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Abstract

The notions of input-containing and detectability subspaces are developed within the context of

observer synthesis for two-dimensional (2-D) Fornasini-Marchesini models. Specifically, the paper

considers observers which asymptotically estimate the local state, in the sense that the error tends

to zero as the reconstructed local state evolves away from possibly mismatched boundary values,

modulo a detectability subspace. Ultimately, the synthesis of such observers in the absence of

explicit input information is addressed.

Keywords: Fornasini-Marchesini models; Detectability subspaces; Observers; Unknown-Input Ob-

servation.

1 Introduction

Controlled invariant subspaces were originally introduced by Basile and Marro in [1] to solve decou-

pling and tracking problems for one-dimensional (1-D) systems. These subspaces were subsequently

studied by Wonham and Morse in [33]. Conditioned invariant subspaces for 1-D systems were also

introduced by Basile and Marro in [1], as the duals of controlled invariant subspaces. The role of

such subspaces in solving state estimation problems was first investigated in [2]. Later, conditioned

invariance was studied by Willems in terms of the existence of a class of observers [32]. Specifically,

for any conditioned invariant subspace S that can be externally stabilised by output-injection, there

exists an observer that asymptotically recovers the state modulo S; see also the textbooks [3, Chapter

4] and [30, Chapter 5]. Unlike the classic Luenberger observer, this class of observers does not directly

∗This work was partially supported by the Australian Research Council (Discovery Grant DP0986577).
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exploit the input in reconstructing the state. The relevance of this for problems in fault-detection

and isolation is well established, [25, 31].

Over the last twenty years, several extensions of important geometric concepts, such as controlled

invariance, have been proposed for 2-D systems, including the so-called Fornasini-Marchesini and

Roesser models, [9, 20, 21]. While definitions of controlled invariance are not difficult to establish for

Fornasini-Marchesini models, definitions of conditioned invariance are less obvious because duality

cannot be exploited as in the 1-D case. The definitions of conditioned invariance in [20, 21] have the

disadvantage of being defined for models with very special structures; that is, with duality properties

absent in the case of the standard Fornasini-Marchesini model. In [9], a definition of conditioned

invariance is proposed for the standard (first order) Fornasini-Marchesini model [13], governed by

xi+1,j+1 = A1 xi+1,j +A2 xi,j+1 +B1 ui+1,j +B2 ui,j+1,

yi,j = C xi,j +Dui,j .
(1)

The definition of conditioned invariance in [9] is related therein to the reconstruction of local state

trajectories given a record of the output, in the case of exact knowledge of the boundary conditions

for (1). The problem of local state estimation with decaying error in the case of unknown boundary

conditions has not been considered. Motivated by this, we develop a systematic procedure for the

external stabilisation of conditioned invariant subspaces via output injections. This will lead to

a notion of 2-D detectability subspaces, i.e. conditioned invariant subspace that can be externally

stabilised by output injection. An algorithm for computing a stabilising output injection matrix

is also provided in terms of matrix inequalities. The approach is similar to [27], where internal

stabilisability of output-nulling controlled invariant subspaces is studied. Ultimately, the notion of a

detectabilty subspace is linked to the existence of a local state observer

!i+1,j+1 = K1 !i+1,j +K2 !i,j+1 + L1 yi+1,j + L2 yi,j+1. (2)

It is required that the size of the estimation error ei,j
def
= Qxi,j − !i,j asymptotically approaches zero

as i + j → ∞, for some full row-rank matrix Q and arbitrary boundary conditions for xi,j and !i,j .

The local state observer (2), like its 1-D counterparts defined in [32], does not exploit knowledge of

the input. As such, it is structurally different from the Luenberger-type 2-D observers discussed in

[4], since its local state does not explicitly depend on the input ui,j . For more details on the synthesis

of 2-D observers, see also [17, 18] and the references therein. As an important application of the

concepts described above, we present a solution to the so-called unknown-input observation problem

for the standard 2-D system model (2), based on a sufficient constructive condition given in terms of

a standard subspace inclusion. The relevance in fault detection and non-interaction are well known,

[6, 7]. In [5], a polynomial approach is employed to develop necessary and sufficient conditions for the

solution of this problem under the requirement that the observer error exhibit dead-beat dynamics.

The conditions involve Bézout equations, which can be difficult to solve. In this paper, the unknown-

input observation problem is considered under the weaker requirement that the estimation error only

asymptotically converge to zero away from the location of the unknown boundary conditions.
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Notation. Throughout this paper, we denote by ℕ the set of positive integers including zero. The

image and the kernel of matrix M ∈ℝ
n×m are denoted by imM and ker M , respectively. The n×m

zero matrix is denoted by 0n×m. We also denote by M⊤ and by M † the transpose and the Moore-

Penrose pseudoinverse of M , respectively. Given a subspace Y of ℝm, the symbol M−1 Y stands

for the inverse image of Y with respect to the linear transformation M . For the sake of brevity, we

define MD := diag(M,M), and, accordingly, given a subspace J of ℝn, the symbol JD will identify

the subspace J ⊕J of ℝ2n. Finally, given the vector � ∈ ℝ
n, the symbol �/J denotes the canonical

projection of � on the quotient space ℝ
n/J .

2 Invariant Subspaces for Fornasini-Marchesini Models

We begin by recalling some preliminary geometric concepts for the autonomous Fornasini-Marchesini

(FM) model

xi+1,j+1 = A1 xi+1,j +A2 xi,j+1, (3)

where, for all integers i, j, the vector xi,j ∈ ℝ
n is the local state of the system. Here, A1, A2 ∈ ℝ

n×n.

