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Abstract The method of Proper Orthogonal Decompositions (POD) is a data-based
method that is suitable for the reduction of large-scale distributed systems. In this paper
we propose a generalization of the POD method so as to take the ND nature of a distributed
model into account. This results in a novel procedure for model reduction of systems with
multiple independent variables. Data in multiple independent variables is associated with
the mathematical structure of a tensor. We show how orthonormal decompositions of this
tensor can be used to derive suitable projection spaces. These projection spaces prove use-
ful for determining reduced order models by performing Galerkin projections on equation
residuals. We demonstrate how prior knowledge about the structure of the model reduction
problem can be used to improve the quality of approximations. The tensor decomposition
techniques are demonstrated on an application in data compression. The proposed model
reduction procedure is illustrated on a heat diffusion problem.

Keywords Model reduction · ND systems · Proper orthogonal decompositions ·
Multi-linear algebra · Tensors

1 Introduction

Systems that have space and time as independent variables occur frequently in all fields of
science and engineering. Typically, dynamic relations among variables of these systems are
described by Partial Differential Equations (PDEs). Since analytical solutions to systems of
PDEs can generally not be inferred, one typically resorts to numerical techniques to obtain
insight in the evolutions and solutions of these systems. Traditionally, these numerical tech-
niques rely on finite element (FE) or finite volume methods in which both space and time are
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gridded. A substantial body of research is dedicated to gridding techniques so as to guarantee
the accuracy of approximate solutions. They all have in common that, with increasing require-
ments on accuracy, the number of equations that need to be resolved increases. Depending on
the dimensionality and level of accuracy, the numerical models become large-scale discrete
systems that require a substantial computational effort to solve. In particular, this makes FE
models less suitable for purposes of on-line monitoring, real-time prediction, optimization,
or model-based control.

Model reduction methods aim to reduce the complexity of large-scale dynamical systems.
The goal of model reduction is to obtain models that are computationally efficient and that,
at the same time, offer an accurate description of the system under consideration. Previous
work on model reduction for infinite dimensional systems, Fujimoto and Ono (2008), Glover
(1988), considers mainly the evolution of system variables in one independent variable,
namely time. These papers focus on the accurate representation of the input/output behavior
in the reduced order model. Our interest lies in obtaining reduced order models that offer an
accurate description of the state evolution of an ND system. In this paper, we explicitly aim
to take the structure of multiple independent variables into account.

The method of Proper Orthogonal Decompositions (POD) Kirby (2001), Thomee (1997),
Kunisch and Volkwein (2002) is among the few model reduction techniques that can be
readily applied to systems with multiple independent variables. POD is also known under the
names of Principal Component Analysis (PCA) Jolliffe (1986) and Karhunen-Loève-Decom-
position Kirby (2001). POD is a projection-based method that relies on the computation of
empirical projection spaces from a representative set of measurement or simulation data. In
its classical formulation, the projection spaces are used in a spectral expansion that separates
space and time. No further structure is assumed for the spatial variables. This makes POD
basically a two-variable method since it deals with an ND system by separating time and
space. That is, the independent variables are assumed to reside in a Cartesian product of a
temporal and spatial domain.

It is the aim of this paper to generalize the POD method to explicitly take the multi-
dimensionality of independent variables into account. This is accomplished by assuming a
more general Cartesian structure for the independent variables. In our point of view tensors
and tensor decompositions provide a natural and suitable mathematical formalism for the
representation of signals that evolve in multiple independent variables. When applied to ND
systems, tensor decompositions can be used to define empirical projection spaces that resem-
ble the projection spaces used in POD model reduction techniques. Moreover, when applied
to ND systems, they offer distinct advantages over classical POD techniques in the sense
that they allow more flexibility in approximating spatial evolutions.

Throughout this paper tensors are defined as multi-linear functionals. We believe that this
level of abstraction has advantages over the alternative definition where tensors are viewed
as multi-dimensional arrays. Firstly, this displays the algebraic nature of tensors in a more
direct manner. Secondly, it allows to clearly distinguish tensors as an algebraic object from
its representation. Thirdly, basis changes are introduced in a most natural algebraic setting.
The order of the tensor is the number of arguments of the functional. Tensor decomposi-
tions refer to expanding a multi-linear functional in more elementary building blocks, such
as low-rank tensors. Our aim will be to show that orthogonal rank-one decompositions of
tensors prove useful in questions of low-rank tensor approximations. Unlike the matrix case
(order-2 tensors), where optimal low-rank approximations are readily found via the Singular
Value Decomposition (SVD), finding optimal low-rank approximations for tensors is not
straightforward at all. See de Silva and Lim (2008) for a thorough discussion of the issues
that may arise.
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Traditionally, two types of tensor decompositions are found in the literature, the Tucker
decomposition Tucker (1966) and the PARAFAC or CANDECOMP decomposition Carroll
and Chang (1970). In the Tucker decomposition an order-N tensor is represented as a product
of a core tensor of the same size as the original tensor with N nonsingular matrices. The
columns of these matrices span the domain of each of the arguments of the original ten-
sor. The well-known Higher-Order Singular Value Decomposition (HOSVD) De Lathauwer
et al. (2000a) is a special case of the Tucker decomposition. Recently, in Weiland and van
Belzen (2010) the authors of this paper proposed a method for tensor decompositions that
generalizes the classical singular value decomposition of matrices. It proves useful for find-
ing low-rank approximations of tensors. The method presented is of the Tucker form, with
additional orthogonality constraints. The second class of tensor decompositions represents a
tensor as a linear combination of normalized rank-one tensors. This decomposition is found
under the names of Parallel Factor (PARAFAC) Decomposition or Canonical Decomposi-
tion (CANDECOMP). More recently, in Oseledets and Tyrtyshnikov (2009), Oseledets and
Tyrtyshnikov (2010), an alternative to these two classes of tensor decompositions was pro-
posed. In the so-called Tree-Tucker (TT) representation, a tensor is decomposed as a tree of
order-3 tensors.

In addition to the work on tensor decompositions, a lot of effort is geared towards using
tensors to reduce computation time of multidimensional functions on discretized grids. In
Beylkin and Mohlenkamp (2005) the authors introduce the concepts of separated rank and
separated representation to accelerate computations of multidimensional functionals on dis-
cretized grids. It is their aim to arrive at function approximations, rather than tensor decom-
positions. Therefore, in the construction of the separated representation, the authors do not
require minimality of rank, nor orthonormality of the decomposition in whatever sense, nor
optimality of the approximation. Since it is the aim of this paper to construct empirical pro-
jection spaces spanned by orthonormal bases, the work of Beylkin and Mohlenkamp (2005)
is not considered further in this paper. In Khoromskij and Khoromskaia (2009) the authors
attempt to combine the strengths of the Tucker and CANDECOMP decomposition to decrease
the time involved in computations with function related multidimensional arrays. Numerical
algorithms for tensor decompositions and approximations of Tucker type are presented, with
the additional constraint that the core array is to be presented in a low-rank canonical format.
As an application of tensors to accelerate computation of multidimensional functions on
discretized grids, Hackbusch (2008) uses tensors to solve elliptic eigenvalue problems.

This paper uses tensor decompositions to derive empirical projection spaces from mea-
sured or simulated data. These spaces can be used to define reduced order models through
Galerkin projections. Since these projection spaces are computed once, and usually off-line,
the computational efficiency of computing these projection spaces is not a severe restriction.
Therefore, the focus in this paper will be on deriving projection spaces using tensor decom-
positions of the Tucker form. It will be shown that these decompositions can be robustly
computed and offer the required orthonormality.

The contribution of this paper is twofold. First, we review the method presented in Weiland
and van Belzen (2010) and show how more flexibility in reduction orders can be exploited to
improve the quality of reduced-order models. An algorithm to compute the decompositions
is introduced and a numerical example is presented. Second, the techniques of tensor decom-
positions and Proper Orthogonal Decompositions are combined to obtain a model reduction
framework for ND systems. We show that this model reduction technique has decisive advan-
tages in that the ND structure of the original problem is left invariant. As a result of this, it
allows to reduce spatially dependent variables independently in each spatial direction.
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This paper is organized as follows. In Sect. 2, a compact introduction to the method of
Proper Orthonogal Decompositions is provided. Then, in Sect. 3 tensors and tensor decom-
positions are introduced and discussed. Section 4 proposes some changes to the POD method
that may be useful when considering ND systems. The numerical computation of a tensor
decomposition is discussed in Sect. 5. We end with our conclusions. Proofs to the theorems
can be found in the appendix.

2 Introduction to proper orthogonal decompositions

This section offers a brief introduction to the method of Proper Orthogonal Decompositions.
More information on this topic can be found in Kirby (2001), Thomee (1997), Kunisch and
Volkwein (2002).

