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Abstract Multidimensional control systems have been the subject of much
productive research over more than three decades. In contrast to standard
control systems, there has been much less reported on applications where the
multidimensional setting is the only possible setting for design or produces im-
plementations that perform to at least the same level. This paper addresses the
latter area where case studies focusing on control law design and evaluation,
including experimental results in one case, are reported. These demonstrate
that movement towards the actual deployment of multidimensional control
systems is increasing.
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1 Introduction

Classical control theory studies systems governed by ordinary differential equa-
tions or difference equations in the discrete case, where the latter may re-
sult from sampling the former. Multidimensional, or nD, systems originally
arose from systems described by partial differential or difference equations.
For such systems the independent variables may represent different space co-
ordinates, with examples in image processing applications or mixed time and
space variables or in processing seismic data. Multidimensional models also
arise in the analysis of systems described by particular types of functional
differential equations in one independent variable, such as delay-differential
systems. This is also the case for repetitive processes that have provided
a way to address control systems design for both industrial examples and
also a representation for the design and experimental verification of iterative
learning control laws. Early literature includes [Bose (1982),Bose et al, (2003),
Rogers and Owens (1992)].

Recently emerging areas for the application of nD systems theory include
grid sensor networks, and evidence filtering. In particular, wireless sensor net-
works consist of large numbers of resource constrained, embedded sensor nodes
and are a candidate for distributed applications. Some applications require reg-
ularly placed nodes in a spatial grid, often sampling the sensors periodically
over time, with a potential application in structural integrity monitoring. Agri-
culture and environmental monitoring applications often favor a grid or mesh
topology. Spatially distributed sensor lattices are also essential in surveillance,
target location, and tracking applications.

Distributed information processing schemes are natural candidates for such
networks with regularly placed nodes, yielding benefits in terms of scalability,
reduced communication costs, energy savings and improved system lifetime.
Furthermore, applications requiring local actuation in response to local detec-
tion are best supported by distributed algorithms, yielding minimum response
delays compared to centralized schemes.

The solution of nD systems and control design problems require a mathe-
matical setting to address problems whose formulation and solution, for linear
dynamics, can involve the use of functions and polynomials in more than one
complex or real variables, where fundamental differences with the standard, or
1D linear systems case, immediately arise. For example, transfer-function de-
scriptions of the dynamics of linear time invariant systems release a wealth of
results from the theory of polynomials in one indeterminate for use in analysis
and design, e.g. coprimeness and Bezout identities. In the nD case, coprime-
ness is no longer a single concept and hence the polynomial approach in the
nD case is much more complicated.

This paper first introduces the commonly used models for discrete nD lin-
ear systems that have been used in control and systems problems and then
gives results from a series of case studies. These case studies begin with sensor
networks, followed by iterative learning control and then proceed to applica-
tions in civil engineering and agriculture. The general aim is to report results
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Fig. 1 A vehicle path under surveillance. The path is equipped with regularly spaced sensor
nodes, represented by the black circles, placed in a 1D array.

that demonstrate that the nD systems approach does bring advantages in
solving control problems. Finally, conclusions are drawn and possible future
research briefly discussed.

Throughout this paper the null and identity matrices of compatible di-
mensions are denoted by 0 and I, respectively. Also * is used to denote trans-
posed entries in symmetric matrices. The notation M < 0 and M > 0 de-
notes that the symmetric matrix M is negative definite and positive defi-
nite respectively. Finally, p(:) denotes the spectral radius of its matrix argu-
ment, e.g., if A\;, 1 < i < h, are the eigenvalues of an h x h matrix H then
p(H) = maxy<i<n |Adl.

2 System Models

The Fornasini-Marchesini model [Fornasini and Marchesini (1978)] is an ex-
tensively studied state-space description of nD linear systems, and its dynam-
ics can be illustrated by considering a regularly placed grid sensor network,
such as the vehicle path under surveillance, equipped with regularly spaced
sensor nodes placed in a 1D array as shown in Fig. 1.

In Fig. 1 the regularly spaced sensor nodes are denoted by black circles
and the sensor number is denoted by n;. The sensor node signals are sampled
in time for discrete processing, ny denotes the sample number, and the result
is a 2D discrete spatio-temporal signal.

The system of Fig. 1 can be modeled as the distributed system shown in
Fig. 2. Two independent variables are required to define a signal, written as
z(n1,ng), where z is the variable or vector of interest, ny is the node number,
and ng is the sampling instant. Consequently x(ni,n2) is a spatio-temporal
vector.

To describe the updating structure, consider sample instance ny at node
n1 + 1 and assume that the dynamics are linear. Then the sensor output,
denoted by y(ny + 1,n2), is a linear combination of the state vector entries,
and the node generates the state vector at the next time instant, that is,
x(n1 + 1,n2 + 1), by combining the current sample instance state vector at
node nj +1, that is x(n1 + 1, ny), with the current sample instance state vector
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Fig. 2 A distributed 2D Fornasini-Marchesini state-space model for the 1D sensor array of
Figure 1.

at the former node nq, that is x(n1,ns), and the input or control vector to the
node at the current sample instance, that is w(ny 4+ 1,n2). On completion of
the computations, the node transmits its state information to the next node
and so on. The state updating dynamics are described by the sensor network
model

z(ny+1,ne+ 1) = Ajz(ng + 1,n9) + Asz(ny, ne) + Bru(ng + 1,n2). (1)

The state-space model (1) is a special case of the 2D Fornasini-Marchesini
state-space model

z(ny 4+ 1,ne + 1) = Ajz(ny + 1, n2) + Asx(ny,ng + 1) + Asz(ng, na)
=+ Blu(nl + 1,%2) =+ Bgu(nl, no + 1) =+ Bgu(nl, ’I’LQ),
y(n1,n2) = Cx(ny,na) + Du(ni, na), (2)

where x is the dy x 1 state vector, u is the do x 1 input vector, and y is the
d3 x 1 output vector. Suppose also that n; and no are restricted to nonnegative
values. Then the dynamics described by (2) can be pictured as evolving over
the positive quadrant of the 2D plane with axes nq, and ng, respectively, where
each node, that is, a point in the 2D plane, is represented by a circle.