Defining for each k ∈ ℤ the separation set

Sk
def
= {(i, j) ∈ ℤ× ℤ ∣ i+ j = k},

and the corresponding instance of the global state

Xk
def
= {xi,j ∈ ℝ

n ∣ (i, j) ∈ Sk},

it is easily seen from (3) that Xk can be uniquely expressed in terms of Xk−1, [13]. In particular, if we

fix the values of xi,j on S0, i.e. fix X0 as a boundary condition, (3) uniquely determines Xk for k > 0

(i.e., xi,j for i + j > 0).1 Indeed, these are the boundary conditions usually associated with the FM

model (3). In the sequel, given a subspace W ⊆ ℝ
n, by a W-valued boundary condition we intend

the set {xi,j ∈ W ∣ (i, j) ∈ S0}. Similarly, for each k > 0, the global state Xk is said to be W-valued

when xi,j ∈ W for all (i, j) ∈ Sk. We also define the set of indexes for which the local state xi,j of (3)

is uniquely determined by fixing X0 as boundary condition:

S+
def
=

∪

k∈ℕ

Sk = {(i, j) ∈ ℤ× ℤ ∣ i+ j ≥ 0}.

A subspace J of ℝn is said to be (A1, A2)-invariant if J is Ai-invariant in the usual 1-D sense for

i ∈ {1, 2}; i.e., Ai x ∈ J for all x ∈ J and i ∈ {1, 2}. The notation Ai J ⊆ J is also commonly used

1As shown in [14], other separation sets can be defined so that boundary conditions specified over them uniquely

determine a local-state trajectory solution of (3) over a region of ℤ × ℤ. An interesting and useful example is the

separation set Sk
def
=

{

(i, j) ∈ {0}× [1,∞) ∪ [1,∞)×{0}
}

, which with corresponding boundary conditions uniquely

determines xi,j for (i, j) ∈ S+
def
= ℕ × ℕ ∖ {(0, 0)}. Most of the considerations in this paper can be adapted to such

separations sets.
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to denote this property. For example, the subspaces {0} and ℝ
n are (A1, A2)-invariant for every n×n

matrices A1 and A2. The following lemma provides geometric and matrix conditions for invariance.

Lemma 2.1 The following are equivalent:

1) J is (A1, A2)-invariant;

2) [A1 A2 ](J ⊕ J ) ⊆ J , i.e., A1 x+A2 y ∈ J for all x, y ∈ J ;

3) There exist L1, L2 ∈ ℝ
(n−r)×(n−r) such that QAi = LiQ for i ∈ {1, 2}, i.e., Q [A1 A2 ] =

[L1 L2 ]QD, where Q ∈ ℝ
(n−r)×n is a full row-rank matrix such that ker Q = J .

Proof: 1) ⇔ 2) Follows straightforwardly from the 1-D counterpart, [3].

2) ⇔ 3) Note that 2) is equivalent to ker QD ⊆ ker (Q [A1 A2 ]), by which the result holds, since

for any matrices M ∈ ℝ
p×m and N ∈ ℝ

q×p, ker M ⊆ ker N if and only if an L ∈ ℝ
q×m exists such

that N = LM .

The following theorem is the 2-D counterpart of a fundamental result on A-invariance (see [1]),

concerning the decomposition of a 1-D system matrix with respect to an invariant subspace.

Theorem 2.1 Let J be an r-dimensional subspace of ℝn. The following statements are equivalent:

1) The subspace J is (A1, A2)-invariant;

2) With respect to any basis in ℝ
n whose first r vectors span J , the linear transformations A1 and

A2 are given respectively by the block-triangular matrices

[
A11

1 A12
1

0(n−r)×r A22
1

]
and

[
A11

2 A12
2

0(n−r)×r A22
2

]
. (4)

The proof is a straightforward consequence of Lemma 2.1, see also the proof of Theorem 2.1 in [27].

2.1 Invariant Subspaces and Local-State Trajectories

In this section the concept of (A1, A2)-invariance is used to analyse properties of the local state

trajectories generated by (3). Consider an (A1, A2)-invariant subspace J . A boundary condition

{xi,j = bi,j ∈ J ∣ (i, j) ∈ S0} gives rise to xi,j ∈ J for all (i, j) ∈ S+. In fact, in view of Theorem 2.1,

a similarity transformation S ∈ ℝ
n×n exists such that for each i ∈ {1, 2} there holds

Âi
def
= S Âi S

−1 =

[
Â11

i Â12
i

0(n−r)×r Â22
i

]
.

Matrix S is any basis matrix of ℝn adapted to J , i.e., such that its first columns span J . Equivalently,

S can be constructed as the square non-singular matrix S =
[
Sc

Q

]
, where kerQ = J and the rows of
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Sc are linearly independent from those of Q. With respect to this new set of coordinates, model (3)

can be written as
[
x′i+1,j+1

x′′i+1,j+1

]
=

[
Â11

1 Â12
1

0 Â22
1

][
x′i+1,j

x′′i+1,j

]
+

[
Â11

2 Â12
2

0 Â22
2

][
x′i,j+1

x′′i,j+1

]
. (5)

Any boundary condition {xi,j = bi,j ∈ J ∣ (i, j) ∈ S0} is such that x′′i,j = 0 for (i, j) ∈ S0. Therefore,

by (5), x′′i,j = 0 for all (i, j) ∈ S+, which implies that xi,j ∈ J for all i, j ∈ S+. In the basis

corresponding to S, whereby
[
x′
i,j

x′′
i,j

]
= S xi,j , the component x′i,j is the projection of the local state

xi,j onto the invariant subspace J , while x′′i,j is the canonical projection on to the quotient space

ℝ
n/J . Thus, we refer to x′i,j of xi,j as the internal (or inner) component of the local state (with

respect to J ), and to x′′i,j of xi,j as the external (or outer) component of the local state (with respect

to J ).

2.2 Internal and External Stability of Invariant Subspaces

With ∥Xk∥
def
= supn∈ℤ ∥xk−n,n∥, the system model (3) is said to be asymptotically stable if for any

boundary condition satisfying ∥X0∥ < ∞, the corresponding sequence {∥Xi∥}
∞
i=0 converges to zero [13].

