying (36) and (37). Then the resulting
controlled process is strongly practically stable if the following LMIs hold

_Wz—Gz—G; * x|

DyG,+ DRy —Wr +eiH,HY % | <0 (39)
_M2G2+M3R2 0 —611_
_Wl - Gl — GIT * % ]

AG+BR, —-Wi+eHH * |<0 (40)
_M]G] + M3 R, 0 —el |
[ —Xi,+AG|+ BR, + (AG; + BR)T

+desHiHT

CG| + DRy + (BoGy + BRy)T +4e3s o HY
—G1+ (AG181 + BR )"
(BoG2B1 + BR2S1)T
MG+ M3R;

0
0
0

%
DoGas — Ga 4+ DRy + (DgGy — Gy + DRy)T
+4e3sHyHY
(CG1B1 + DR 1T

*

*

X}, = Gip — (GiB)T

Y}, — G2 + (DoG2f1 — G2B1 + DRy X3,
0 0
M>Gy + M3R> 0
0 MG 181 + M3R,B1
0 0
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* * * * x|
* * * * *
* * * * *
XY, — Gapi — (G2p)T % * * *
22
0 el % * * <0 “D
0 0 —e3l *
0 0 0 —e3l =*
MG, B1 + M3R, 8, 0 0 0 —esl |
[ AG| — Gy + BR| + (AG| — G| + BR))T
+4e4 Hy HlT
CG|+ DRy + (BoG2 + BRy)T + 4esHh H
Y}, = Gi+ (AG1f2 — G1f2 + BRi )"
(BoG2f2 + BR2p)T
MG + M3R,
0
0
L 0
* *
—X3, + DoG, + DRy + (DyG> + DRy)T .
—|—4€4H2H2T
(CG1B2 + DR1p)T X1 —Gip— (Gi1p)"
=Gy + (DoG2B2 + DRy )T X3,
0 0
M>Gy + M3R» 0
0 MG 181 + M3R1 81
0 0
* * * * x|
* * * * *
* * * * *
2 T
X5, — Ga2fr — (G22)" % * * * -0 (42)
0 —eql % * *
0 0 —eql * *
0 0 0 —e4l x*
M>GB1 + M3R2B4 0 0 0 —eql |
for a given B1 > 1, B > 1 with the variables
Wy >0, W2 >0, Xj; = (X{D", Xp = X", XG) = (X7, X5, = (X5, X5,
X%l, YH, Y22, G1,Go, R, Rhe1 >0e >0 €3 >0¢4 > 0.
When these conditions hold, stabilizing control law matrices are given by
Ki =RiG[', Ki=R:G;' (43)

Proof The proof relies on representing the conditions for strong practical stability of the
controlled process in LMI form. This can be done by the use of the results of Lemmas 4 and
5 followed by appropriate application of the Schur’s complement formula and congruence

transforms.

[m}
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Here the nominal model is again (1) but now the uncertainty is defined by the matrix

polytope
A By B A" B B! '
[CDOD}ECO([U DiD |) i=12....h (44)

and
Al Bl B " [A B} B !
Co Ci Dé D = X::;ai ci D6 D , O zO,Zaizl

We also require the following result (Chaabane et al. 2007).

Lemma 6 Consider a 1D discrete singular linear system described by (7) where the state-
space matrices are subject to uncertainty of the form defined by (44) and (45) (as applied to
this 1D case) under the action of a control law of the form (27). Then the resulting system
is admissible if there exist matrices X;, Y;, fori = 1,2, ..., h, and two matrices G and R
such that the LMI

—EX;ET (ELYy;EH)T A'G + B'R I —
[ELY,»Ei X, + Sym G [U-T pVT ]t <0 (46)

is feasible, for a given B > 1. Also
K =RG™! (47)
results in a stable system.

Now we have the main result for the case of polytopic uncertainty.