Consider an arbitrary linear distributed system described by the Partial Differential Equa-
tion (PDE)

R

(
∂

∂x1
, . . . ,

∂

∂xN

)
w = 0. (1)

Here, R ∈ R
·×1[ξ1, . . . , ξN ] is a real matrix valued polynomial in N indeterminates. That is,

with ξ defined as the multi-indexed indeterminate, ξ = (ξ1, . . . , ξN ) and � the multi-indexed
object � = (�1, . . . , �N ), R is the degree-L polynomial

R(ξ1, . . . , ξN ) := R(ξ) =
∑

0≤|�|≤L

R�ξ
� =

∑
0≤|�|≤L

R�1···�N ξ
�1
1 · · · ξ�N

N

where |�| = ∑
�n and R� are real-valued coefficients. With ξn replaced by the partial deriv-

ative ξn = ∂
∂xn
, R defines a polynomial differential operator as in (1). That is, (1) is viewed

as a PDE in the signal w : X ⊂ R
N → R that evolves over N independent variables. The

domain of the signal w,X, is assumed to have a Cartesian structure X = X
′ × X

′′, which is
typically the product of a spatial and a temporal domain. A Hilbert space H of functions on X

′
is introduced. Solutionsw of (1) are assumed to be sufficiently often differentiable functions
that satisfyw(·, x ′′) ∈ H for all x ′′ ∈ X

′′. In addition, H is assumed to be a separable Hilbert
space, which means that a countable orthonormal basis {ϕn, n = 1, 2, . . .} for H exists and
every solution w to (1) admits a spectral expansion

w(x ′, x ′′) =
∑

n

an(x
′′)ϕn(x

′)

in which the modal coefficients an are uniquely determined by an = 〈w, ϕn〉, where 〈·, ·〉
denotes the inner product in H. For r > 0 a lower rank approximation to w is defined by the
truncation

wr (x
′, x ′′) =

r∑
n=1

an(x
′′)ϕn(x

′). (2)

For r > 0, the reduced order model is then defined by the collection of solutionswr (x ′, x ′′) =∑r
n=1 an(x ′′)ϕn(x ′) that satisfy the Galerkin projection

〈
R

(
∂

∂x1
, . . . ,

∂

∂xN

)
wr , ϕ

〉
= 0, ∀ϕ ∈ Hr (3)
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where Hr is the finite dimensional projection space Hr = span{ϕ1, . . . , ϕr }. The interest of
(3) lies in the crucial observation that, whenever the spectral expansion of wr is substituted
in (3) and X

′′ ⊆ R, then (3) becomes a system of r ordinary differential equations in the
modal coefficients an, n = 1, . . . , r . This reduces the PDE (1) to an approximate model of
r ordinary differential equations.

Clearly, the quality of the reduced order model (3) entirely depends on the choice of basis
functions {ϕn}. In the POD method, the orthonormal basis functions {ϕn} of H are deter-
mined empirically, either from measurements or data w : X → R simulated from (1). This
set of measured or simulated data is assumed to contain a collection of trajectories that is
representative of the system dynamics of interest. Specifically, for given data w : X → R

with w(·, x ′′) ∈ H and x ′′ ∈ X
′′, the basis functions ϕn are chosen so as to minimize the

criterion function

J (ϕ1, . . . , ϕr ) :=
∫
X′′

‖w(·, x ′′)−
r∑

n=1

〈w(·, x ′′), ϕn〉ϕn‖2dx ′′ (4)

subject to the constraint that

〈ϕn, ϕm〉 =
{

1 if n = m
0 if n �= m

n,m = 1, . . . , r.

Here, the inner product is the inner product of the Hilbert space H and the optimization
is carried out for an arbitrary approximation degree r . A solution (ϕ1, . . . , ϕr ) to this con-
strained optimization problem is called a POD basis of order r . Hence, a POD basis of order
r minimizes the integrated error

∫
X′′ ‖w −wr‖2dx ′′ over all rank r approximations wr of w

of the form (2). A complete orthonormal basis {ϕn, n ∈ I} of H is said to be a POD basis
if for all r the collection (ϕ1, . . . , ϕr ) is a POD basis of order r . Here I is a countable set of
indices with cardinality equal to the dimension of H.

The constrained optimization problem has an elegant solution in terms of the data corre-
lation operator � : H → H that is implicitly defined as

〈ψ1,�ψ2〉 :=
∫
X′′

〈ψ1, w(·, x ′′)〉 · 〈w(·, x ′′), ψ2〉dx ′′ ψ1, ψ2 ∈ H.

Note that, � is a well defined linear, bounded, self-adjoint and non-negative operator on H.

Theorem 1 Suppose that {ϕn, n ∈ I} is an orthonormal basis of H and suppose that the
eigenvalues of � are absolute summable. Then {ϕn, n ∈ I} is a POD basis if and only if
�ϕn = λnϕn, n ∈ I where the eigenvalues λn are ordered according to λ1 ≥ λ2 ≥ · · ·.
Moreover, in that case the error

J (ϕ1, . . . , ϕr ) =
∑
n>r

λn

and is minimal for all truncation levels r > 0.

Hence, the eigenfunctions of the data correlation operator determine the POD basis. We
refer to the Appendix for a proof.

In applications, the PDE (1) can be discretized by sampling the domain X = X
′ × X

′′ and
by discretizing the PDE. This typically leads to difference equations of the form

D(ς1, . . . , ςN )w = 0 (5)
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where D ∈ R
·×1[ξ1, . . . , ξN ] is a real matrix-valued polynomial in N indeterminates and ςn

is the forward shift operator acting on the spatial discretization in the nth mode according
to ςnw(x

(�1)
1 , . . . , x (�n)

n , . . . , x (�N )
N ) = w(x (�1)

1 , . . . , x (�n+1)
n , . . . , x (�N )

N ) where w : X → R

with X = 
N
n=1Xn . An example of a simple finite element discretization rule defines D from

the PDE (1) according to

D(ς1, . . . , ςN ) = R

(
ς1 − 1

h1
, . . . ,

ςN − 1

hN

)

where hn, n = 1, . . . , N is the (uniform) sampling interval of Xn .
We will assume that (5) is an accurate representation of (1) and refer to solutions of

(5) as Finite Element solutions. Such solutions again assume the form w : X
′ × X

′′ → R

where both X
′ and X

′′ are sets of finite cardinality. For the discretized model (5) the solution
space H then becomes finite, but large, dimensional. Also the data correlation operator �
becomes a symmetric non-negative definite matrix and the calculation of POD basis functions
becomes a straightforward algebraic eigenvalue or singular value decomposition problem.
The following example illustrates the method described in this section.

Example 1 Consider the following Partial Differential Equation, describing the evolution of
temperature over some two-dimensional spatial domain and time

0 = −ρcp
∂w

∂t
+ κx

∂2w

∂x2 + κy
∂2w

∂ y2 .

Here,w(x, y, t)denotes the temperature at position (x, y) ∈ X
′ := [0, L X ]×[0, LY ] and time

t ∈ X
′′ := [0, LT ]. Let H = L2(X

′,R). Given a set of POD basis functions {ϕn(x, y)}∞n=1, w

can be represented as

w(x, y, t) =
∑

n

an(t)ϕn(x, y) =
∑

n

an(x
′′)ϕn(x

′).

Truncation of this sum to the level r gives an approximation of w which will be denoted by
wr . A Galerkin projection of the form (3) is given by

〈
−ρC p

∂wr

∂t
+ κx

∂2wr

∂x2 + κy
∂2wr

∂y2 , ϕk

〉
= 0, for k = 1, . . . , r.

Using the definition of wr , this expression can be reworked into the following ODE

ρC pȧk(t) = κx

r∑
n=1

an(t)

〈
∂2

∂x2 ϕn, ϕk

〉
+ κy

r∑
n=1

an(t)

〈
∂2

∂y2 ϕn, ϕk

〉
for k = 1, . . . , r

which defines a reduced model of order r .

3 Exploiting structure via tensor decompositions

In most model reduction applications, X′ is identified with space and X
′′ is identified with time.

No further structure is assumed for the spatial domain. In particular, for larger dimensional
Euclidean geometries, all spatial variables are lumped and this yields a large-dimensional
data correlation operator �. In this way, the ND nature of the original problem is replaced
by an artificial 2-D structure with space and time as independent variables.
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In this paper we will adapt the POD method in such a way that the ND nature of the
original system is explicitly taken into account. The key to make this possible is to assume
structure for the spatial variables instead of stacking them. We will assume that the spatial
domain has a Cartesian structure, i.e. X

′ = X1 × · · · × XN−1. Whenever this assumption
holds, the measured/simulated data can be stored in a multi-dimensional array [[w]]. This
array defines a tensor W and the projection spaces used in model reduction can be computed
via a decomposition of this tensor.

In this section we will first give some definitions regarding tensors and their properties.
Then, we will discuss tensor decompositions and introduce the tensor SVD method that will
be used throughout this paper. We show how prior knowledge of the structure of the model
reduction problem can be used to improve the accuracy of the approximation of the tensor.
Finally, an approximation example with three-dimensional MRI data is presented.

3.1 Tensors and tensor decompositions

Assume that the domain X of (1) has the Cartesian structure X = X1 ×· · ·×XN and that, for
n = 1, . . . , N , the domain Xn is gridded into a finite set of Ln elements and let Xn := R

Ln

be equipped with its standard Euclidean inner product. Suppose that w is a Finite Element
(FE) solution of (5) that is defined on the L = 
N

n=1Ln grid elements. Then w defines a
multidimensional array [[w]] ∈ R

L1×···×L N in which the (�1, . . . , �N )th entry is the sample
w�1...�N on the Cartesian grid.

At a more abstract level [[w]] defines a tensor. An order-N tensor W is a multi-linear
functional W : X1 × · · · × X N → R operating on N vector spaces X1, . . . , X N . The
elements of W, w�1···�N , are defined with respect to bases for X1, . . . , X N according to

w�1···�N = W (e�1
1 , . . . , e�N

N ), where {e�n
n , �n = 1, . . . , Ln} is a basis for Xn, n = 1, . . . , N .