This property is clearly invariant under coordinate transformation and with a slight abuse of nomen-

clature, the system matrix pair (A1, A2) is called asymptotically stable in this case. It is well-known

that the pair (A1, A2) is asymptotically stable if, and only if,

det(In −A1 z2 −A2 z1) ∕= 0 ∀ (z1, z2) ∈ P (6)

where P =
{
(�1, �2) ∈ ℂ× ℂ

∣∣ ∣�1∣ ≤ 1 and ∣�2∣ ≤ 1
}

is the unit bidisc [13, Proposition 3]. Various,

more computationally tractable, sufficient stability conditions have been proposed over the last two

decades, in terms of Lyapunov equations and/or spectral radius conditions of certain matrices, see

e.g. [19, 8]. In the very recent literature, new necessary and sufficient criteria have appeared for

asymptotic stability in terms of conditions that have a more complex structure, but that can be

checked in finite time, see [34, 12]. For the sake of argument and clarity, however, we limit ourselves

to recalling and using the following simple sufficient condition for asymptotic stability, expressed in

terms of a linear matrix inequality (LMI):

Lemma 2.2 ([19]) The pair (A1, A2) is asymptotically stable if two symmetric positive definite ma-

trices P1 and P2 exist such that:

diag (P1, P2)−

[
A⊤

1

A⊤
2

]
(P1 + P2) [A1 A2 ] > 0. (7)

The LMI condition in Lemma 2.2 is one of the most utilised for analysis and synthesis problems

involving FM models. Here it is used to develop a procedure for the computation of output injection

matrices that stabilise the external dynamics of conditioned invariant and input-containing subspaces,

which are defined shortly.
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As shown in [27], the stability of (3) can be studied in terms of two parts, with respect to a given

(A1, A2)-invariant subspace J . In particular, in the set of coordinates of (5), the fact that

det(In − Â1 z2 − Â2 z1) = det(I − Â11
1 z2 − Â11

2 z1) ⋅ det(I − Â22
1 z2 − Â22

2 z1), (8)

implies that (3) is asymptotically stable if and only if the two matrix pairs (Â11
1 , Â11

2 ) and (Â22
1 , Â22

2 )

are each asymptotically stable. Moreover, when a J -valued boundary condition is imposed, for all

k ≥ 0 the global state X ′′
k associated with the external dynamics (5) satisfies ∥X ′′

k ∥ = 0. Hence, the

internal dynamics on J satisfy

x′i+1,j+1 = Â11
1 x′i+1,j + Â11

2 x′i,j+1. (9)

If (Â11
1 , Â11

2 ) alone is also asymptotically stable, then the global state X ′
k associated with (9) satisfies

∥X ′
k∥ → 0, and therefore also ∥Xk∥ → 0.

Definition 2.1 The r-dimensional (A1, A2)-invariant subspace J is said to be

internally stable if the internal dynamics governed by (9) are asymptotically stable; i.e., the cor-

responding pair (Â11
1 , Â11

2 ) is asymptotically stable;

externally stable if the external dynamics governed by (5) are asymptotically stable; i.e., the

corresponding pair (Â22
1 , Â22

2 ) is asymptotically stable.

Consider now a boundary condition that is not J -valued, so that ∥X ′′
0 ∥ ∕= 0. It follows from

(5) that ∥X ′′
k ∥ → 0 if, and only if, the pair (Â22

1 , Â22
2 ) is asymptotically stable, and in this case, the

elements of the global state Xk associated with (3) approach the invariant subspace J , as k → ∞.

Finally, in view of the discussion above, note that the model (3) is asymptotically stable if, and only

if, any (A1, A2)-invariant subspace is both internally and externally stable. The following corollary

will be important in the sequel.

Corollary 2.1 Given an r-dimensional subspace J of ℝn, let Q ∈ ℝ
(n−r)×n be a full row-rank matrix

such that ker Q = J . Then J is an externally stable (A1, A2)-invariant subspace if, and only if, an

asymptotically stable pair (L1, L2) exists such that QAi = LiQ for i ∈ {1, 2}.

Proof: With respect to a basis of ℝn adapted to J , a matrix whose columns span J is
[

Ir×r

0(n−r)×r

]
,

and therefore Q = [ 0(n−r)×r I(n−r) ] is a full row-rank matrix such that ker Q = J . Writing the

identities QAi = LiQ for i ∈ {1, 2} with respect to this basis yields

[
0(n−r)×r In−r

]
⎡
⎣ A11

i A12
i

0(n−r)×r A22
i

⎤
⎦ = Li

[
0(n−r)×r In−r

]
,

leading to Li = A22
i for all i ∈ {1, 2}.

6



3 Conditioned Invariant Subspaces

Consider the Fornasini-Marchesini model (1) where, for all integers i, j, vector xi,j ∈ℝ
n is the local

state, ui,j ∈ℝ
m is the control input, yi,j ∈ℝ

p is the output, Ak ∈ ℝ
n×n and Bk ∈ ℝ

n×m for k ∈ {1, 2},

C ∈ ℝ
p×n and D ∈ ℝ

p×m.

Definition 3.1 ([9]) The subspace S ⊆ ℝ
n is conditioned invariant for (1) if

AH(SD ∩ ker CD) ⊆ S, (10)

where AH

def
= [A1 A2 ], CD

def
= diag (C,C) and SD = S ⊕ S.

As for the 1-D case, it is easily seen that the set of conditioned invariant subspaces is closed under

subspace intersection but not under subspace addition. Its smallest element (with respect to the

partial relation of subspace inclusion ⊆) is {0}, its largest element is ℝn. In the following lemma, the

most important properties of 2-D conditioned invariance are given.

Lemma 3.1 Let S be an s-dimensional subspace of ℝ
n, and let Q ∈ ℝ

(n−s)×n be a full row-rank

matrix such that ker Q = S. The following statements are equivalent:

1) the subspace S is conditioned invariant for (1);

2) there exist matrices Γ = [ Γ1 Γ2 ] and Λ = [Λ1 Λ2 ] – with Γi ∈ ℝ
(n−s)×(n−s) and Λi ∈ ℝ

(n−s)×p

for i ∈ {1, 2} – such that

QAH = ΓQD + ΛCD; (11)

3) there exist a matrix G = [G1 G2 ] – with Gi ∈ ℝ
n×p – such that

(AH +GCD)SD ⊆ S, (12)

Proof: 1) =⇒ 2). Inclusion (10) can be written in matrix notation as ker
[
QD

CD

]
⊆ ker Q [A1 A2 ].