An alternative model that describes how a dynamic process evolves over
the 2D plane is the Roesser state-space model [Roesser (1975)], where a state
vector is defined for each axis. Denoting these vectors by z"(ni,ns), and
x¥(n1,ng), respectively, the state-space model is

fot(nl + 1, 712) . Al A2 fEh(?’L],?’LQ) Bl
|:xv(n17n2 + 1) a A3 A4 ij(nl’nQ) + B2 u(n17n2)7

z¥(ny,mng)

y(n1,m2) = [C1 Cs] [(””)} : 3)
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Fig. 3 The blue lines represent three of the possible separation sets for the 2D state-space
models described by (3).

where also the augmented plant, input and matrices @, B, and C| respectively,
for this model are defined as

o-[uh] o-[5] emteiena

are used in some of the literature.

In 1D systems, the separation between past and future, that is, the present
is given by a single time instant, that is, a point. Hence the recursive compu-
tation of a 1D trajectory consists of updating values on successive points of
the domain. The situation is more complex in the nD case, where three ex-
amples of the possible separation-sets, denoted by the blue lines, for systems
described by (3) are shown in Fig. 3. The 2D system dynamics evolves over
a plane where n; is a spatial variable and ny a temporal variable and there
can be no linear ordering on the plane and hence no time enforced separation
into past, present and future. One way of interpreting the separation set is
as a generalization of the idea where the past represents already computed or
known values and the future those to be computed by a recursive algorithm,
starting from the values that lie on this set.

To introduce the transfer-function description of the 2D dynamics consid-
ered in this paper consider a 2D sequence, say x(ny,n2),n1 > 0,19 > 0. Then,
using Z to denote the operation of taking the 2D z-transform of this sequence,

Z(x(ni,ng)) = Z x(n1,na)z; ey 2. (5)
n120,n2>0

Applying the 2D z-transform to (3) with assumed zero boundary conditions
gives, after routine algebraic manipulations,

y(21,22) = G(z1, 22)u(z1, 22), (6)
where G(z1, z2) is the 2D transfer-function matrix given by
~1
_ 2’1[ 0
G(Zl,ZQ)—CH: 0 z21:| —Gp:| B (7)

and the constant entry matrices ¢, B and C are defined in (4).
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To illustrate how nD, n > 2, state-space models can arise, consider again
the 2D spatially distributed grid sensor network shown in Fig. 1 with the
added feature that the data produced is now gathered over time. Then the 3D
Fornasini-Marchesini state-space model describing the dynamics is

x(ni,n2,n3 + 1) = Agorz(n1,n2,n3) + A1o12(n1 — 1,n2,n3)
+ Aoniz(ni, n2 — 1,n3) + Bu(ni, ng, n3),

y(n1,n2,n3) = Cx(ng,ng,n3), (8)

where z is the d; x 1 state vector, u is the ds x 1 input vector generated using
sensor signals, and y is the ds x 1 system output vector.

The quarter-plane causality of the Roesser and Fornasini state-space mod-
els considered in this paper impose a particular structure, or preferred direction
of updating, on the computation of the state and output vectors over the quar-
ter plane. Treating the concept of state in a behavioral setting for nD systems
leads to first-order state-space models without a preferred direction which, in
turn, requires a formalization of the concepts of past, future, and of the inde-
pendence of the future of a trajectory given the past. This topic is extensively
investigated in [Rocha and Wood (2001)] and in the 2D systems case leads to
discrete state-space models defined by equations with the following structure,

Eix+ Fiz12 =0, (9)

Eox + Gozox = 0, (10)

Esx + F3zix + Gszox + Hzz1200 = 0, (11)
Nz + Mw = 0, (12)

where z is the state variable vector and the matrices E1, Fs, F3, F1, F3, G2, G3,
Hs, N, and M have additional properties [Rocha and Wood (2001)]. The state
equations (9), (10) and (11) are first-order in x and zeroth order in w, where
these properties are a consequence of the formalization of past, future, and of
the independence and not postulated a priori as is the case for both the Roesser
and Fornasini-Marchesini state-space models considered in this paper. The
behavioral setting for nD systems analysis has enabled the solution of many
control systems theoretic questions but to this time little or no impact on
control system design for applications. Hence this approach is not considered
in this paper.

2.1 Models of Linear Repetitive Processes

The Roesser and Fornasini-Marchesini model based 2D linear systems are re-
cursive over the positive quadrant of the 2D plane. It is also possible to write
down models where information propagation in one direction is governed by a
differential equation and in the other by a difference equation. It also possible
that information propagation in one direction occurs only over a finite dura-
tion and is an intrinsic feature as opposed to an assumption made for modeling
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and analysis purposes. These two features are present in repetitive processes
whose unique characteristic can be illustrated by considering machining oper-
ations where the material, or workpiece, is processed by a sequence of passes
of the processing tool. Assuming the pass length a < co to be constant, the
output vector, or pass profile, yi(t), 0 < t < «a, where ¢ denotes the inde-
pendent spatial or temporal variable, generated on pass k acts as a forcing
function on, and hence contributes to, the dynamics of the next pass profile
yr+1(t), 0 <t <a, k> 0.

These processes have their origins in the coal mining and metal rolling
industries and the details can be found in the original work [Edwards (1974),
Edwards and Greenberg (1977)]. For more control-system related discussion of
coal mining refer to [Einicke et al. (2008)]. Simulation studies [Edwards (1974),
Edwards and Greenberg (1977), Rogers and Owens (1992)] immediately high-
light the unique control problem for linear repetitive processes where the out-
put sequence generated, that is, the sequence of pass profiles, can contain
oscillations that increase in amplitude in the pass-to-pass direction. In long-
wall coal cutting the problem is caused by the weight of the machine as it
rests on the previous pass profile during the cutting of the next pass profile,
and the undulations caused can result in productive work having to stop. A
stability theory for linear repetitive processes must prevent productive work
stoppage in order to maximize production.

A differential linear repetitive process is described over 0 < ¢t < «, k > 0,
by

Tp41(t) = Azpqr(t) + Bugs1(t) + Boy(t),
Yrt1(t) = Coppa(t) + Dugga(t) + Doyr(t), (13)

where on pass k, zx(t) € R™ is the state vector, yx(t) € R™ is the output, or
pass profile vector, and uy(t) € R” is the input vector. For this model it is also
necessary to specify boundary conditions, and the simplest possible is

yo(t)7 0 S t S a, karl(O) = dk+1; k Z 07 (14)

where yo(t) is a given initial pass profile vector, and dg41 has known constant
entries.