For example, W (x1, x2) := 〈x1, Ax2〉 defines an order-2 tensor whose element w�1�2 is the
(�1, �2)th entry of the matrix A.

A FE solution w, or its associated multidimensional array [[w]], therefore defines the
tensor

W =
L1∑
�1=1

. . .

L N∑
�N =1

w�1···�N e(�1)
1 ⊗ · · · ⊗ e(�N )

N (6)

where e1 ⊗ · · · ⊗ eN is shorthand for the rank-1 tensor U : X1 × · · · × X N → R, defined
by U (x1, . . . , xN ) := 
N

n=1 〈en, xn〉n and where w�1···�N is the data element on the sample
point with index (�1, . . . , �N ).

The inner product of two tensors V,W ∈ TN with elements vk1,...,kN and w�1,...,�N , both
defined with respect to the same bases for X1, . . . , X N , is given by

〈V,W 〉 :=
L1∑

k1=1

· · ·
L N∑

kN =1

L1∑
�1=1

· · ·
L N∑
�N =1

vk1···kNw�1...�N

〈
ek1

1 , e�1
1

〉
· · ·

〈
ekN

N , e�N
N

〉
. (7)

It is immediate that the right-hand side of this expression is invariant under unitary basis
transformations (i.e., transformations Qn : Xn → Xn for which ‖Qn x‖n = ‖x‖n for all
x ∈ Xn) and so TN becomes a well defined inner product space. The Frobenius norm of
W ∈ TN is defined as

‖W‖F := √〈W,W 〉.
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The concept of tensor rank is a highly non-trivial extension of the same concept for lin-
ear mappings and has been discussed in considerable detail in, for example, de Silva and
Lim (2008), Kolda (2001, 2003), De Lathauwer et al. (2000a), De Lathauwer et al. (2000b).
To define the modal rank, also referred to as the multi-linear rank, of a tensor W ∈ TN , we
first introduce the n-mode kernel of W as the set

kern(W ) := {xn ∈ Xn | W (x1, . . . , xN ) = 0, for all xk ∈ Xk, k �= n}. (8)

The multi-linearity of W implies that kern(W ) is a linear subspace of Xn . The n-mode rank
of W , is defined by

Rn = rankn(W ) := Ln − dim(kern(W )), n = 1, . . . , N .

Note that rankn(W ) coincides with the dimension of the space spanned by stringing out
all elements w�1···1···�N till w�1···N ···�N (where the indices 1, . . . , N are at the nth spot).
Finally, the modal rank of W , denoted modrank(W ), is the vector of all n-mode ranks, i.e.,
modrank(W ) = (R1, . . . , RN ), Rn = rankn(W ). Throughout this section it is assumed that
W is a given tensor in TN of modal rank modrank(W ) = (R1, . . . , RN ).

The tensor (6) associated with the FE solution can be used to define suitable projection
spaces by decomposing the tensor W in rank-1 tensors as follows. For each of the vector
spaces Xn, n = 1, . . . , N we propose the construction of an orthonormal basis {ϕ�n

n , �n =
1, . . . , Ln} such that a coordinate change of W with respect to these bases achieves that the
truncated tensor

Wr :=
r1∑
�1=1

· · ·
rN∑
�N =1

ŵ�1···�N ϕ
�1
1 ⊗ · · · ⊗ ϕ

�N
N (9)

with r = (r1, . . . , rN ) and rn ≤ Ln, n = 1, . . . , N , will minimize the error ‖W − Wr‖, in a
suitable tensor norm, Kolda (2001), van Belzen et al. (2007).

For order-2 tensors (matrices) this problem is solved by the singular value decomposition.
For higher-order tensors, it is not straightforward to construct proper sets of orthonormal
bases with this property. As mentioned in the introduction, there is a vast literature on tensor
decompositions. The most appropriate in the current setting are decompositions of the Tucker
type. Consider a tensor W ∈ TN , a Tucker decomposition is of the form

W =
L1∑
�1=1

· · ·
L N∑
�N =1

w�1···�N ϕ
(�1)
1 ⊗ · · · ⊗ ϕ

(�N )
N (10)

where {ϕ(�n)
n }Ln

�n=1 forms a basis for R
Ln . The Higher-Order Singular Value Decomposition

(HOSVD) is the best known example of a Tucker decomposition with some additional ortho-
normality constraints on the basis functions. Since the HOSVD is basically a matrix-method
in which the multi-linear structure of a tensor is replaced by multiple bilinear structures, we
will not consider this method in this paper. Instead we will focus on the Tensor SVD van
Belzen et al. (2007), Weiland and van Belzen (2010). This is also a Tucker decomposition
with orthonormality constraints on the basis vectors, but unlike the HOSVD it leaves the
multi-linearity of the original tensor intact in the computation of the decomposition.

Unlike the matrix case, truncation of the Tucker decomposition of a tensor of order larger
than two does not give the best low multi-linear rank approximation of a tensor. Instead,
the truncated Tucker decomposition can be used as an initial guess in any of the numerical
algorithms that compute best low multi-linear rank approximations, as is discussed in Ishteva
et al. (2010). Examples of algorithms that can be used to compute optimal lower modal rank
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approximations of tensors can be found in for example De Lathauwer et al. (2000b), Eldén
and Savas (2009). In this paper, optimal lower modal rank approximations are not considered
as we are interested in tensor decompositions. Details of the tensor decomposition are given
in the next section.

3.2 A singular value decomposition for tensors

Let W ∈ TN be an order-N tensor defined on the finite dimensional vector spaces X1, . . . , X N

where we suppose that dim(Xn) = Ln . The singular values of W , denoted σk(W ), with
k = 1, . . . , K and K = minn modrank(W ) are defined as follows.

For n = 1, . . . , N let

S(1)n := {x ∈ Xn | ‖x‖n = 1}
denote the unit sphere in Xn . Define the first singular value of W by

σ1(W ) := sup
xn∈S(1)n ,
1≤n≤N

|W (x1, . . . , xN )|. (11)

Since W is continuous and the Cartesian product S(1) = S(1)1 × · · · × S(1)N of unit spheres is
a compact set, an extremal solution of (11) exists (i.e., the supremum in (11) is a maximum)
and is attained by an N -tuple

(ϕ
(1)
1 , . . . , ϕ

(1)
N ) ∈ S(1).

Subsequent singular values of W are defined in an inductive manner by setting

S(k)n := {x ∈ Xn | ‖x‖n = 1,
〈
x, ϕ( j)

n

〉
n

= 0 for j = 1, . . . , (k − 1)}
for n = 1, . . . , N , and by defining

σk(W ) = sup
xn∈S(k)n ,
1≤n≤N

|W (x1, . . . , xN )|, k ≤ K . (12)

Again, since the Cartesian product

S(k) = S(k)1 × · · · × S(k)N (13)

is compact, the supremum in (12) is a maximum that is attained by an N -tuple

(ϕ
(k)
1 , . . . , ϕ

(k)
N ) ∈ S(k).

It follows that the vectors ϕ(1)n , . . . , ϕ
(K )
n are mutually orthonormal in Xn . If K < Ln for

any n, then we extend the collection of orthogonal elements ϕ(1)n , . . . , ϕ
(K )
n to a complete

orthonormal basis of Xn . This construction leads to a collection of orthonormal bases

{ϕ(�1)
1 , �1 = 1, . . . , L1}, . . . , {ϕ(�N )

N , �N = 1, . . . , L N } (14)

for the vector spaces X1, …, X N , respectively.

Definition 1 The singular values of a tensor W ∈ TN are the numbers σ1, . . . , σK , K =
minn modrankn(W ) defined by (11) and (12). The singular vectors of order k are the extre-
mal solutions (ϕ(k)1 , . . . , ϕ

(k)
N ) ∈ S(k) that attain the maximum in (12). A singular value
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decomposition (SVD) of the tensor W is a representation of W with respect to the basis (14),
i.e.,

W =
L1∑
�1=1

· · ·
L N∑
�N =1

w�1···�N ϕ
(�1)
1 ⊗ · · · ⊗ ϕ

(�N )
N . (15)

The N -way array [[w�1,...,�N ]] ∈ R
L1×···×L N in 15 is called the singular value core of W .

We refer to van Belzen et al. (2007), Weiland and van Belzen (2010), for more details on
this decomposition. We will refer to this decomposition as Tensor SVD for convenience.
As discussed in Weiland and van Belzen (2010), this method generalizes some, but not all,
properties of the matrix SVD to tensors.

The tensor SVD can be used to find a suitable projection basis to infer low-order models.
This is done by using low-rank approximations of the tensor. Given the collection (14) of
bases of singular vectors of W , we define the subspaces

M(k)
n = span{ϕ(1)n , . . . , ϕ(k)n }, n = 1, . . . , N .

Definition 2 For a vector of integers r = (r1, . . . , rN ) with rn ≤ Rn , the modal truncation
W ∗

r is defined by the restriction W ∗
r := W |Mr1

1 ×···MrN
N

and is represented by the expansion

W ∗
r =

r1∑
�1=1

· · ·
rN∑
�N =1

w�1···�N ϕ
(�1)
1 ⊗ · · · ⊗ ϕ

(�N )
N (16)

where [[w�1···�N ]] is the singular value core tensor of W .