Hence, matrices Γ ∈ ℝ
(n−s)×2(n−s) and Λ ∈ ℝ

(n−s)×2p exist such that Q [A1 A2 ] = ΓQD + ΛCD.

2) =⇒ 3). Equation (12) follows from (11) with any G such that Λ = −QG. Such a matrix G

always exists as Q is of full row-rank.

3) =⇒ 1). This follows from the definition.

Remark 3.1 Notice that property 2) in Lemma 3.1 can be written equivalently as

QAi = ΓiQ+ ΛiC for i ∈ {1, 2}.

As a consequence, inclusion (10) in Definition 3.1 can also be written as Ai (S ∩ ker C) ⊆ S for

i ∈ {1, 2}, which coincides with the definition of 2-D conditioned invariance given in [9]. Moreover,

3) in Lemma 3.1 is equivalent to

(Ai +GiC)S ⊆ S for i ∈ {1, 2}.

This means that S is conditioned invariant for (1) if and only if there exists an output-injection matrix

G = [G1 G2 ] ∈ ℝ
n×2p such that S is an (A1 +G1C,A2 +G2C)-invariant subspace.
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3.1 Construction of Stabilising Output-Injection Matrices

Our aim now is to establish a procedure that enables an output-injection matrix G to be determined

such that S is an externally stable (A1 + G1C,A2 + G2C)-invariant subspace. As for the 1-D case,

we say that S is externally stabilisable if we can find an output-injection matrix G such that S is an

externally stable (A1 +G1C,A2 +G2C)-invariant subspace.

To find all the output-injection matrices associated with the conditioned invariant subspace S, let

Γ and Λ be such that (11) holds, which can be written as the linear equation

QAH =
[
Γ Λ

] [ QD

CD

]
. (13)

This equation can be solved for Γ and Λ. The solutions of (13) are given by

[
Γ Λ

]
= QAH

[
QD

CD

]†

+KH, (14)

where H has linearly independent rows and ker H = im
[
QD

CD

]
, while K is an arbitrary matrix of

suitable size. As it will become clear in the sequel, K represents a first degree of freedom in the

construction of the output-injection matrix, that can be exploited to externally stabilise the 2-D con-

ditioned invariant subspace S. Notice that in the case when
[
QD

CD

]
is full-rank, the only solution of

(13) is [ Γ Λ ] = QAH

[
QD

CD

]†
, and this degree of freedom disappears.

By (12), Γ̃ = [ Γ̃1 Γ̃2 ] exists such that

Q (AH +GCD) = Γ̃QD, (15)

or, equivalently, such that Q (Ai + GiC) = Γ̃iQ, for i ∈ {1, 2}. We now investigate the relation

between the pairs (Γ,Λ) and (G, Γ̃) satisfying (13) and (15), respectively. Given a pair (G, Γ̃) such

that (15) holds, then (13) is satisfied with Γ = Γ̃ and Λ = −QG. Conversely, given a pair of matrices

(Γ,Λ) such that (13) holds, then (15) is satisfied with Γ̃ = Γ and with any G such that Λ = −QG.

As such, no generality is lost by assuming Γ̃ = Γ, and by representing the set of all output-injection

matrices associated with the conditioned invariant subspace S as the set of matrices G ∈ ℝ
n×2p

satisfying Λ = −QG, where Λ ∈ ℝ
(n−s)×2p is any matrix for which Γ ∈ ℝ

(n−s)×2(n−s) exists so that

(13) holds. For any pair (Γ,Λ) such that (13) holds, the solutions of the linear equation Λ = −QG

are parameterised as

G = GΛ +ΩU, (16)

where GΛ
def
= −Q⊤(QQ⊤)−1 Λ, matrix Ω is a basis of ker Q and U is an arbitrary matrix of suitable

size. Hence, U represents a second degree of freedom in the construction of the output-injection

matrix associated with S, that can be exploited to stabilise S internally. This second degree of
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freedom only disappears for S = {0}; in fact, in this case Q ∈ ℝ
n×n leads to U = 0. With reference to

the discussion in Section 2, note that with S =
[
Sc

Q

]
, where the rows of Sc are linearly independent

from those of Q, we have that for all i ∈ {1, 2}

S (Ai +GiC)S−1 =

[
Δ11

i (K,U) Δ12
i (K,U)

0 Δ22
i (K,U)

]
. (17)

Equation (17) expresses the fact that, as repeatedly mentioned, S is an (A1 + G1C,A2 + G2C)-

invariant subspace. The dependence of matrices Δ11
i , Δ12

i and Δ22
i upon U and K expresses the fact

that U and K are the two degrees of freedom that can be used to assign the inner dynamics of S by

modifying Δ11
i (K,U) and to assign the external dynamics of S by modifying Δ22

i (K,U). Importantly,

these two procedures can be carried out independently; in fact, as the following lemma explains, the

choice of K affects Δ22
i (K,U) but not Δ11

i (K,U), i ∈ {1, 2}. Vice-versa, the choice of U affects

Δ11
i (K,U) but not Δ22

i (K,U), i ∈ {1, 2}.

Lemma 3.2 For all i ∈ {1, 2}, the matrix Δ22
i (K,U) in (17) does not depend on U , and the matrix

Δ11
i (K,U) does not depend on K.