In a 2D systems setting, processes with state dynamics described by (13) can
be referred to as mixed, that is, the along the pass dynamics are governed
by a linear matrix differential equation, and the pass-to-pass dynamics by a
discrete linear matrix equation. It is also possible to have discrete dynamics
along the pass, and a discrete linear repetitive process state-space model over
0<p<a-1,k>0,is

Trp1(p+ 1) = Azg 1 (p) + Burg1(p) + Boye(p),
Yr+1(p) = Cxpy1(p) + Dugy1(p) + Doyr(p), (15)
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where on pass k, z;(p) € R™ is the state vector, yi(p) € R™ is the pass profile
vector, and ug(p) € R” is the input vector. The equivalent of the boundary
conditions of (14) are

xk+1(0):dk+1> kZO? yO(p):f(p)a ngga_la (16)

where yo(p) is a given initial pass profile vector and di11 has known constant
entries.

The state initial vector sequence xy11(0), k > 0, for differential and discrete
linear repetitive processes can be a function of points along the previous pass
profile, and for discrete processes one choice is

a—1

2x11(0) = dig1 + Y Jiwk(4), k>0, (17)

=0

where J;, 1 < j < a—1, is an n x m matrix, and when combined with the
initial pass profile yo(p) of (16) are termed dynamic boundary conditions.

An obvious route to analysis of repetitive process dynamics is to ignore (17)
and join the pass profiles end-to-end to obtain the standard linear systems
state-space model. In particular, write the variables in terms of V = ka + t,
in the exemplar case of differential along the pass dynamics, to convert the
particular example under consideration into an equivalent infinite length single
pass process where the relationships between variables are expressed in terms
of V, termed the total distance traversed. Then a variable, say, Yi11(t), k > 0,
is identified as a function Y (V') of V defined for 0 < V' < oo. The problem
that then arises is that the inherent structure of linear repetitive processes is
not present in the resulting model and incorrect stability conclusions could be
made.

The stability theory [Rogers and Owens (1992),Rogers et al. (2007)] for lin-
ear repetitive processes is based on an abstract model in a Banach space setting
that includes a wide range of such processes as special cases, including those
described above. Suppose that the pass profile y;, € E,, where E,, is a suitably
chosen Banach space with norm || - ||. Then the dynamics of a linear repetitive
process of constant pass length a > 0 are described by

Yr+1 = Loy + bry1, k>0, (18)

where by1 € Wy, W, is a linear subspace of E,, and L, is a bounded linear
operator mapping F, into itself. In this model the term L,y represents the
contribution of pass k to pass k + 1, and by represents other terms that
enter on pass k + 1, namely, control inputs, pass state initial conditions, and
disturbances.

Repetitive process models can also be written where the pass is a rectangle
in the plane, and the state-space model is then 3D. One model of this form is

wpa(bm) =) Y (AYar(l+im+ ) + BYug(l+im+3)) . (19)

i=—€j=—¢
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where on pass k zi(l,m) € R™ is the state vector, ug(l,m) € R? is the input
vector, and € > 0 and € > 0 are positive integers. The boundary conditions
are

2p(l,m) =0, —e<1<0,0<m<pj, k>0, (20)
zg(l,m) =0, —e<m<0,0<!<a, k>0, (21)
xo(l,m) = do(l,m), 0 <1 <a, 0<m<g, (22)
rp(a—i,m) =di(i,m), 0 <m<p3,0<i<e k>0, (23)
zp(l,B—J)=dp(l,5),0<1<a,0<j<e, k>0 (24)

and the process dynamics are defined over a finite fixed rectangle 0 < [ <
a—¢60 < m < 8 — ¢ but, at every point on pass k + 1, only those points
in the rectangle defined by —e < I <€, —e < m < ¢, on the previous pass
contribute to the current pass profile. The updating structure for the case
when € = ¢ = 1 is illustrated in Fig. 4. For processes described by (19) it is a
rectangle of information that is propagated in the pass-to-pass direction.

k+1v . RTTTTTTTT7 l

m

(.
=
rd

(0,0) (0,m) (0,8)
Fig. 4 Illustrating the updating structure of (19).

The repetitive process models considered previously in this paper require
the assumption that the sole previous pass contribution to the current pass
profile is at the same point along the pass. In some examples, such as long-
wall coal cutting, the previous pass profile is modified before the start of the
next pass, and this effect is termed inter-pass smoothing. In long-wall coal
cutting the inter-pass smoothing is caused by the machines weight, up to 5
tons, as it comes to rest on the newly cut pass profile and cannot be realistically
modeled by state-space models of the form (13) or (15). Instead, it is necessary
to consider a model with all the points along the previous pass contributing
to the pass profile at each point on the current pass.
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One way of extending the model of (13) and (14) for differential linear
repetitive processes to include inter-pass smoothing is

ippa(t) = Apr (1) + Bugir () + By / K(t,7) yu(r) dr,
0
Yr1(t) = Cappa(t), 0 <t <, k=0, (25)

with, for simplicity, xx+1(0) = dgt1, £ > 0. In this representation, the inter-
pass interaction term [;° K (t,7)yx(7) dr represents a smoothing out of the
previous pass profile in a manner governed by the properties of the kernel
K(t, 7). Also the particular choice of K(t,7) = §(t — 7)I,,, where §(-) denotes
the Dirac delta function, reduces (25) to the model of (13) and (14) with
D =0, Dy = 0. One possible choice of the kernel is a double-sided exponential
decay centered on the instance along pass under consideration. A detailed
treatment of this and other practically motivated choices for the kernel can be
found in [Edwards (1974),Edwards and Greenberg (1977)] and the extension
of the abstract model based stability theory in [Rogers et al. (2007)].

The application of this stability theory in the design of iterative learning
control laws is described in Section 4 together with experimental verification.