An important result on the approximation properties of this decomposition is the following
theorem, the proof can be found in the appendix.

Theorem 2 The tensor W ∗
1 := σ1ϕ

(1)
1 ⊗ · · · ⊗ ϕ

(1)
N is the optimal rank-1 approximation of

W in the sense that ‖W − W ∗
1 ‖F is minimal among all rank 1 approximations of W .

This result can be applied to define an algorithm of successive rank-one approximations to
tensors, see Weiland and van Belzen (2010) for more details. If only one modal direction,
say the p-th, is approximated, the modal truncations defined in (16) yield non-increasing
approximation error for increasing approximation order, as shown in the following result.

Theorem 3 Given W ∈ TN of modal rank R = (R1, . . . , RN ). Define r = (r1, . . . , rN )

with rn = Rn, n �= p and rp = k < Rp and consider the modal truncation W ∗
r . Then the

approximation error Ek = W − W ∗
r satisfies ‖Ek+1‖F ≤ ‖Ek‖F .

Therefore, when only one of the arguments of the tensor is approximated, the approximation
error is non-increasing for increasing approximation order.

3.3 Improved accuracy

In this section some changes will be made to the Singular Value Decomposition for tensors
described in Sect. 3.2. The tensor SVD constructs a complete decomposition of the tensor,
whereas we may only be interested in obtaining orthonormal bases for the vector space of
functions defined on X

′. In this section it will be shown that it may be advantageous to use this
fact for the construction of a decomposition that is more dedicated to the problem. To achieve
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this the SVD described in Sect. 3.2 will be adapted in such a way that only the vector spaces
of interest will be orthonormalized. This ensures that all unnecessary constraints are removed
from the optimization. The additional freedom that is created in this way will ensure that
more information is captured in the POD basis functions. This will then lead to more accurate
reduced models.

The SVD for tensors is constructed inductively. In each step a singular value and a collec-
tion of singular vectors are computed (12). For every consecutive step additional constraints
are added to ensure that the singular vectors are orthogonal to the singular vectors computed
in previous steps. When the tensor SVD is used for model reduction purposes, the only inter-
est is in obtaining orthonormal bases for the vector spaces of functions defined on X

′. Yet, the
SVD orthonormalizes the vector spaces of functions defined on X

′′ as well. Since we do not
use the bases found for vector spaces defined on X

′′ it makes sense to remove the constraints
that enforce the orthonormalization of these vector spaces. The additional freedom that is
thus created will give the optimization more flexibility in determining a basis. Note that in
this section, the vector space X

′′ is not necessarily restricted to time only.
The new construction for decomposing a tensor is as follows. Let W ∈ TN be an order-N

tensor defined on the finite dimensional vector spaces X1, . . . , X N where we suppose that
dim(Xn) = Ln . Furthermore, let X ′ := X1 × · · · × Xi and X ′′ := Xi+1 × · · · × X N , where
0 < i < N . The dedicated singular values of W , denoted σ̂k(W ), with k = 1, . . . , K and
K = minn=1,...,i modrank(W ) are defined as follows.

Let

S(1)n := {x ∈ Xn | ‖x‖n = 1} for n = 1, . . . , i

Sn := {x ∈ Xn | ‖x‖n = 1} for n = i + 1, . . . , N

denote the unit sphere in Xn . Define the first dedicated singular value of W by

σ̂1(W ) := sup
xn∈S(1)n , 1≤n≤i

xn∈Sn , (i+1)≤n≤N

|W (x1, . . . , xN )|. (17)

Since W is continuous and the Cartesian product S(1) = S(1)1 ×· · ·×S(1)i ×Si+1 ×· · ·×SN

of unit spheres is a compact set, an extremal solution of (17) exists (i.e., the supremum in
(11) is a maximum) and is attained by an N -tuple

(ψ
(1)
1 , . . . , ψ

(1)
N ) ∈ S(1).

Subsequent dedicated singular values of W are defined in an inductive manner by setting

S(k)n := {x ∈ Xn | ‖x‖n = 1,
〈
x, ψ( j)

n

〉
n

= 0 for j = 1, . . . , (k − 1)}
for n = 1, . . . , i , and by defining

σ̂k(W ) = sup
xn∈S(k)n , 1≤n≤i

xn∈Sn , (i+1)≤n≤N

|W (x1, . . . , xN )|, k ≤ K . (18)

Again, since the Cartesian product

S(k) = S(k)1 × · · · × S(k)i × Si+1 × · · · × SN

is compact, the supremum in (18) is a maximum that is attained by an N -tuple

(ψ
(k)
1 , . . . , ψ

(k)
N ) ∈ S(k).
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Note that the set over which the optimization takes place, S(k), is in general a larger subset
of the Cartesian product of unit balls than the set S(k) as originally defined in (13). It follows
that the vectorsψ(1)n , . . . , ψ

(K )
n are mutually orthonormal in Xn , for n = 1, . . . , i . If K < Ln

for any 1 ≤ n ≤ i , then we extend the collection of orthogonal elements ψ(1)n , . . . , ψ
(K )
n to

a complete orthonormal basis of Xn . This construction leads to a collection of orthonormal
bases

{ψ(�1)
1 , �1 = 1, . . . , L1}, . . . , {ψ(�i )

i , �i = 1, . . . , Li } (19)

for the vector spaces X1, …, Xi , respectively. We will call elements of these orthonormal
bases dedicated singular vectors of the tensor W .

Since there is no construction of orthonormal bases for the vector spaces Xi+1, . . . , X N ,
it is not possible nor appropriate to define a singular-value-like decomposition of the tensor
using dedicated singular vectors. Instead, we define a dedicated representation of the tensor,
which can be used to define a dedicated modal truncation.

Definition 3 Given an order-N tensor W ∈ TN , with W : X1 × · · · × X N → R. Assume
X ′ = X1 ×· · ·× Xi and X ′′ = Xi+1 ×· · ·× X N . Then, a dedicated representation of W can
be defined as a representation of W with respect to the bases (19) for X ′, where the original
bases for X ′′ are kept intact, i.e.

W d =
L1∑
�1=1

· · ·
L N∑
�N =1

w̃�1···�Nψ
(�1)
1 ⊗ · · · ⊗ ψ

(�i )
i ⊗ e(�i+1)

i+1 ⊗ · · · ⊗ e(�N )
N (20)

=
L1∑
�1=1

· · ·
L N∑
�N =1

w̃�1···�N U�1···�N . (21)

Using this representation of W , a dedicated modal truncation can be defined.

Definition 4 Given an order-N tensor W ∈ TN , with dedicated representation W d and a
vector of integers r = (r1, . . . , ri ) with rn ≤ Rn for n = 1, . . . , i . Let

M(k)
n = span{ψ(1)n , . . . , ψ(k)n }, n = 1, . . . , i.

with k ≤ Rn . A dedicated modal truncation is then defined by the restriction W d
r :=

W d |M(r1)
1 ×···×M(ri )

i
and is represented by the expansion

W d
r =

r1∑
�1=1

· · ·
ri∑
�i =1

Ri+1∑
�i+1=1

· · ·
RN∑
�N =1

w�1···�Nψ
(�1)
1 ⊗ · · · ⊗ ψ

(�i )
i ⊗ e(�i+1)

i+1 ⊗ · · · ⊗ e(�N )
N . (22)

The following theorem states some properties of the dedicated representation of a tensor.

Theorem 4 Consider W ∈ TN .

1. For all 1 ≤ i ≤ N the dedicated representation of W exists.
2. The dedicated representation is an orthogonal decomposition of W in the sense that the

rank-one tensors U�1···�N in (21) are mutually orthogonal〈
U�1···�N ,U�′1···�′N

〉
= 0, unless �n = �′n, ∀n = 1, . . . , N .

3.

σ̂1 ≥ · · · ≥ σ̂K ≥ 0 (23)
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4. There exists an orthonormal basis {ψ(1)n , . . . , ψ
(Ln)
n } of Xn with n > i such that

W (ψ
(k)
1 , . . . , ξ, . . . , ψ

(k)
i , ψ

(�i+1)

i+1 , . . . , ψ
(�N )
N ) = 0 (24)

for all ξ ⊥ span{ψ(1)n , . . . ψ
(k)
n }, where ξ is at the nth spot, with 1 ≤ n ≤ i .

Remark 1 Consider a tensor W ∈ TN . Item 4 of Theorem 4 immediately yields the following
results regarding the zero structure of the dedicated representation (20) of W

1. The core [[w̃�1···�N ]] of the dedicated representation of W satisfies

w̃�1···�N =
{

0 if �1 = · · · = �N > K
0 if �n > �1 = · · · = �n−1 = �n+1 = · · · = �i

(25)

2. Consider the case that L1 = L2 = · · · = L N = L . Then the number of zeros in the core
of the dedicated representation of W is at least

i

(
L(L − 1)

2

)
.

The following theorem establishes a relationship between the original and dedicated sin-
gular values.

Theorem 5 Consider W ∈ TN .