Proof: First, we show that Δ
(22)
i (K,U) does not depend on U . To this end, let U1, U2 be two

arbitrary matrices of suitable size. From (17) we find that

[
Δ11

i (K,U1)−Δ11
i (K,U2) Δ12

i (K,U1)−Δ12
i (K,U2)

0 Δ22
i (K,U1)−Δ22

i (K,U2)

]

= S (Ai +GΛC +ΩU1C)S−1 − S (Ai +GΛC +ΩU2C)S−1 =

[
Sc

Q

]
Ω (U1 − U2)C S−1,

so that

QΩ (U1 − U2)C S−1 =
[
0 Δ22

i (K,U1)−Δ22
i (K,U2)

]
,

which is equal to zero sinceQΩ is the zero matrix by definition of Ω. Hence, Δ22
i (K,U1) = Δ22

i (K,U2),

which implies that the term Δ22
i (K,U) in (17) does not depend on U . Now we show that Δ11

i (K,U)

does not depend on K. First, from (17), it is found that

Sc

(
Ai −Q⊤(QQ⊤)−1 ΛC +ΩU C

)
= Δ11

i (K,U)Sc +Δ12
i (K,U)Q, (18)

where U is an arbitrary matrix of suitable size. Let Γ1 and Λ1 be the solution of (14) with K = K1,

and let Γ2 and Λ2 be the solution of (14) withK = K2. Since QAH = Γj QD+Λj CD, for j ∈ {1, 2}, we

get (Λ1−Λ2)CD = −(Γ1−Γ2)QD. By partitioning (Γ1−Γ2) as [ Ξ1 Ξ2 ], we get (Λ1−Λ2)C = −ΞiQ.

Writing (18) with respect to Λ1 and Λ2 and by computing the difference yields

Sc

(
−Q⊤(QQ⊤)−1(Λ1 − Λ2)C

)
=

(
Δ11

i (K1, U)−Δ11
i (K2, U)

)
Sc +

(
Δ12

i (K1, U)−Δ12
i (K2, U)

)
Q,
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so that

ScQ
⊤(QQ⊤)−1 ΞiQ =

(
Δ11

i (K1, U)−Δ11
i (K2, U)

)
Sc +

(
Δ12

i (K1, U)−Δ12
i (K2, U)

)
Q.

Since Q and Sc have linearly independent rows, we find

ScQ
⊤(QQ⊤)−1ΞiQ =

(
Δ12

i (K1, U)−Δ12
i (K2, U)

)
Q

and (
Δ11

i (K1, U)−Δ11
i (K2, U)

)
Sc = 0,

the second yielding Δ11
i (K1, U) = Δ11

i (K2, U) since Sc has linearly independent rows. Therefore, the

term Δ11
i (K,U) in (17) does not depend on K.

Now we want to find a method to design the output-injection matrix G = [G1 G2 ] such that

S is an externally stable (A1 + G1C, A2 + G2C)-invariant subspace; i.e., such that there exists an

asymptotically stable pair (Γ1,Γ2) for which Q (AH +GCD) = ΓQD.

For a given a conditioned invariant S, write (14) as

[
Γ1 Γ2 Λ

]
=

[
V1 V2 V̄

]
+K

[
H1 H2 H̄

]
, (19)

where [V1 V2 V̄ ] = QAH

[
QD

CD

]†
and [H1 H2 H̄ ] = H are partitioned comformably with

[ Γ1 Γ2 Λ ], i.e., Γi = Vi + KHi for i = 1, 2 and Λ = V̄ + K H̄. If SD + ker CD = ℝ
2n, there is

only one solution to (13), so that there are no degrees of freedom in the choice of the pair (Γ1,Γ2).

In this case, if (Γ1,Γ2) is asymptotically stable, then with the corresponding Λ = V̄ , the matrix

GΛ
def
= −Q⊤(QQ⊤)−1 Λ = [GΛ,1 GΛ,2 ] is such that S is an externally stable (A1+GΛ,1C,A2+GΛ,2C)-

invariant subspace. On the other hand, if the pair (Γ1,Γ2) is not asymptotically stable, the subspace

S is not externally stabilisable.

Now, when SD + ker CD ⊂ ℝ
2n, the problem we need to solve is to find a matrix K such that

the resulting pair (Γ1,Γ2) = (V1 + KH1, V2 + KH2) is asymptotically stable; the corresponding

Λ = V̄ + K H̄, for which (Γ,Λ) is a solution of (11), is such that GΛ
def
= −Q⊤(QQ⊤)−1 Λ, yielding

Q (AH + GΛCD) = ΓQD, so that S is an externally stable (A1 + GΛ,1C,A2 + GΛ,2C)-invariant

subspace.

Towards characterising a subset of such matrices K, we can virtually exploit any stability criterion

for 2-D Fornasini-Marchesini models. As mentioned, necessary and sufficient conditions have recently

appeared in the literature that characterise stability in finite terms, [12, 34]. For the sake of simplicity,

however, we consider the sufficient condition recalled in Lemma 2.2, whose structure appears to be

much less involved. Let us rewrite this condition for asymptotic stability in Lemma 2.2 for the pair

(Γ1,Γ2) as [
Φ 0

0 Ψ− Φ

]
−

[
Γ⊤
1

Γ⊤
2

]
Ψ
[
Γ1 Γ2

]
> 0,
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for some Φ
def
= P1 > 0 and Ψ

def
= P1 + P2 > 0. Standard manipulation and Γi = Vi +KHi, for i = 1, 2,

yield the equivalent condition

⎡
⎢⎢⎣

Φ 0 (ΨV1 +ΘH1)
⊤

0 Ψ− Φ (ΨV2 +ΘH2)
⊤

ΨV1 +ΘH1 ΨV2 +ΘH2 Ψ

⎤
⎥⎥⎦ > 0 (20)

for some Φ > 0, Ψ > 0, and Θ of suitable dimensions, where Θ = ΨK. We have just proved the

following result

Theorem 3.1 Let S be a conditioned invariant subspace for (1). Then, S is an externally stabilisable

conditioned invariant subspace if there exist Φ = Φ⊤ > 0, Ψ = Ψ⊤ > 0 and Θ of suitable dimensions

such that (20) holds. Moreover, given a triple (Θ,Φ,Ψ) in the convex set defined by (20), a matrix

K for which the pair (Γ1,Γ2) is asymptotically stable is given by K = Ψ−1Θ.