3 2D Systems Control of Sensor Networks

This section gives two applications of the Fornasini Marchesini 2D systems
model in the general area of sensor networks, an area of strong research across a
number of disciplines. The results include data from a testbed implementation
in one case.

3.1 Spatially Distributed Grid Sensor Networks

Return to the sensor network model of (1), where one of the main challenges
is to design the local state-space model matrices such that the desired filtering
function is implemented in a distributed manner. In some cases, coefficient
matching can be used to design the state-space matrices in order to achieve a
desired response as represented by a 2D transfer-function, say H(z1, 22).

Sensor networks are often used to implement functionality beyond the sens-
ing tasks, that is, by coupling nodes with actuator devices so that if a certain
event is detected, the node activates the actuator devices to achieve a speci-
fied task. A sensor network that detects a chemical spill may be required to
release neutralizing agents to its surroundings. Typically, actions need to be
coordinated using a leader node that gathers sensor data from all nodes that
exchange data with it, and the information combined to make a decision on the
actuation task. As a result, an overhead can be added to the system, draining
limited system resources such as energy.

In contrast, the 2D systems approach requires each node to communicate
its current state-information to only its immediate neighbors. After the in-node
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computation using the exchanged state values, and observing that its output
has exceeded a specified threshold, a node can decide on its own regarding
the actuation task. Such decision-making capability eliminates the need for
receiving actuation commands from leader nodes, saving network bandwidth,
and energy.

Consider the use of the 2D Fornasini-Marchesini state-space model (1) to
describe a node in a sensor network. Then the window of events considered
during computation of the local output y to decide on the local actuation task
is fully governed by the 2D transfer-function G(z1, 22) computed by applying
the 2D z-transform defined by (5) to (1). As the example given below demon-
strates, proper choice of parameters in G(z1, z2) can ensure that a longer or a
shorter window of events along the space and time-axes is considered during
the computation of the state x, and hence the output y.

Current embedded wireless sensor platforms typically use 8-bit or 16-bit
fixed point microprocessors. Hence, quantization effects during data process-
ing inside each node can affect both system performance and the stability of
the implemented filtering process. Moreover, the effects of quantization and
overflow nonlinearities on nD system stability must also be considered.

In addition to quantization during processing, only a limited number of
bits can be employed to propagate the state information over the low rate
wireless channel to the neighboring nodes. In some cases the values are trun-
cated down to 428 bit values and such coarse quantization can also affect
the stability and performance of the distributed filter [Kar and Singh (2001),
Dewasurendra et al. (2006)].

In the sensor networks described above, see (8), the spatial variables are
bounded and this is a 3D distributed system application with a 2D spatial
sensor grid, and 1D time, with sensors along the axes n; and ny. Only the
temporal variable ¢ is unbounded because the temporal duration of the sensor
signals collected by each node is several orders of magnitude longer than the
spatial extent of the impulse response.

As an example implementation, suppose that the goal is to detect a vehicle
moving at a constant velocity along a straight 1D path, which is a special
case of Fig. 1, using a velocity filter. The effects of quantization nonlinearities
discussed above are not considered, and a quantization word length of 16
bits is used for both inter-node communication, and in-node computation, to
minimize its effects on system stability.

The testbed shown in Fig. 5, consisting of a linear 1D array of wireless sen-
sor nodes, is used for the implementation. Each node is based on the TelosB [1]
platform using IEEE 802.15.4 Zigbee wireless communication standard, and
is connected to a multi-modality sensor board. The sensor board can sense
multiple sensor modalities including visual light (L), sound (S), infrared (I),
and magnetic (M), which correspond to the various properties of a rover ve-
hicle to be detected. A combination of sensors is used mainly to improve the
robustness of the detection process. To detect the vehicle characterized by all
four sensor signals L, S, I, and M, the average of the sampled values of all four
sensor-signals is used as the input term u(n; +1,ng). As a particular example,
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Fig. 5 The testbed used in the grid sensor network experiment.

consider the case when eleven nodes are placed in a periodic 1D array on an
elevated platform over the observed path. The rover vehicle is set to move with
a constant velocity underneath.

For ease of implementation, a simplified scalar Fornasini-Marchesini state-
space model is used with a scalar local state x in (1), and real scalar constants
A = 0, Ay = agp, and B; = b. The corresponding 2D transfer-function
description can be written as

bzy !
G(Zl,ZQ) = —2_1 1 (26)
1 —agoz; "2,

and a velocity detection filter is given by the 2D transfer-function

P(z1,22)

—_ 27
l—azflzgl (27)

H(z1,22) =
where the constant a is determined based on the velocity to be detected.
For the case considered, coefficient matching gives the required 2D transfer-
function
25 -

I?[(Zl7 22) = (28)

1—-az 122— v

As a numerical example, consider the application of (28) with a = 0.75,
which determines the length of window of past events considered by the system
during the detection process. Also the rover vehicle is moving at a constant
velocity of 5 cm/sec, which corresponds to the distance between two consec-
utive sensor nodes or the sampling time. The filter response y(ny + 1,n2) is
observed for this velocity and the two other rover velocities, that is, 3.8 cm/sec
and 8.1 cm/sec.

In Fig. 6 the response of the distributed filter for three different rover speeds
is given. Comparing Figs. 6a, 6b, and 6¢, it follows that the distributed filter
implemented using the Fornasini-Marchesini local state-space model detects
the rover vehicle with a constant velocity of 5.0 cm/sec.

The 2D Fornasini-Marchesini state-space model based approach to dis-
tributed information processing in grid sensor networks is capable of imple-
menting linear systems. Additional advantages include high scalability, ease of
re-configurability, minimized communication costs, and the ability to execute
local actuation tasks in response to local phenomena. The implementation of
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Fig. 6 Velocity filter implementation results.

a velocity filter illustrates the approach, although it is of limited scope con-
sidering the wide application potential of the method. Another interesting
application is the detection of wavefronts consisting of hazardous plumes in
air, using a 2D or 3D grid sensor network placed in a suburban or urban area.

By using a higher value for a in (28), it is possible to consider a longer
window of events in space-time to produce the distributed filter output, and
vice versa, where such a 2D transfer-function coefficient is a critical parameter,
particularly in situational awareness applications, where a shorter or longer
time window is needed from time to time, depending on the desired event
resolution, and current situational requirements.