Theorem 5 Suppose that a control law of the form (6) is applied to a discrete linear repeti-
tive process described by (35) with uncertainty modeled by (44) and (45). Then the resulting
controlled process is strongly practically stable if, the following LMIs hold

Wy — Gy — Gl %
|:D662+DiR2 e (“8)
W -G — G{ *
[AiG] I @
1i . . . .
—Xp 000 A'G\ +B'Ri  BjGy+B'Ry

0 0 0 )y o | CIGi+ DR DjGr— Ga + D'Ry

0 0 Xjj (T g -G 0

0 vy xh 0 o
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AGiB1+ B'Rif1 BjG2f1 + B Rafhs
C'G1B1 + D'R1B1 DyG281 — G281 + D' Ry

<0 50
-G1B1 0 G0
0 =GB
0 0 @AHT o A'Gy — G+ B'Ry BiG,+ B'R,
0 —X3 0 0 CciG i i i
) ) g 1+D'Ry  DyGa+ D'Ry
V0T X ogpT [T Gy 0
0 0 X3 X3 0 -G,
A'G\Br — G1B2+ B'R B> B\G2f2+ B'Rofa
C'Gipr+D'Rify  DyGapa+ D'Rapa | _ 1)
=GB 0
0 —G2B2

for given B1 > 1 and By > 1 with the variables

Wy > 0. > 0 X3 X3, X = 0T, Xl = (BT, ¥R vl X = (R
X5, = (X55)", G1, G2, Ry, Ry

When these conditions hold, stabilizing control law matrices are given by

Ki = RiG;!

52
K> = R:G,! (52)

Proof The proof relies on representing the conditions for strong practical stability in LMI
form. This can be done by use of Lemma 6, followed by appropriate application of the Schur’s
complement formula and congruence transforms. Hence the details are omitted here. O

6 An illustrative example

As an example consider a simplified model of a metal rolling process, see Bochniak et al.
(2008) for the details, where « = 100 and

AlB|B 972.0 97.2| 7.94|-0.278
[F‘D—O‘3}=10_3x —278.0 972.0| 79.4 |-2.78 (53)
0 972.0 97.2[722.0 |-0.278

with boundary conditions

xk41(0) = [-10, — 101", k=0
yo(p) =20, 0<p<a-—-1

This process is practically stable (i.e. r(Dy < 1 and r(A) < 1) and Fig. 5 shows pass
profile sequence generated (with zero control input). This is not acceptable in metal rolling
due to the oscillations present in the along the pass dynamics. One option here would be
to attempt control law design to ensure practical stability without these oscillations but, as
noted above, there will be cases when this property is simply not strong enough. Here we
give representative results from control law design for strong practical stability where we
also have the design variables §; and $; available to assist in obtaining acceptable along the
pass dynamics.
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pass—to—pass direction

along the pass direction 0 "o

Fig. 5 Pass profile dynamics—practically stable

Solving the LMIs of Theorem 3 gives the control law matrices

(a) for By =19.0, B, =15.0

=[1600.0352.0] K> =353
(b) for B =429.0, 2 =515.0

=[33200352.0] K> =289

I
- m"“h/'#}hf; i .nII T I
JM"'I‘U.l'ﬂl;']'ff""""l'.'I'|h|'|','r|'|'.'f I||' :‘
i
Jhw Ililslluflllllj.llllII;IIII:HI:*:II'.I.I:IM
Ll

|I }Illllﬁf

40

along the pass direction 0 0 pass—to—pass direction

Fig. 6 Pass profile dynamics—controlled process with 1 = 19.0, 8, = 15.0
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5.

|| |||I:I||'|;'| I

> —10 . ] ,f i
e

.'.',Il'hul.l,u,lflllf i

-15 4 ll"‘f’l‘l‘i:lljll "'l"l'|"|l|f'|f||"||'ﬂ

rfllmw}lﬂ:m

Wl } / -

'a'ff:':n"""’f’M

W

-20 .|

40

40 20

20 -
10 pass—to—pass direction

along the pass direction 00

Fig. 7 Pass profile dynamics—controlled process with 81 = 429.0 and 8, = 515.0

Sequences of pass profiles dynamics generated by the controlled process are given in Figs. 6
and 7 respectively.

Examining these simulations we see that the sequence of pass profiles is converging in the
pass-to-pas direction, will eventually reach the limit profile described by a stable 1D discrete
linear system, and hence the possibility that a limit profile with acceptable (along the pass)
transient response can be achieved. Moreover, unacceptable oscillations do not appear in the
along the pass dynamics.

7 Conclusions

In this paper a new concept of stability for discrete linear repetitive processes has been devel-
oped from physical motivations and it has been shown that it can be expressed in terms
of conditions that can be tested for numerical examples by LMIs. It has also been shown
how these tests lead naturally to control law design to ensure this property, including the
case when there is uncertainty associated with the process state-space model. The resulting
design algorithms also include parameters which can be used to tune performance—a highly
desirable feature in terms of applications in both signal processing/filtering and control. Fur-
ther work includes the development of methods to tune these parameters to obtained stability
plus desired performance.
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