1. Both the original and dedicated singular values of a tensor are ordered

σ1 ≥ . . . ≥ σK ≥ 0 (26)

σ̂1 ≥ . . . ≥ σ̂K ≥ 0 (27)

2. σ1 = σ̂1 and

σ · ϕ(1)1 ⊗ · · · ⊗ ϕ
(1)
N = σ̂1 · ψ(1)1 ⊗ · · · ⊗ ψ

(1)
N

3. σ̂2 ≥ σ2

3.4 Application to 3D MRI compression

To illustrate the advantages of the dedicated tensor SVD over the generic SVD, we con-
sider a data compression problem in 3-D imaging. The data was obtained from TU/e-BME,
Biomedical Image Analysis, in collaboration with Prof. Dr. med. Berthold Wein, Aachen,
Germany.

The data consists of pixel intensities of an MRI scan in which each of the L3 slices is an
image of L1 × L2 pixels. For the original scan the dimensions are L1 = 262, L2 = 262 and
L3 = 29. The scan consists of 1990676 pixels which corresponds to 2MB of storage. The
original data has modal rank (243, 199, 29) and we are interested in obtaining rank approxi-
mations of the form (r1, r2, 29), i.e. leaving the third dimension of the tensor intact. In Fig. 1
the 10th slice of the original data is shown.

For this data both generic and dedicated singular values were computed. For computation
of the singular values, the number of iterations of (45) needed are given in Table 3. The time
to dompute the first five signular values and sets of singular vectors for this exampe was 74.05
seconds on a 1.83 GHz Intel Dua Processor T2400. The numerical results of the computation
of generic and dedicated singular values can be found in Table 1. From this table it is clear
that the generic singular values decay much faster than the dedicated singular values. This
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Fig. 1 10th slice of the original data

Table 1 Generic and dedicated
singular values

σ1 102773.20 σ̂1 102773.20

σ2 5815.49 σ̂2 49916.03

σ3 3265.52 σ̂3 19275.82

σ4 1948.73 σ̂4 11779.07

σ5 1489.41 σ̂5 9920.99

Table 2 Approximation Error
Results, for generic tensor SVD
(left) and dedicated tensor SVD
(right)

(r1, r2)
‖W−Wr ‖F‖W‖F

‖W−W d
r ‖F‖W‖F

(1,1) 0.5181 0.5181

(3,3) 0.5126 0.2646

(5,5) 0.5108 0.2305

(7,7) 0.428 0.207

(10,10) 0.4265 0.1872

would imply that the generic singular vectors give better results in approximation. How-
ever, examination of Table 2, which lists the approximation errors, shows that exactly the
opposite is the case. Using the dedicated singular vectors for approximation gives approx-
imation errors that are much smaller than those obtained when using the generic singular
vectors. Figure 2 shows this clearly. A possible explanation for this is that since the dedi-
cated singular value decomposition uses less constraints, more information of the original
data is captured in the decomposition. Hence the larger dedicated singular values and the
better approximations. On the left of Fig. 2, a slice of the rank-(10, 10, 29) approximant is
shown that was computed using a Tensor SVD, on the right the equivalent slice is shown
of the rank-(10, 10, 29) approximant that was computed using the dedicated construction.
Both approximations involve a core tensor with less than 0.15% of the storage capacity of
the original tensor. This achieves a data compression from 2 MB to about 3 KB.
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Table 3 Number of iterations for
computation of singular values

σ1 20

σ2 56

σ3 80

σ4 130

σ5 262
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250

50 100 150 200 250

50

100

150

200

250

Fig. 2 10th slice of rank-(10, 10, 29) approximant, computed using Tensor SVD (left) and dedicated
construction (right)

4 Approximation of ND systems

The previous section gave an introduction to tensors and tensor decompositions. In the cur-
rent section these concepts will be combined to arrive at Galerkin projections of ND systems.
The model reduction approach is demonstrated on a heat transfer example.

4.1 Model reduction

As in Sect. 2, first empirical projection spaces are defined from measured/simulated data.
Then, the reduced model is defined using a Galerkin projection. Assume a FE solution w
of (5) is available on a Cartesian domain X = X1 × · · · × XN . Here, for n = 1, . . . , N ,Xn

is gridded in Ln distinct points. Furthermore, let Xn := R
Ln be equipped with the standard

Euclidean inner product. Then, w defines a multidimensional array [[w]] ∈ R
L1×···×L N and

thus a tensor W : X1 ×· · ·× X N → R. W is represented with respect to the standard bases as

W =
L1∑
�1=1

· · ·
L N∑
�N =1

w�1···�N e(�1)
1 ⊗ · · · ⊗ e(�N )

N

wherew�1···�N takes the value of the data element on the sample point with index (�1, . . . , �N ).
Our aim here is to generalize the idea of a POD basis for spatial domains to a higher

dimensional Euclidean product space. For this, following Definition 1, the data dependent
tensor W is assumed to be decomposed in SVD from according to (15). Let

M(rn)
n = span{ϕ(1)n , . . . , ϕ(rn)

n }
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for n = 1, . . . , N and rn ≤ Ln define a rn-dimensional projection space in Xn . Then,
ϕ
(1)
n , . . . , ϕ

(rn)
n form an orthonormal basis of M(rn)

n . Let W ∗
r be the modal truncation of W

as defined in Definition 2. Then, a generalized projection basis can be defined as follows.

Definition 5 The vector of integers r = (r1, . . . , rN ) with rn ≤ Rn is said to achieve a
relative approximation error ε > 0 if

‖W − W ∗
r ‖F

‖W‖F
≤ ε (28)

In that case, we say that the basis functions {ϕ(1)n , . . . , ϕ
(rn)
n } for n = 1, . . . , N constitute a

generalized projection basis for the model (5) derived from the tensor W .

Let W d
r be the dedicated modal truncation of W as defined in Definition 4. Then, a

dedicated projection basis is defined as follows.

Definition 6 The vector of integers r = (r1, . . . , ri )with rn ≤ Rn is said to achieve a relative
approximation error ε > 0 if

‖W − W d
r ‖F

‖W‖F
≤ ε (29)

In that case, we say that the basis functions {ϕ(1)n , . . . , ϕ
(rn)
n } for n = 1, . . . , i constitute a

dedicated projection basis for the model (5) derived from the tensor W .

Now that two alternative projection bases have been defined, the model reduction frame-
work can be completed by defining a corresponding spectral expansion and Galerkin projec-
tion. We assume that X is a Cartesian product X = X

′ × X
′′ in which

X
′ = X1 × · · · × XN−1

X
′′ = XN .

The reason for this choice is that in practical situations, X1, . . . ,XN−1 are associated with
the spatial variables and XN with time. Using this structure, a spectral expansion is defined
as follows

w(x1, . . . , xN ) =
∑
�1

· · ·
∑
�N −1

a�1···�N−1(xN )ϕ
(�1)
1 (x1)⊗ · · · ⊗ ϕ

(�N−1)

N−1 (xN−1). (30)

Reduction of the signal space is now defined by the truncation

wr (x1, . . . , xN ) =
r1∑
�1=1

· · ·
rN−1∑
�N−1=1

a�1···�N−1(xN )ϕ
(�1)
1 (x1)⊗ · · · ⊗ ϕ

(�N−1)

N−1 (xN−1) (31)

where r = (r1, . . . , rN−1) with rn ≤ Rn .
To define the reduced order system we go back to the difference equation

D(ς1, . . . , ςN )w = 0

introduced in Sect. 2, Eq. 5. Given the vector spaces X1, . . . , X N as defined in Sect. 3.1, an
arbitrary signal w : X1 × · · · × XN → R, we associate a tensor D̂ : X1 × · · · × X N → R
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with the residual R := D(ς1, . . . , ςN )w of the difference equation. Note that R : X1 × · · · ×
XN → R and its associated tensor D̂ can be represented with respect to the standard bases
for X1, . . . , X N as follows

D̂ =
∑
�1

· · ·
∑
�N

d̂�1···�N e(�1)
1 ⊗ · · · ⊗ e(�N )

N (32)

where, given a point in the domain of the difference equation (x�1 , . . . , x�N ) the coefficients
d̂�1···�N are defined as

d̂�1···�N = R(x�1 , . . . , x�N ) = [D(ς1, . . . , ςN )w](x�1 , . . . , x�N ). (33)

Given sets of POD basis functions {ϕ(kn)
n }rn

kn=1 a Galerkin projection of the discrete time
model D(ς1, . . . , ςN )w = 0 is defined as〈

ϕ
(k1)
1 , . . . ,

〈
ϕ
(kN−1)

N−1 , D(ς1, . . . , ςN )w
〉

N−1
· · ·

〉
1

= 0 (34)

for kn = 1, . . . , rn and n = 1, . . . , N − 1. Here, the expression of nested inner products
should be interpreted as follows. Firstly, R = D(ς1, . . . , ςN )w is to be associated with the

tensor D̂ : X1 × · · · × X N → R as above so that D̂N−1 :=
〈
ϕN−1, D̂

〉
becomes a linear

functional D̂N−1 : X1 × · · · × X N−2 × X N → R, etc. Note that the N th independent vari-
able is not projected. Throughout we assume this independent variable corresponds to time.
Equation 34 defines a collection DG of tensors D̂G : X N → R defined by

D̂G := D̂(ϕ(k1)
1 , . . . , ϕ

(kN−1)

N−1 , ·)
=

∑
�1

· · ·
∑
�N

d̂�1···�N

〈
e(�1)

1 , ϕ
(k1)
1

〉
· · ·

〈
e(�N−1)

N−1 , ϕ
(kN−1)

N−1

〉 〈
e(�N )