3.2 Temporal Evidence Filtering

Surveillance, monitoring, and situational awareness applications often use sen-
sors that are spatially distributed over the area of observation, generating data
over time. These sensors are often coupled with microprocessors, and low-rate,
short range wireless radios to create a distributed network of embedded sen-
sor nodes [Szewczyk et al. (2004)]. Limitations in energy reserves, radio range,
and data throughput in nodes require distributed processing of information in
such networks.

Temporal evidence filtering (TEF) [Dewasurendra et al. (2006)] combines
multimodal sensor information for local processing within the nodes in a sensor
network, and is based on Dempster-Shafer evidence theory [Shafer 1976], which
models sensor data as evidence supporting various observation events. Filtering
of this form is capable of processing temporally ordered evidence inside a
sensor node to directly infer the occurrence of periodic events characterized by
multiple sensing modalities. The temporal evidence filtering approach can be
extended to the case of spatio-temporal evidence filtering (STEF), to process
evidence gathered from multi-modal sensors over multiple dimensions of both
space and time.

A centralized implementation of STEF would be impractical, consider-
ing the resource limitations of an embedded sensor network. The Fornasini-
Marchesini state-space model (2) and Roesser state-space model (3), can be
used in a distributed implementation of spatio-temporal evidence filters. In
such an implementation, each node in the network performs a portion of the
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computation locally, in order to generate the output of the STEF collectively,
and the approach can offer advantages for resource-limited embedded sensor
networks.

The evidence filter discussed in [Dewasurendra et al. (2006)] processes the
evidence only over time and TEF can be further extended to process evidence
gathered over multiple dimensions of both space and time. The basics of spatio-
temporal evidence filtering versus alternative forms of filtering are illustrated
in Fig. 7. An evidence filter adds one more dimension to spatio-temporal fil-
tering and explores the correlations among sensor signals of various modalities
to improve and enhance the sensitivity.

A mD spatio-temporal evidence filter takes the form

Bel(B)(nl, R ,’I’Lm) = Z .. Z ozily,_JmBel(B)(nl — il, R £ 7 im),
il iwn

+3 2 B BelBIA) (01 = i1, oy — Gim)
J1 Jm

(29)

with indices ni,no,...,n,, representing each dimension, and Bel(B) is the
Dempster-Shafer theoretic belief function of proposition B [Shafer 1976]. The
conditional belief of B given event A, denoted by Bel(B|A), is defined in
[Fagan and Halpem (1990)] and the constant coefficients o, . .., Bj,,...5. € R
satisfy the sum and positivity constraints given in [Dewasurendra et al. (2006)].

Consider the 3D evidence filter consisting of 2D space, with indices ni,ns,
and 1D time, indexed by ¢, characterized by the difference equation

Bel(B)(nl,ng,t) = Z Z Zailﬂ-%TBel(B)(nl — il,ng — ig,t — 7'),
il iz T
+ DD B Bel(BIA) (1 — janz — ot = 7),
Jioj2 T

(30)

where (n1,n2) € N2 ¢t € Nj. To compute the belief of B at time ¢ and location
(n1,n2), the beliefs of B computed at time (¢ —7) at locations (nq —i1, 12 —i2)
are required, and can be extended to represent the occurrence of multiple
events Ay, ..., A, supporting proposition B. Such higher dimensional evidence
filters are potentially useful in real-world applications including the detection
of various low-signature space-time events.

Consider a vehicle path under surveillance, equipped with equi-spaced
multi-modal sensor nodes placed in the 1D array shown in Fig. 1. The goal
is to detect a particular type of vehicle traveling along the path with a par-
ticular speed. Based on the sensor signals sampled at regular intervals with a
sampling time ¢, the nodes update their local viewpoints or beliefs, and the
system can be modeled as the distributed system shown in Fig. 5.
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Fig. 7 Temporal evidence-filtering (TEF) for processing evidence gathered over multiple
dimensions of both space and time. An evidence filter adds one more dimension to spatio-
temporal filtering, and explores the correlations among sensor signals of various modalities
to improve and enhance sensitivity.

A distributed sensor network based on the 2D Fornasini-Marchesini state-
space model of (1) with a static output equation added is

z(n,t+1) = Asz(n,t) + Arx(n — 1,t) + Bu(n,t),
y(n,t) = Cxz(n,t) + Du(n,t), (31)

where x € R? is the state vector, v € R" is the input vector generated using
beliefs of interest, and y € R? is the output vector, n € {0,1,..., M} denotes
the node number, and ¢ € N denotes discrete time. The design problem is
to determine the local state-space matrices A1, Ao, B,C, and D such that the
desired evidence filtering function is implemented in a distributed manner,
where for some examples coefficient matching is again an option for design.

Further development of the area depends on progress with several open
research problems. First, a formal method needs to be developed to obtain
the state-space matrices in (31) based on the evidence filter specifications,
and its transfer-function. The term corresponding to Asz(ny,ns + 1) in the
2D Fornasini-Marchesini state-space model (2) does not appear in (31), and
suggests that some quarter-plane causal evidence filters are not realizable.
Determining the realizable frequency responses using a constrained form is an
open research problem.

4 Repetitive Process based Iterative Learning Control Design

In recent years, there has been a substantial volume of research on using
the repetitive process setting to design iterative learning control laws. This
research has included experimental verification, which represents a major step
forward for multidimensional control system design. This section overviews
the results to date, gives some new results on disturbance rejection design.



16 E. Rogers et al.

4.1 Experimentally Verified Nominal Model Designs

TIterative Learning Control (ILC) emerged from industrial applications where
the system involved executes the same operation many times over a fixed time
interval. When each operation is complete, resetting to the starting location
takes place and the next operation can commence immediately, or after a
stoppage time. A common example is a gantry robot undertaking a pick and
place operation in synchronization with a moving conveyor or assembly line.
The sequence of operations is: a) the robot collects a payload from a fixed
location, b) transfers it over a finite duration, c) places it on the moving
conveyor, d) returns to the original location for the next payload and then e)
repeats the previous four steps for as many payloads as required or can be
transferred before it is required to stop.