4 Detectability Subspaces and Local State Observers

Now we turn our attention to input-containing subspaces, which are particular types of conditioned-

invariant subspaces. These are useful for various filtering/estimation problems, including the con-

struction of local state observers without access to the system inputs.

Definition 4.1 We define an input-containing subspace S for (1) as a subspace of ℝn such that

[
AH BH

] (
(SD ⊕ ℝ

2m) ∩ ker
[
CD DD

] )
⊆ S.

As for the 1-D case, it is easy to see that the intersection of two input-containing subspaces is

input-containing. It follows that the set of input-containing subspaces for (1) is closed under subspace

intersection. The same is not true for subspace addition. This is due to the fact that the Grassman

manifold of ℝn is a non-distributive lattice with respect to the operations of sum and intersection

(and with respect to the partial ordering given by the standard subspace inclusion ⊆), [3]. As a result

of these considerations, it turns out that the set of input-containing subspaces for (1) is a modular

lower semilattice with respect to subspace intersection. Thus, the intersection of all input-containing

subspaces of Σ is the smallest input-containing subspace of Σ, and is usually denoted by S★. A simple

algorithm for the computation of S★ is given below. This algorithm extends Proposition 3.4 in [9] to

non-strictly proper systems.

Algorithm 4.1 The sequence of subspaces (Si)i∈ℕ described by the recurrence

S0 = 0n

Si =
[
AH BH

] (
(Si−1

D ⊕ ℝ
3m) ∩ ker

[
CD DD

] )
,

for i > 0, is monotonically non-increasing. An integer k≤n− 1 exists such that Sk+1=Sk. For such

k, the identity S★=Sk holds.
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For input-containing subspaces, a generalised version of Lemma 3.1 holds.

Lemma 4.1 Given the s-dimensional subspace S of ℝn, let Q ∈ ℝ
(n−s)×n be a full row-rank matrix

such that ker Q = S. The following statements are equivalent:

(i) the subspace S is input-containing for (1);

(ii) two matrices Γ ∈ ℝ
(n−s)×2 (n−s) and Λ ∈ ℝ

(n−s)×2p exist such that

Q
[
AH BH

]
=Γ

[
QD 02 (n−s)×2m

]
+Λ

[
CD DD

]
; (21)

(iii) a matrix G ∈ ℝ
n×2p exists such that

[
AH +GCD BH +GDD

] (
SD ⊕ ℝ

2m
)
⊆ S (22)

Proof: The result follows in the same way as the result in Lemma 3.1.

Following the procedure outlined for 2-D conditioned invariant subspaces, to find the set of ouput-

injection matrices associated with the input-containing subspace S, we first solve (21) with respect

to Γ and Λ, obtaining

[
Γ Λ

]
= Q

[
AH BH

] [
QD 0

CD DD

]†

+KH,

where H is full row-rank, ker H = im
[
QD 0
CD DD

]
, and K is an arbitrary matrix of suitable size. Using

(22), we compute the solutions of Λ = −QG as G = GΛ+ΩU . As for conditioned invariant subspaces,

K represents the degree of freedom that can be used to assign the external dynamics of the input-

containing subspace S, e.g. by means of an LMI condition similar to that given in Theorem 3.1. As

such, we say that S is a detectability subspace if an output-injection matrix G exists (or, equivalently,

if K exists) such that (22) holds and S is an externally stable (A1 + G1C, A2 + G2C)-invariant

subspace. It can be straightforwardly established that an exact equivalent of Theorem 3.1 holds for

detectability subspaces by simply writing (19) with

[
V1 V2 V̄

]
= Q

[
AH BH

] [ QD 0

CD DD

]†

and ker
[
H1 H2 H̄

]
= im

[
QD 0

CD DD

]
.(23)

Detectability input-containing subspaces can be linked to the existence of certain observers [28].

Consider a system Σ governed by a Fornasini-Marchesini model (1). Given a subspace S of ℝn, the

2-D system ΣO ruled by (2) is said to be an S-quotient observer if for any boundary condition of

Σ and ΣO, the local state of ΣO asymptotically reconstructs the local state xi,j of Σ modulo the

components of this vector on S. In other words, on the basis of the observations y, the vector !i,j

asymptotically converges to xi,j/S, as the indexes i and j evolve away from the boundary, regardless

of the boundary conditions of Σ and ΣO.
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Obviously, given an arbitrary subspace S of ℝn, an S-quotient observer does not necessarily exists.

But if this subspace is a detectability subspace, the existence of such an observer is guaranteed. Let

Q be a full row-rank matrix such that ker Q = S. Define the new variable ei,j = Qxi,j − !i,j ,

along with the vectors x̂(i, j) = [x⊤i,j x⊤i+1,j x⊤i,j+1 ]
⊤, û(i, j) = [u⊤i,j u⊤i+1,j u⊤i,j+1 ]

⊤ and

!̂(i, j) = [!⊤
i,j !⊤

i+1,j !⊤
i,j+1 ]

⊤, (i, j) ∈ S+. Let Γ and Λ be such that (21) holds. Let system (2) be

defined by KH = Γ and LH = Λ. It is found that

ei+1,j+1 = Qxi+1,j+1 − !i+1,j+1

= QAH x̂(i, j) +QBH û(i, j)− Γ !̂(i, j)−QGCD x̂(i, j)−QGDD û(i, j)

= Q
[
AH +GCD BH +GDD

] [ x̂(i, j)
û(i, j)

]
− Γ !̂(i, j) = Γ1 ei+1,j + Γ2 ei,j+1,

where (22) has been used. Moreover, since S is a detectability subspace, the pair (Γ1,Γ2) is asymp-

totically stable. Therefore, the estimation error converges to zero as the index (i, j) evolves away from

S0, so that !i,j asymptotically converges to Qxi,j . Since ker Q = S, this means that ΣO recovers the

external components of xi,j with respect to S. Notice that if S is an input-containing subspace but

not a detectability subspace, the estimation error does not converge to zero, unless the error is zero

over the entire boundary region.