N , ·
〉

(35)

for 1 ≤ kn ≤ rn , see Lemma 1 in the appendix for background. Now, DG is defined by

DG = {D̂G : X N → R | 1 ≤ kn ≤ rn, n = 1, . . . , N − 1}. (36)

Equation 35 can be simplified by defining

bk1···kN−1�N =
∑
�1

· · ·
∑
�N−1

d̂�1···�N

〈
e(�1)

1 , ϕ
(k1)
1

〉
· · ·

〈
e�N−1

N−1 , ϕ
(kN−1)

N−1

〉
. (37)

This gives

D̂G(·) =
∑
�N

bk1···kN−1�N

〈
e(�N )

N , ·
〉

(38)

Now, we are in a position to define a reduced order model. Given a time instance t = tkN ,
the reduced model is given by the following equations

DG(tkN ) = bk1···kN = 0 (39)

for 1 ≤ kn ≤ rn, n = 1, . . . , N − 1. Given the order of the reduced model, r = (r1, . . . ,

rN−1), the spectral expansion used for w(x1, . . . , xN ) is given by

wr (x1, . . . , xN ) =
∑
k1

· · ·
∑
kN−1

ak1···kN−1(xN )ϕ
(k1)
1 (x1)⊗ · · · ⊗ ϕ

(kN−1)

N−1 (xN−1). (40)

Trajectories of the reduced model are thus formed by the coefficients ak1···kN−1 that satisfy
the residuals (39) for all tkN .
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4.2 Model reduction of a heat transfer process

Consider the following model of a heat transfer process on a rectangular plate of size Lx ×L y :

0 = −ρcp
∂w

∂t
+ κx

∂2w

∂x2 + κy
∂2w

∂ y2 . (41)

Here, w(x, y, t) denotes temperature on position (x, y) and time t ∈ T := [0, T f ] and the
rectangular spatial geometry defines the Cartesian product X × Y := [0, Lx ] × [0, L y]. The
plate is assumed to be insulated from its environment. Let H = L2(X × Y) be the Hilbert
space of square integrable functions on X×Y and let Hr = Xr1 ×Yr2 with Xr1 ⊆ X = L2(X)

and Yr2 ⊆ Y = L2(Y) be finite dimensional subspaces spanned by r1 and r2 orthonormal
bases functions {ϕ(�1)

1 } and {ϕ(�2)
2 }, respectively.

Solutions of the reduced model are then given by
wr (x, y, t) = ∑r1

�1=1

∑r2
�2=1 a�1�2(t)ϕ

(�1)
1 (x) ⊗ ϕ

(�2)
2 (y) with a�1�2(t) = [A(t)]�1�2 a

solution of the matrix differential equation

0 = −ρcp Ȧ + κx F A + κy AP. (42)

Table 4 PDE Parameter Values Parameter Value Unit

ρC p 5 J
m3·K

κx 0.5 W
m·K

κy 0.5 W
m·K

Lx 3 m

L y 4 m

T f 3.6 s

�x 0.05 m

�y 0.05 m

�t 0.05 s
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Fig. 3 First and final time slices of the FE solution of (41)
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Fig. 4 ϕ
(1)
1 (left), ϕ(1)2 (middle) and ϕ(1)1 ⊗ ϕ

(1)
2 (right). These basis functions were computed using the

Tensor Singular Value Decomposition

Here, F and P are defined as:

F =

⎡
⎢⎢⎣

〈ϕ(1)1 , ϕ̈
(1)
1 〉 . . . 〈ϕ(1)1 , ϕ̈

(r1)
1 〉

...
...

〈ϕ(r1)
1 , ϕ̈

(1)
1 〉 . . . 〈ϕ(r1)

1 , ϕ̈
(r1)
1 〉

⎤
⎥⎥⎦ ; P =

⎡
⎢⎢⎣

〈ϕ(1)2 , ϕ̈
(1)
2 〉 . . . 〈ϕ(1)2 , ϕ̈

(r2)
2 〉

...
...

〈ϕ(r2)
2 , ϕ̈

(1)
2 〉 . . . 〈ϕ(r2)

2 , ϕ̈
(r2)
2 〉

⎤
⎥⎥⎦

Alternatively, a�1�2(t) is the solution of the ordinary differential equation

ρcpȧ�1�2(t) = κx

r1∑
k1=1

ak1�2(t)
〈
ϕ̈
(k1)
1 (x), ϕ(�1)

1 (x)
〉

+κy

r2∑
k2=1

a�1k2(t)
〈
ϕ̈
(k2)
2 (y), ϕ(�2)

2 (y)
〉

(43)

for 1 ≤ �1 ≤ r1 and 1 ≤ �2 ≤ r2. A FE solution of (41) has been computed with physical
and discretization parameters as given in Table 4. Time slices, including the initial condition,
of the simulation data can be seen in Fig. 3. The boundary conditions are chosen so as to
represent that the plate is insulated from its environment.

In this example the original orders (L1, L2, L3) = (61, 81, 72) are reduced to (r1, r2, L3)

where we take r1 = r2. The orthonormal bases {ϕ(�1)
1 } and {ϕ(�2)

2 } have been computed using
Tensor SVD and dedicated Tensor SVD construction, where in the latter time was not ort-
honormalized, since these basis functions will not be used in the reduced model. The first
basis functions for X and Y computed using Tensor SVD described in Sect. 3.2 are shown
in Fig. 4.

Table 5 Reduced model
simulation error results, basis
functions were computed using
TSVD (left) and dedicated
construction (right)

r ‖W−Wr ‖F‖W‖F

‖W−W d
r ‖F‖W‖F

(2, 2) 0.366 0.366

(3, 3) 0.347 0.336

(5, 5) 0.239 0.205

(7, 7) 0.174 0.162

(10, 10) 0.137 0.079
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The simulation time of the FE implementation is 17.22 s, the reduced models have a sim-
ulation time of approximately 0.35 s. Table 5 gives the simulation error of the reduced model
for different model orders. The reduced models were given the same initial condition as the
one used to collect the snapshot data. Simulation errors are given for models that use basis
functions computed using TSVD and basis functions computed using the dedicated construc-
tion. As can be seen in Table 5 using a dedicated construction to compute basis functions
does not give a more accurate reduced model for this example.

5 Numerical computation of tensor SVD

In this section we propose an algorithm for the computation of the singular value decompo-
sition of an arbitrary order-N tensor W ∈ TN , as defined in Definition 1. The algorithm is
based on the fixed point properties of a contractive mapping G that is iterated in a power-type
algorithm to compute the singular vectors of order k and the corresponding singular value.

Let W ∈ TN be a tensor defined on the Cartesian product X1×· · ·×X N where dim(Xn) =
Ln . The operator col stacks all its arguments in a vector, i.e., col(a, b) is the vector

(
a b

)�
.

Let L = ∑N
n=1 Ln and define the mapping GW : R

L+1 → R
L+1 by

GW (x) :=

⎛
⎜⎜⎜⎜⎝

1
σ
∇1W ( x1‖x1‖ , . . . ,

xN‖xN ‖ )
...
1
σ
∇N W ( x1‖x1‖ , . . . ,

xN‖xN ‖ )
W ( x1‖x1‖ , . . . ,

xN‖xN ‖ )

⎞
⎟⎟⎟⎟⎠ (44)

Here, x = col(x1, . . . , xN , σ ) and

∇n W = col

(
∂W

∂x (1)n

, . . . ,
∂W

∂x (Ln)
n

)

is the n-mode gradient of W . Then GW is well defined provided that xn �= 0 for any n and
σ �= 0.

The following TSVD algorithm is based on a power iteration of the map GW and proves a
rather efficient tool for the computation of singular values, singular vectors and the singular
value core tensor of W . The algorithm computes the kth order singular values and singular
vectors for consecutive values of k.

Step 0 (Initialization) Set tolerance level εtol > 0, order k = 1, and Wk = W .
Step 1 Select for n = 1, . . . , N random elements x0

n ∈ Xn and σ 0 with ‖x0
n‖n = 1 and

0 < σ 0 < 1. Set x0 := col(x0
1 , . . . , x0

N , σ
0).

Step 2 Define GWk according to (44) with W = Wk and iterate

xi+1 = GWk (x
i ), i = 0, 1, 2, . . . , i∗ (45)

where i∗ is the smallest integer for which ‖xi∗ − xi∗−1‖ < εtol.
Step 3 Write xi∗ = col(x∗

1 , . . . , x∗
N , σ

∗) and define, for n = 1, . . . , N ,

σk = σ ∗, ϕ(k)n = x∗
n ,

�(k)n =
(
ϕ
(1)
n · · · ϕ(k)n

)
,

Q(k)
n = I −�(k)n [�(k)n ]�.
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Step 4 Define the tensor Wk+1 ∈ TN by

Wk+1(x1, . . . , xN ) := W (Q(k)
1 x1, . . . , Q(k)

N xN )

and set k to k + 1.
Step 5 Repeat Step 1, Step 2, Step 3, Step 4 until k = K = minn modrank(W ).
Step 6 For every n for which K < Ln complement �(K )n to a unitary square matrix �(Ln)

n .
Step 7 (Output)

W =
L1∑
�1=1

· · ·
L N∑
�N =1

w�1···�N ϕ
(�1)
1 ⊗ · · · ⊗ ϕ

(�N )
N

with w�1···�N = W (ϕ
(�1)
1 , . . . , ϕ

(�N )
N ).