To operate it is necessary to supply the robot with a trajectory to follow
and the task for a control law is to ensure that the robot follows the prescribed
trajectory exactly or, more realistically, to within a specified tolerance. In
addition to controlling its own movement and that of the payload, the control
law must prevent other effects, such as disturbances and signal noise, from
degrading tracking and thereby forcing it outside of the tolerance bound. If
the robot begins to operate outside permissible limits, the control task is to
bring it back as quickly as required or is physically possible. This must be
achieved without causing damage to, for example, the sensing and actuating
technologies used.

In TLC, each completion or execution of the task is commonly termed
a trial, but in this paper pass is used instead of trial to conform with the
repetitive process terminology. Also the finite time each pass takes to complete
will be referred to as the pass length. Once a pass is complete, all data used
and generated during its completion is available for use in computing the
control action to be applied on the next pass. The use of such data is a form of
learning and is the essence of ILC, embedding the mechanism through which
performance may be improved by past experience. The ILC mode of operation
outlined above is the most common, that is, complete a pass, reset and then
repeat. This is different from repetitive control where the system continuously
executes over the period of the reference signal, that is, no stoppage time
between passes (or executions).

The widely recognized starting point for ILC is [Arimoto et al. (1984)],
which considered a simple structure linear servomechanism system for speed
control of a voltage-controlled dc-servomotor. Suppose also that the system
to be controlled has discrete linear time-invariant dynamics. Then in the ILC
setting the dynamics are described by the state-space model over the pass
length o < oo.

rr(p+1) = Az (p) + Bur(p),
yk(p) = Car(p), ©x(0) = xo, (32)
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where on pass k, zx(p) € R™ is the state vector, yi(p) € R™ is the output
vector and ug(p) € R! is the control input vector.

In this model it is assumed that the initial state vector does not change
from pass-to-pass. The case when this assumption is removed has also been
considered in the literature. Also the dynamics are assumed to be disturbance-
free but again this assumption can be relaxed. It also possible to write the
dynamics in input-output form involving the convolution operator or take the
one-sided z transform and hence enable analysis and design in the frequency
domain. To apply the z transform it is necessary to assume « = oo but in
most cases the consequences of this requirement have no detrimental effects.
For a more detailed analysis of cases where there are unwanted effects aris-
ing from this assumption, see the relevant references in [Ahn et al. (2007),
Bristow et al. (2006)] and more recent work in [Wallen et al. (2013)].

Let r(p) € R™ denote the supplied reference vector. Then the error on pass
k is ex(p) = r(p) — yx(p) and the core requirement in ILC is to construct a
sequence of input functions ug41(p), k > 0, such that the performance achieved
is improved with each successive pass and after a ‘sufficient’” number of these
the current pass error is zero or within an acceptable tolerance. Mathematically
this can be stated as a convergence condition on the input and error of the
form

lim |legx]| =0, lim ||Jup — uso]| =0, (33)
k—o00 k—o0
where uy, is termed the learned control and || - || denotes an appropriate norm
on the underlying function space. For example, if || - ||2 denotes the Euclidean
norm of its argument one possibility is |[e[| = max,e(o,q] [le(p)||2. The reason

for including the requirement on the control vector is to ensure that undue
emphasis on reducing the pass-to-pass error does not come at the expense of
unacceptable control signal demands. In application, only a finite number of
passes will ever be completed but mathematically letting k& — oo is required
in analysis of, for example, pass-to-pass error convergence.

The standard form of ILC algorithm or law constructs the current pass
input as the sum of the input used on the previous pass and a corrective term,
that is,

ukt1(p) = ur(p) + Alur(p), ex(p)); (34)

where A(ug(p),er(p)) is the correction term and is a function of the error
and input recorded over the previous pass. A large number of variations exist
for computing the correction term, including algorithms that make use of
information generated on a finite number (greater than unity) of previous
passes.

Analysis of ILC, involves signals that propagate in two directions, from
pass-to-pass (in k) and along the pass (in p) over a subset of the upper-
right quadrant in the 2D plane. Hence it is to be expected that 2D sys-
tems theory can be applied and the first work in this area used the Roesser
model [Kurek and Zaremba (1993)]. In this latter paper, it is shown how pass-
to-pass error convergence of linear ILC laws in the discrete domain can be
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examined as a stability problem in terms of a Roesser state-space model inter-
pretation of the dynamics. Given that the pass length is finite by definition,
it follows that ILC fits naturally into the class of repetitive processes.

For analysis purposes, introduce the following vector defined from the dy-
namics of (33)

Ne+1(p + 1) = zp41(p) — 2x(p) (35)
and select the term A(ug(p), ex(p)) in (34) as
A(ug(p), ex(p)) = Kink+1(p + 1) + Kaex(p + 1). (36)
Also introduce the notation
A=A+ BKj, By = BK>,
1 0 2 (37)

C=-C(A+ BK,), Dy=1I-CBK,

and it follows on combining (32), (35) and (36) that the ILC dynamics are
then described by

M1 (P + 1) = Ani1(p) + Boer(p),

~ s (38)
ex+1(p) = Cnrs1(p) + Doer(p),

which is a particular case of the discrete linear repetitive process state-space
model (15) with pass profile vector er41(p) and current state vector ngy1(p)
and no current pass input terms.

The stability theory for linear repetitive processes developed in terms
of (18) demands that a bounded initial pass profile produces a bounded se-
quence of pass profiles either over the finite and fixed pass length of the
process or, in stronger form, for all possible values of the pass length. Ap-
plying the first of the two stability properties, termed asymptotic stabil-
ity [Rogers et al. (2007)], to the ILC dynamics generated by (38) requires
that p(Dy) < 1. This condition is precisely that obtained by applying 2D
discrete linear systems stability theory [Kurek and Zaremba (1993)] to (38)
and hence ensure pass-to-pass error convergence only using the control law
(setting K1 = 0 in (36)) up+1(p) = uk(p) + Keep(p+ 1).

The repetitive process setting provides the alternative of imposing the
stronger form of stability, known [Rogers et al. (2007)] as stability along the
pass, where this property holds for dynamics described by (38) if and only if
i) p(Do) < 1, ii) p(A) < 1, and iii) all eigenvalues of

G(z) = C(zI — A)~*By + Dy, (39)

have modulus strictly less than unity for all |z] = 1, where it is assumed that
the pair {4, By} is controllable and the pair {C, A} observable. If stability
along the pass holds, the pass profile sequence {ej}; generated by (38) con-
verges in k to the limit profile e, described by a stable 1D linear systems
state-space model, where this property will be used in Section 4.2.