Note that the characterisation of external stabilisability for conditioned invariant and input-

containing subspaces is essential in employing these ideas in the construction of local state observers.

Indeed, the fact that the subspace S is input-containing alone can only guarantee that ΣO gives rise to

an estimation error that only depends on the boundary conditions. Therefore, ΣO can only guarantee

that when !i,j = Qxi,j for (i, j) ∈ S0, then the estimation error is identically zero, which means that

!i,j = Qxi,j for all S+.

Example 4.1 Consider (1) with

A1 =

⎡
⎢⎢⎢⎢⎢⎣

−0.35 0 0.01 0

0 0.1 0 0

0.01 0 −0.4 0.4

0 0 0.02 0.15

⎤
⎥⎥⎥⎥⎥⎦
, A2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 −0.05 0

0.5 0.01 0 0

−0.35 0 0.35 0.05

0 0 −0.45 0.15

⎤
⎥⎥⎥⎥⎥⎦
, B1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0

1 6

0 −5

0 2

⎤
⎥⎥⎥⎥⎥⎦
, B2 =

⎡
⎢⎢⎢⎢⎢⎣

0 2

−7 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦
,

C =

[
0.4 0 0 0

0 0 0 −2

]
, D =

[
0 2

0 −7

]
.

Using Algorithm 4.1, which in this case converges in one step, it is found that S★ = im [ 0 1 0 0 ]⊤,

so that the kernel of

Q =

⎡
⎢⎢⎣

1 0 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎦
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is exactly S★. By defining W
def
=

[
QD 0
CD DD

]
, a matrix H whose kernel is the image of W can be easily

computed:

H =

[
1 0 −10

7 0 0 0 −5
2 −5

7 0 0

0 0 0 1 0 −10
7 0 0 5

2 −5
7

]
.

Using (23), it is easy to verify – for example exploiting the MATLABR⃝ routines setlmis.m, lmiterm.m,

getlmis.m and feasp.m – that the LMI condition (20) is satisfied with

Φ =

⎡
⎢⎢⎣

3.6255 −0.3427 0.3978

−0.3427 0.4365 0.2150

0.3978 0.2150 1.0328

⎤
⎥⎥⎦ , Ψ =

⎡
⎢⎢⎣

5.4473 −0.1769 0.6142

−0.1769 1.2425 0.9384

0.6142 0.9384 2.4452

⎤
⎥⎥⎦ ,

which are symmetric and positive definite, and

Θ =

⎡
⎢⎢⎣

−0.1101 −0.9151

0.9581 0.1717

0.4129 0.4502

⎤
⎥⎥⎦ , which yields K = Ψ−1Θ =

⎡
⎢⎢⎣

0.0314 −0.2017

0.9209 −0.0956

−0.1925 0.2715

⎤
⎥⎥⎦ .

As such,

[
Γ1 Γ2

]
=

⎡
⎢⎢⎣

−0.2829 0.0100 −0.0959 −0.3058 −0.0500 −0.1346

1.2485 −0.4000 0.0593 −0.4026 0.3500 0.1252

−0.2747 0.0200 −0.0290 0.2934 −0.4500 −0.2691

⎤
⎥⎥⎦

and

[
Λ1 Λ2

]
=

⎡
⎢⎢⎣

−0.1678 −0.0479 0.7645 −0.0673

−3.0962 −0.1703 0.1315 0.0376

0.6868 −0.0895 −0.7334 −0.2095

⎤
⎥⎥⎦

The observer (2) withK1 = Γ1, K2 = Γ2, L1 = Λ1 and L2 = Λ2, whose order is 3, is able to reconstruct

the local state of the system modulo S★, i.e., the first, the third and the fourth components, but not

the second. Indeed, by denoting by x
(k)
i,j the k-the component of vector xi,j , the estimation error is

ei,j = Qxi,j − !i,j =

⎡
⎢⎢⎣

x
(1)
i,j − !

(1)
i,j

x
(3)
i,j − !

(2)
i,j

x
(4)
i,j − !

(3)
i,j

⎤
⎥⎥⎦ .

If for simplicity of representation we consider as boundary the set of indexes
(
{0}× [1, 20]

)
∪
(
[1, 20]×

{0}
)
, and we assign random boundary conditions (using randn.m) on this region, using the randomly

generated input functions of Figure 1, we obtain that the estimation error is the one given in Figure

2. Notice that indeed the estimation errors converge to zero as the index (i, j) moves away from the

boundary.
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Figure 1: Inputs u1 and u2 in the bounded frame [0, 20]× [0, 20].
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Figure 2: Estimation errors over the bounded frame [0, 20]× [0, 20].

5 Unknown-input observers

In this section, we use the geometric notions developed so far for the solution of the unknown-input

observation problem, which plays an important role in signal reconstruction problems, fault-detection

and identification, non-interaction control. Consider the Fornasini-Marchesini model

xi+1,j+1 = A1 xi+1,j +A2 xi,j+1 +B1 ui+1,j +B2 ui,j+1

yi,j = C xi,j +Dui,j

zi,j = Rxi,j + S ui,j

(24)

where, for all intgers i, j, vector ui,j ∈ℝ
m represents an input which is not accessible for measurement.

The variable yi,j ∈ℝ
p1 represents an output that can be measured and the variable zi,j ∈ ℝ

p2 is an

output that we want to estimate on the basis of the measurement y. All matrices appearing in (24)

are of appropriate dimensions. Consider the block diagram depicted in Figure 3. Let the observer ΣO

be described by the equations

!i+1,j+1 = K1 !i+1,j +K2 !i,j+1 + L1 yi+1,j + L2 yi,j+1,

�i,j = M !i,j +N yi,j
(25)
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and let Σ̂ denote the overall system from the input u to the output e := z − �. With the choice of

the structure of the observer ΣO, the overall system is governed by

[
xi+1,j+1

!i+1,j+1

]
=

[
A1 0

L1C K1

] [
xi+1,j

!i+1,j

]
+

[
A2 0

L2C K2

] [
xi,j+1

!i,j+1

]

+

[
B1

L1D

]
ui+1,j +

[
B2

L2D

]
ui,j+1,

ei,j =
[
R−N C −M

] [
xi,j

!i,j

]
+ (S −N D)ui,j .