The algorithm is easy to implement and has shown satisfactory performance.
To investigate convergence properties of the TSVD algorithm, let G p

W denote the pth
power of the operator GW , i.e., the pth iterate of xi+1 = GW xi with initial condi-
tion x0 in (45) satisfies x p = G p

W x0. The following theorem generalizes a result in
Weiland and van Belzen (2010) and shows convergence of the above sequential series of
iterations to the exact singular vectors and singular values of the tensor W .

Theorem 6 Suppose that GW : R
L+1 → R

L+1 maps a closed subset D ⊂ R
L+1 into itself

and that

‖G p
W x − G p

W y‖ ≤ αp‖x − y‖, for all x, y ∈ D, p = 1, 2, . . . (46)

where β = ∑∞
p=1 αp < ∞. Then for every k = 1, . . . , K , with K = minn modrank(W),

the operator GWk has a unique fixed point x∗ ∈ D (depending on k) and the iteration (45)
converges to x∗ as i → ∞. Moreover, every iterate establishes the error estimate

‖xi − x∗‖ ≤ β‖xi − xi−1‖, i = 1, 2, . . .

and the components ϕ(k)n , n = 1, . . . , N and σk of the fixed point x∗ are extremal values of
the optimizations (11) (if k = 1) and (12) (for 1 < k ≤ K ).

The proof of the above theorem is an application of Theorem 12.1.1 in Rheinboldt (1970)
combined with the observation that the inequality (46) holds with GW replaced by GWk with
k > 1 whenever (46) for GW = GW1 . In particular, this observation makes the convergence
rate β independent of k.

In practice it is not trivial to explicitly verify whether GW satisfies (46) An interest-
ing special case of Theorem 6 applies to tensors W for which GW maps a closed sub-
set D ⊂ R

L+1 into itself and is contractive on D in the sense that there exists α < 1
such that ‖GW x − GW y‖ ≤ α‖x − y‖ for all x, y ∈ D. In that case, the result of Theo-
rem 6 simplifies to the contraction mapping theorem for nonlinear operators. Specifically,
if GW is contractive, (46) holds with αp = α p and β = α

1−α defines the convergence rate.
This means that under the contractivity condition of GW , the sequence (45) in step 2 of
the TSVD algorithm converges to the unique fixed point of GWk in D whenever x0 ∈ D.
More refinements of convergence conditions go in the direction of transforming GW into
G ′

W := T GW T −1 where a suitable homeomorphism T : R
L+1 → R

L+1 is chosen so
as to make G ′

W contractive, or, alternatively, to study iterated contractions of the form
‖GW (GW x) − GW x‖ ≤ α‖GW x − x‖ where α < 1 and x ∈ D. We refer to Rheinboldt
(1970) for more details.
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Theorem 6 promises that whenever the algorithm converges, it converges to an extremal
solution to the optimization problems (11) and (12) that define the singular value and singular
vectors of order k. Here, by ‘extremal solutions’ we mean that the fixed points of GWk satisfy
the first order necessary conditions for the optimal solution of the maximization problems
formulated in (12). Solutions to the optimization problems (11) and (12) satisfy these con-
ditions but we can not guarantee that the iterated map (45) converges to a fixed point x∗ of
GWk that also satisfies the sufficient conditions for the optima. This means that if GWk is

contractive, the algorithm converges to a fixed point x∗ = col(ϕ(k)1 , . . . , ϕ
(k)
N , σk) where the

N -tuple (ϕ(k)1 , . . . , ϕ
(k)
N ) ∈ S(k) and where the gradient of the cost function |W (x1, . . . , xN )|

vanishes in (ϕ(k)1 , . . . , ϕ
(k)
N ).

Remark 2 A numerical algorithm for the computation of a dedicated singular value decom-
position requires a minor change to the TSVD algorithm. Indeed, if W ∈ TN with X ′ =
X1 × · · · × Xi and X ′′ = Xi+1 × . . .× X N . The dedicated singular value decomposition in
Definition 3 is numerically calculated from the TSVD algorithm in which the definition of
Q(k)

n in step 3 is replaced by

Q(k)
n :=

{
I −�

(k)
n [�(k)n ]� 1 ≤ n ≤ i

I i + 1 ≤ n ≤ N
.

6 Conclusions and future work

In this paper we discussed approximation of systems that have both space and time as inde-
pendent variables. The aim was to find reduced models that are computationally efficient
and at the same time give an accurate description of the state evolution of an ND system.
To this end, we have generalized the data-based method of Proper Orthogonal Decomposi-
tions. The key of the adaptation lies in recognizing the ND nature of the class of systems
under study. In the first part of the paper it was shown how POD basis functions can be com-
puted by associating a tensor with the measured or simulated data and then determining a
lower rank decomposition of the tensor. In the second part of the paper we showed how prior
knowledge about the model reduction problem can be used to obtain better approximation
results. Although we did not obtain a formal proof that the dedicated construction outper-
forms the generic tensor SVD the examples show that prior knowledge on the reduction order
improves the approximation results. The theoretical results of this paper were illustrated by
two examples.

In the future, we plan to extend the framework presented here to systems with multiple
dependent variables. Furthermore, we would like to extend the tensor SVD to be able to take
constraints into account. This may allow the explicit inclusion of physical conservation laws,
such as conservation of mass in fluid dynamics. With respect to applications, we plan to test
the methods discussed in this paper on an industrial benchmark problem.

Proofs

Proof of Theorem 1. If eigenvalues of � are absolute summable, � is self-adjoint and
nuclear. This means that it admits a representation � = ∑N

n=1 λn 〈ψn, ·〉ψn where 1 ≤
N ≤ ∞, the eigenvalues λn are positive, non-increasingly ordered and summable, and the
eigenfunctions {ψn, n = 1, . . . , N } are orthonormal in H. Moreover, for any orthonormal
basis {ϕn, n ∈ I} of H we have
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J (ϕ1, . . . , ϕr ) =
∫
X′′

〈w − wr , w − wr 〉 dx ′′

=
∫
X′′

〈∑
n>r

〈
w(·, x ′′), ϕn

〉
ϕn,

∑
n>r

〈
w(·, x ′′), ϕn

〉
ϕn

〉
dx ′′

=
∫
X′′

∑
n>r

〈
w(·, x ′′), ϕn

〉 · 〈w(·, x ′′), ϕn
〉
dx ′′

=
∑
n>r

∫
X′′

〈
w(·, x ′′), ϕn

〉 · 〈w(·, x ′′), ϕn
〉
dx ′′

=
∑
n>r

〈ϕn,�ϕn〉 .

Now first suppose that ϕn = ψn for n = 1, . . . , N . Then, {ϕn, n = 1, . . . , N } is an ortho-
normal set of eigenfunctions of � and J (ϕ1, . . . , ϕr ) = ∑

n>r λn is finite and minimal for
all r by the monotonicity of the sequence λn . Hence, {ϕn, n = 1, . . . , r} is a POD basis of
order r for any r . Second, for any POD basis {ϕn, n ∈ I} the above expression for the error
implies that

J (ϕ1, . . . , ϕr ) =
∑
n>r

〈
ϕn,

N∑
m=1

λm 〈ψm, ϕn〉ψm

〉
=
∑
n>r

N∑
m=1

λm 〈ϕn, ψm〉2

which is minimal for all r only if 〈ϕn, ψm〉 = δn,m for all integers n,m between 1 and N .
But then it is immediate that {ϕn, n = 1, . . . , N } is also a set of orthonormal eigenvectors
of �. ��

For the next proof we need the following lemma

Lemma 1 Let W ∈ TN ,W : X1 × · · · × X N → R, with Xn inner product spaces, possibly
infinite dimensional, and xn ∈ Xn for n = 1, . . . , N. Then

1.

W (x1, . . . , xN ) = 〈W, x1 ⊗ · · · ⊗ xN 〉 .
2.

W (x1, . . . , xN ) = 〈
xN , . . . 〈x2, 〈x1,W 〉1〉2 · · · 〉N .

Proof of Lemma 1. 1. Let {ξ (�n)
n }∞�n=1 be an orthonormal basis for Xn, n = 1, . . . , N . W

can be represented with respect to these bases as W = ∑
�1

· · ·∑�N
w�1···�N ξ

(�1)
1 ⊗· · ·⊗

ξ
(�N )
N . The tensor evaluation can be written as W (x1, . . . , xN ) = ∑

�1
· · ·∑�N

w�1···�N〈
x1, ξ

�1
1

〉
· · ·

〈
xN , ξ

�N
N

〉
. Let U := x1 ⊗ · · · ⊗ xN . U can be represented as U =∑

�1
· · ·∑�N

u�1···�N ξ
(�1)
1 ⊗ · · · ⊗ ξ

(�N )
N with u�1···�N = ∏N

i=1

〈
xi , ξ

(�i )
i

〉
i
. Then,

〈W,U 〉 =
∑
k1

· · ·
∑
kN

∑
�1

· · ·
∑
�N

wk1···kN u�1···�N

·
〈
ξ

k1
1 , ξ

�1
1

〉
︸ ︷︷ ︸

0 unless k1=�1

· · ·
〈
ξ

kN
N , ξ

�N
N

〉
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=
∑
�1

· · ·
∑
�N

w�1···�N u�1···�N

=
∑
�1

· · ·
∑
�N

w�1···�N

〈
ξ
�1
1 , x1

〉
· · ·

〈
ξ
�N
N , xN

〉

which is the tensor evaluation.
2. To prove the second statement, we first show that 〈x1,W (·, v2, . . . , vN )〉1 = W (x1,

v2, . . . , vN ) for some vn ∈ Xn, n = 2, . . . , N . Let {ξ (�n)
n }∞�n=1 be an orthonormal basis

for Xn, n = 1, . . . , N . W can be represented with respect to these bases as W =∑
�1

· · ·∑�N
w�1···�N ξ

(�1)
1 ⊗ · · · ⊗ ξ

(�N )
N . Then

W (x1, v2, . . . , vN ) =
∑
�1

· · ·
∑
�N

w�1···�N

〈
ξ
(�1)
1 , x1

〉 N∏
k=2

〈
ξ
(�k )
k , vk

〉
.