If ILC is to be applied to a discrete time linear system that is unstable one
approach is to first design a stabilizing control law and then apply ILC to the
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resulting closed-loop system, where the application of the latter is based on
first building a 1D discrete linear systems model of the pass-to-pass updating,
that is, in a similar manner to the 1D equivalent model for discrete linear
repetitive processes [Rogers et al. (2007), Rogers et al. (2002)]. The lifting ap-
proach to ILC design is therefore a two-stage process whereas the repetitive
process setting allows for the design of a control law in one step. A comparison
of the repetitive process approach against alternative design settings is given
later in this section.

The area of ILC design based on repetitive process stability theory has
seen a substantial body of results developed. Next, one method that has led
to experimental verification is considered and then alternatives are discussed
and some new results developed. This requires a Lyapunov function charac-
terization of stability along the pass, where for the ILC dynamics (38) the
Lyapunov function used has the form

with

Vi(k,p) = nis 1 () Wikt (p),
Va(k, p) = e (p)Wae(p), (41)

where Wy > 0 and W > 0. Also the increment of this Lyapunov function is

AV (k,p) =Vi(k,p+ 1) — Vi(k,p)

where, in physical terms, the first term AV;(k, p) measures the difference in
state (or along the pass) energy at two successive sample instants and Va(k, p)
the difference in the error energy between two successive passes.

Applying a known result [Rogers et al. (2007)], stability along the pass
of (38) holds if

AV (k,p) <0, (43)
which can be rewritten in LMI form as
ATWA-W <0, (44)
where
+ [A B (w0
A_{C*DO}’ W_[O WJ>0. (45)

Theorem 1 [Haldowski et al. (2010)] Stability along the pass holds for the

ILC dynamics (38) if there exist matrices X1 = 0, Xo = 0, Ry and Ry such
that the LMI

-X1 0 X1AT + RTBT — X, ATCT — RTBTCT
0 —Xo RYBT Xo — RYBTCT
AX; + BR; BR; -X; 0 =<0, (46)

—CAX1 —CBRy X2 — CBRsy 0 —Xo
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Fig. 8 The gantry robot with the three axes marked.

is feasible. If (46) holds, the control law matrices K1 and Ko are given by
K =R X! Ky = Ro X, L. (47)

Routine algebraic manipulations give the form of the control law for im-
plementation as

up41(p) = ur(p) + Ki(zp11(p) — 2x(p)) + Kao(r(p +1) —w(p +1)).  (48)

In this control law the second term is state feedback, based on the difference
between the state vectors on the current and previous passes and the third is
phase-lead, where the argument p + 1 is temporal information that would be
non-causal in 1D linear systems designs. The use of such information is the
critical novel feature of ILC.

Experimental verification of the ILC control law design of Theorem 1 has
been reported using the multi-axis gantry robot shown in Fig. 8, which has also
been used to test and compare the performance of a range of ILC laws. For de-
tails of the design and construction of this robot refer to [Ratcliffe et al. (2006)].
The task is to collect an object from the feeder system on the right-hand side of
the photograph, place it on the moving conveyor, and then return for the next
one. The experimental facility replicates requirements in the food processing
and other industries, where the same task is to be completed over and over
again with a specified accuracy over a finite duration. Here the requirement
is for the robot head to track a given reference signal from right to left each
time it picks up an object.

Each axis of the gantry robot is modeled based on frequency response tests,
where, since the axes are orthogonal, it is assumed that there is minimal inter-
action between them. Consider the X-axis, the one parallel to the conveyor in
Fig. 8 where frequency response tests, using the Bode gain and phase plots in
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Fig. 9 Bode gain and phase plots for the X-axis of the gantry robot of Fig. 8, where the
red line is the actual data and the blue that produced by the model.
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Fig. 10 The reference trajectory r(p) for the gantry robot of Fig. 8.

Fig. 9, result in a Tth order continuous-time transfer-function as an adequate
model of the dynamics to use for control law design. The transfer-function is
discretized with a sampling time of Ty = 0.01 sec to develop a discrete linear
state-space model. The required reference trajectory is designed to simulate a
pick and place process of duration 2 sec, and the signal is used in all ILC law
tests in order to make all results comparable. The 3D reference trajectory is
given in Fig. 10 and that for the X-axis in Fig. 11. For a complete treatment
of the modeling of this robot, including the transfer-functions for the ¥ and
Z axes, again refer to [Ratcliffe et al. (2006)].
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Fig. 11 The reference trajectory for the X-axis of the gantry robot.
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Fig. 12 The input, error and output progression for the design of (50) applied to the X
axis.

After discretization, the process state-space models for the X-axis are given
by

[2.41 —0.86 0.85 —0.59 0.30 —0.19 0.32 ]
4.00 O 0 0 0 0 0
0 100 O 0 0 0 0
A= 0 0 100 O 0 0 0
0 0 0 100 O 0 0
0 0 0 0 050 O 0
0 0 0 0 0 025 O

B=[0033 0000 0 0],
C = [0.0095 —0.0023 0.0048 —0.0027 0.0029 —0.0011 0.0029],  (49)

where the state matrix A has all eigenvalues inside the unit circle except for
one of value unity on the real axis of the complex plane.

It is of interest to first consider the design of an ILC control law for pass-
to-pass error convergence only, that is, following [Kurek and Zaremba (1993)]
and choose Ky to satisfy p(Dg) = p(I — CBKj) < 1. One choice is

Ky =0, Ky = 50. (50)
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Fig. 13 The output (pass profile) on pass 5 (red line) compared to the reference (blue line)
together with the input (middle plot) and the error (bottom plot).

The input, error and output progression for this design are shown in Fig.12 and
Fig. 13 shows the response on pass 5. These are totally unacceptable and were
not implemented experimentally as damage to the equipment would result.