 













Σ

ΣO

u

y

z

e

�

+

−

Figure 3: Block diagram of the unknown input observation scheme.

Roughly speaking, the unknown-input observation problem consists of finding ΣO ruled by (25)

and connected as in Figure 3, such that ΣO recovers the local state xi,j with greater accuracy as the

spatial index (i, j) evolves away from S0, i.e., such that for any boundary conditions of Σ and ΣO the

estimation error ei,j converges to zero as (i, j) evolves away from S0. This problem is equivalent to

finding an observer ΣO such that the input u has no influence on the output e. The case in which the

observer is dead-beat, i.e., in which the estimation error goes to zero within a finite number of steps

for any boundary conditions of Σ and ΣO, was completely solved in [5] using polynomial techniques.

In the following theorem, a solution is provided for the unknown-input observation problem when

only asymptotic convergence to zero of the estimation error is required. The solution is constructive,

in the sense that a sufficient solvability condition is presented that guarantees the existence of an

unknown-input observer that provides an asymptotic estimate of z. The observer model matrices are

explicitly derived.

Theorem 5.1 Let S★ be the smallest input-containing subspace of the Fornasini-Marchesini model

(1). The unknown-input observation problem admits solutions if

(i) ker [R S ] ⊇ (S★ ⊕ ℝ
m) ∩ ker[C D ];

(ii) S★ is a detectability subspace.

Proof: Let Q be a full row-rank matrix such that ker Q = S★. Condition (i) implies that a pair

(Φ,Ψ) exists such that

[
R S

]
= Φ

[
Q 0

]
+Ψ

[
C D

]
. (26)
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The solutions Φ and Ψ of (26) are parameterised as

[
Φ Ψ

]
=

[
R S

] [ Q 0

C D

]†

+KH,

where the rows of H span the null-space of
[
Q⊤ C⊤

0 D⊤

]
and K is an arbitrary matrix of suitable size.

Furthermore, the matrices Φ and Ψ satisfying (26) are unique if and only if the map
[
Q 0

C D

]
is

surjective. When [ C D ] is full row-rank, this condition is equivalent to C S★ + imD = ℝ
p1 or

alternatively S★ + C−1 imD = ℝ
n.2 Notice also that equation (26) can be equivalently written as

[
RD SD

]
= ΦD

[
QD 0

]
+ΨD

[
CD DD

]
. (27)

Now, since obviously the kernel of
[
Q⊤ C⊤

0 D⊤

]
is zero if and only if such is the kernel of

[
Q⊤

D C⊤
D

0 S⊤
D

]
, it

turns out that in the case where C S★ + imD = ℝ
p1 , equation

Q
[
AH BH

]
=Γ

[
QD 0

]
+Λ

[
CD DD

]

admits a unique solution, so that the four matrices Γ,Λ,Φ and Ψ can be uniquely determined. Since

S★ is a detectability subspace, there exists an output-injection matrix G such that (22) holds with

an asymptotically stable pair (Γ1,Γ2). We show that the dynamical system ΣO ruled by (25) with

Kk = Γk, Lk = −QGk, (k ∈ {1, 2}), M = Φ, and N = Ψ solves the unknown-input observation

problem. First, note that in view of (26)

ei,j =
[
R−N C −M

] [
xi,j

!i,j

]
+ (S −N D)ui,j

= (R−ΨC)xi,j − Φ!i,j + (S −ΨD)ui,j

=
([

R S
]
−Ψ

[
C D

])[
xi,j

ui,j

]
− Φ!i,j

= Φ
[
Q 0

] [ xi,j

ui,j

]
− Φ!i,j = Φ(Qxi,j − !i,j).

Define "i,j := Qxi,j − !i,j using the same notation of Section 4. Given the signal s : S+ 7→ ℝ
ℎ for

some ℎ, let also ŝ(i, j)
def
= [ s⊤i,j s⊤i+1,j s⊤i,j+1 ]

⊤. It follows that

"i+1,j+1 =Qxi+1,j+1 − !i+1,j+1

=Q
[
AH BH

] [ x̂(i, j)

û(i, j)

]
− Γ !̂(i, j)

+QG1 (C xi+1,j +Dui+1,j) +QG2 (C xi,j+1 +Dui,j+1)

=Q
([

AH BH

]
+G

[
CD DD

])[
x̂(i, j)

û(i, j)

]
− Γ!̂(i, j)

= Γ
[
Q 0

] [ x̂(i, j)

û(i, j)

]
− Γ!̂(i, j) = Γ1 "i+1,j + Γ2 "i,j+1.

2Recall that C−1 imD = {x ∈ ℝ
n ∣C x ∈ imD}.
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Hence, the signal "i,j is independent of ui,j , and since ei,j = Φ "i,j , such is also the estimation error

ei,j . It follows that if �i,j = zi,j for all (i, j) ∈ S0, then �i,j = zi,j for all (i, j) ∈ S+. Moreover, in

view of the asymptotic stability of the pair (Γ1,Γ2), it also follows that for all boundary conditions

�i,j and xi,j , (i, j) ∈ S0, the estimation error ei,j converges to zero as (i, j) moves away from S0.

6 Concluding remarks

The paper develops notions of conditioned invariant and detectability subspaces for 2-D Fornasini-

Marchesini models. By contrast with earlier work, the development here leads to an LMI based

procedure for the synthesis of observers which asymptotically estimate the local state of a standard

Fornasini-Marchesini model, in the sense that the error tends to zero as the reconstructed local state

evolves away from unknown boundary conditions. The geometric notions and results presented here

complement those in [27], where notions of controlled-invariance and stabilisability are developed

within the context of 2-D disturbance decoupling problems. It is expect that the results of this paper

will lead to 2-D extensions of techniques for the detection and identification of faults, as developed

in [25] and [31].
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