On the other hand, we can write x1 as x1 = ∑∞
k=1

〈
x1, ξ

(k)
1

〉
ξ
(k)
1 . Then

〈x1,W (·, v2, . . . , vN )〉1 =
∑
k1

〈
x1, ξ

(k1)
1

〉
1

W (ξ
(k1)
1 , v2, . . . , vN )

=
∑
k1

〈
x1, ξ

(k1)
1

〉
1

∑
�2

· · ·
∑
�N

wk1�2···�N

N∏
k=2

〈
ξ
(�k )
k , vk

〉

= W (x1, v2, . . . , vN )

Thus, we have that 〈x1,W (·, v2, . . . , vN )〉1 = W (x1, v2, . . . , vN ). Since tensors are
multi-linear functionals, this completes the proof.

��
Proof of Theorem 2. Let W1 ∈ TN be an arbitrary rank-1 tensor. Then W1 can be written as
W1 = λU where 0 �= λ ∈ R and U = u1 ⊗ · · · ⊗ uN is a normalized rank-1 tensor in that
‖U‖F = 1. Using the definition of the Frobenius norm, we have

‖W − λU‖2
F = 〈W − λU,W − λU 〉

= 〈W,W 〉 − 2λ 〈W,U 〉 + λ2.

This is a convex function in λ that attains its minimum at λ∗ = 〈W,U 〉. But then

‖W − λ∗U‖2
F = 〈W,W 〉 − 2λ∗ 〈W,U 〉 + (λ∗)2

= 〈W,W 〉 − 2 〈W,U 〉2 + 〈W,U 〉2

= 〈W,W 〉 − 〈W,U 〉2

= 〈W,W 〉 − |W (u1, . . . , uN )|2

where the last equality follows from Lemma 1. The latter expression shows that minimiz-
ing ‖W − λ∗U‖F over all rank-1 tensors U with ‖U‖F = 1 is equivalent to maximizing
|W (u1, . . . , uN )| over all unit vectors un, ‖un‖n = 1, n = 1, . . . , N . But this problem is (11)
and has U∗ = ϕ

(1)
1 ⊗ · · · ⊗ ϕ

(1)
N as its optimal solution. Consequently, λ∗ = 〈W,U∗〉 = σ1

and it follows that W ∗
1 := σ1ϕ

(1)
1 ⊗ · · · ⊗ ϕ

(1)
N is the optimal rank-1 approximation of W .

The error ‖W − W ∗
1 ‖2

F = ‖W‖2
F − σ 2

1 . ��
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Proof of Theorem 5.

1. This is by construction.
2. Since these optimization problems are identical, the first singular value and the singular

vectors that are found will also be identical.
3. This uses the previous part of this theorem. Since the results from the first optimization

are identical, the optimization domains S(2)n , n = 1, . . . , N will be the same for both
optimization problems. As the dedicated SVD construction will incorporate less con-
straints for the second step, it only takes S(2)n , n = 1, . . . , i into account and uses the
unit sphere for the rest of the vector spaces, σ̂2 ≥ σ2. ��

Proof of Theorem 4

1. Since extremal solutions to the optimization problems (17) and (18) are guaranteed to
exist for any tensor W ∈ TN , also the dedicated representation is guaranteed to exist.

2. Using Lemma 1 we have

〈
U�1···�N ,U�′1···�′N

〉
=

i∏
n=1

〈
ψ(�1)

n , ψ
(�′n)
n

〉 N∏
n=i+1

〈
e(�n)

n , e
(�′n)
n

〉
.

Therefore, the inner product between unequal rank-one tensors is zero whenever one of
the inner products on the right-hand side is zero. Since the bases are orthonormal, all
rank-one tensors are orthogonal unless �n = �′n for 1 ≤ n ≤ N .

3. This is by construction
4. Let L = L1 +· · ·+ L N and associate with the optimization problem (17) the Lagrangian

L1 : R
L+N → R by setting

L1(x, λ) := W (x1, . . . , xN )+
N∑

n=1

1

2
λn(1 − 〈xn, xn〉).

It has already been argued that an N -tuple x (1) = (ψ
(1)
1 , . . . , ψ

(1)
N ) exists that attains

the maximum in (17). From the theory of variational analysis Bertsekas (1982), Fletcher
(1981), one then infers the existence of an N -tuple λ(1) = (λ

(1)
1 , . . . , λ

(1)
N ) of Lagrange

multipliers such that

∇L1(
(1), λ(1)) = 0, (47)

where ∇L1 denotes the gradient of L1. The n-mode Fréchet derivative ∂n W (x1, . . . , xN )

of W at the point (x1, . . . , xN ) is an order-1 tensor (a linear functional) that maps Xn to
R and satisfies

∂n W (x1, . . . , xN ) = W (x1, . . . , xn−1, ·, xn+1, . . . , xN )

where the ‘dot’ is at the nth spot. By the multi-linearity of the tensor, ∂n W (x1, . . . , xN )

is independent of xn ∈ Xn . Hence, rewriting (47) for each independent modal direction
gives that x (1), λ(1) satisfies, for n = 1, . . . , N ,

W (ψ
(1)
1 , . . . , ψ

(1)
n−1, ·, ψ(1)n+1, . . . , ψ

(1)
N ) = λ

(1)
n

〈
·, ψ(1)n

〉
, (48a)

‖ψ(1)n ‖ = 1. (48b)

(48a) implies that for each n = 1, . . . , N ,

W (ψ
(1)
1 , . . . , ψ

(1)
n−1, ξn, ψ

(1)
n+1, . . . , ψ

(1)
N ) = 0 whenever

〈
ξn, ψ

(1)
n

〉
= 0.
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In a similar manner, for k > 1 we associate with the optimization problem (18) the
Lagrangian Lk : R

L+N+i(k−1) → R defined by

Lk(x, λ, μ) = W (x1, . . . , xn)+
N∑

n=1

1

2
λn(1 − 〈xn, xn〉)+

i∑
n=1

〈gn(xn), μn〉 .

where xn ∈ Xn, λn ∈ R, μn ∈ R
k−1 and gn : Xn → R

k−1 is given by

gn(ξn) :=

⎛
⎜⎜⎜⎝

〈
ξn, ψ

(1)
n

〉
...〈

ξn, ψ
(k−1)
n

〉

⎞
⎟⎟⎟⎠ .

Again, there exist N -tuples x (k), λ(k) and μ(k) that satisfy the stationarity condition

∇Lk(x
(k), λ(k), μ(k)) = 0. (49)

Rewriting (49) for each modal direction gives, for n = 1, . . . , i , that

W (ψ
(k)
1 , . . . , ψ

(k)
n−1, ·, ψ(k)n+1, . . . , ψ

(k)
N ) = λ(k)n

〈
·, ψ(k)n

〉
+
〈
gn(·), μ(k)n

〉
, (50a)

‖ψ(k)n ‖ = 1, (50b)

gn(ψ
(k)
n ) = 0. (50c)

Now suppose, again for n = 1, . . . , i , that ξ ⊥ span{ψ(1)n , . . . ψ
(k)
n }. Substituting ξ for

the dotted argument in (50a) gives that

W (ψ
(k)
1 , . . . , ξ, . . . , ψ

(k)
i , ψ

(�i+1)

i+1 , . . . , ψ
(�N )
N ) = 0 (51)

for all ξ ⊥ span{ψ(1)n , . . . , ψ
(k)
n }, where ξ is at the nth spot, with 1 ≤ n ≤ i .

��
Proof of Theorem 3 Without loss of generality let p = 1. Then W ∗

r = W |M(k)
1 ×X2×···×X N

with M(k)
1 = span{ϕ(1)1 , . . . , ϕ

(k)
1 }. Then

W = W |M(k)
1 ×X2×···×X N

+ W |M(k)
1

⊥×X2×···×X N

−W |
(M(k)

1 ×X2×···×X N )
⋂
(M(k)

1
⊥×X2×···×X N )

.

Since

(M(k)
1 × X2 × · · · × X N )

⋂
(M(k)

1
⊥ × X2 × · · · × X N )

is equal to

(M(k)
1

⋂
M(k)

1
⊥
)× (X2

⋂
X2)× · · · × (X N

⋂
X N )

and W |∅×X2×···×X N = 0, we infer that

Ek = W |M(k)⊥×X2×···×X N
.

Since M(k)
1 ⊆ M(k+1)

1 and, consequently, M(k)
1

⊥ ⊇ M(k+1)
1

⊥
, we conclude ‖Ek+1‖ ≤

‖Ek‖. ��
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