The LMI based design of Theorem 1 produces a family of solutions, and
as one example consider the control law matrices

K, = [7.3451 —2.7245 0.1499 7.6707 2.7540 —3.6088 —20.4519] ,
K, = 82.4119. (51)

As representative of the performance possible, and making use of the tuning
opportunities offered by the LMI solutions, Fig. 14 shows the experimentally
measured input, error, and output progression over 20 passes, where the track-
ing error is reduced to a low value.

The input, error and output signals on pass 200 are shown in Fig. 15 and
these are highly acceptable. The design has been repeated for the Y (perpen-
dicular to the X-axis in the same plane) and Z (perpendicular to the X-Y
plane)-axes. As a comparison between simulated and experimental results,
Fig. 16 shows the mean square error, denoted by MSE, for all axes generated
by the ILC law with the matrices of (51). These show good agreement between
simulation and experimentation.

In, for example, [Longman (2000)], it is reported that ILC laws can exhibit
higher frequency noise build up as the number of passes increases and tracking
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Fig. 14 The input, error and output progression for the design of (51).

of the reference signal then begins to diverge due to numerical problems in both
computation and measurement. In this design, the higher frequency component
buildup was observed in some cases, resulting in vibrations that increase the
pass error. One relatively simple option in such cases is to employ a zero-phase
Chebyshev low-pass filter. Here the filter used has transfer-function

H(2) _ 0.0002 + 0.0007z71 4+ 0.00112~2 o
1—3.53282—1 +4.78192—2
+0.0007z72 + 0.0002z 4
—2.9328273 + 0.68682 4’

(52)

with cut-off frequency 10 Hz and is applied to the pass error after each pass is
complete and before computation of the control law for the next pass. A case
where the pass error without filtering starts to diverge after (approximately)
100 passes but the addition of the filter (52) of this type is able to maintain
(this aspect of overall) performance is shown in Fig. 17. Such a filter is not re-
quired in all cases and an open research question is whether or not its selection
can be included in the overall design algorithm.
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Fig. 15 The input (top plot), the reference and output (middle plot) and the error (bottom

plot) on pass 200.

The ILC law (48) requires access to the state vector on both the current and
previous passes. If an observer is not used, one option is to use the pass profile
vectors on the current and previous passes. To develop this design, the ILC
law is again of the form (34) and also (35) is used. Also select A(ug(p), ex(p))

as

A(ug(p), ex(p)) = Kiper1(p + 1) + Kopigy1(p) + Kzer(p + 1),

with
pe(P) =y — 1) —yr—1(p — 1) = C(p).

After routine analysis (53) can be written as

Augr1(p—1) = K1Cng+1(p) + K2Cnga (p — 1) + Ksex(p)

and hence on introducing

M1 (P + 1)] ’

Mt1(p+1) = |: Nes1(p)

the controlled dynamics can be written as

i1 (p +1) = Afjsr (p) + Boe(p),
ex+1(p) = Ciikt1(p) + Doex(p),

(57)
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Fig. 17 The effect of filtering — red line without, blue line with filter added.

where

A

A+ BK,C BKQC’} -
I 0 ) BO

C =[-CA-CBK,C —~CBK,

BK;
O b)

C], Dy = (I — CBK3).
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Theorem 2 [Hiladowski et al. (2012)] Stability along the pass holds for the
ILC dynamics (57) if there exist matrices Y = 0, Z = 0, N1, Ny and N3 such
that the following LMI with linear constraints is feasible

Z-Y x %
0 —Z x | <0,
QD -V (59)
CY, = PC, CY; =QC,
where
Y; 0 0
Y=|10Y0 (60)
0 0Y;
and
[ AY; + BN,C BN,C BN;
2 = Yi 0 0 ,
i 0 0 0
i 0 0 0
25 = 0 0 0 . (61)
| —-CAY; — CBN,C —CBN>C Y3 — CBN3

The matrices P and Q are additional decision variables. If the LMI with equal-
ity constraints of (59) is feasible, the control law matrices Ky, Ko and K3 are
given by

K= NP Ky=NoQ b, Kz= N3yt (62)

To apply the control law (55), simple algebraic manipulations give

u(p) = uk—1(p) + K1(yr(p) — yx-1(p))
+ Ka(yr(p — 1) —yr-1(p — 1))
+ Ks(Yres(p+1) — yr—1(p+ 1)). (63)

The last term in this law is ILC phase-lead activated by the previous pass
error. A variable advance is also possible and has been found to lead to accu-
rate tracking in practice on a range of applications [Freeman et al. (2007),
Wallen et al. (2008)]. The second and third terms are proportional in na-
ture acting on the error between the current and previous passes at p and
p — 1 respectively. The use of current pass data has appeared in many ap-
proaches to manipulate the plant dynamics along the pass, see, for exam-
ple, [Norloff and Gunnarsson (1999)] and has been found to increase initial
tracking and disturbance rejection [Ratcliffe (2005)], (63) uses both current
and previous pass data, where the latter is composed of ILC phase lag (the
second term) and lead (the third term). It is therefore a higher order ILC
algorithm with a relatively simple structure. This ILC design has also been
experimentally verified on the gantry robot [Hladowski et al. (2012)].
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4.2 Alternative Designs and Comparisons

For discrete dynamics an alternative setting for ILC design uses the lifted
model, see, for example, [Ahn et al. (2007)] and [Bristow et al. (2006)] and
the many subsequent publications on this approach where the first step in
design is to define the super-vector

-
Ep = [ef (0) ef (1) - ¢f (a—1)]
and with, as one example, the phase-lead ILC law

ug+1(p) = up(p) + Kex(p+ 1), (64)

applied the controlled dynamics can be written in the form Fyx,, = QFj,
where Q is a block lower triangular matrix whose non-zero entries are formed
from the Markov parameters of the system state-space model. This approach
subsumes the along the pass dynamics and assumes that any requirements
beyond pass-to-pass error convergence arising in a particular application are,
if required, met by first designing a feedback control loop for the system and
then applying lifting to the resulting state-space model. If the lifting setting is
to be applied to the discretized dynamics of the gantry robot of the previous
section then a stabilizing feedback control law must be applied before the ILC
design as the state matrix is unstable in the case considered (the matrix A
of (49)).

In comparison, the use of the repetitive process setting for ILC design en-
ables simultaneous design for pass-to-pass error convergence and performance
along the passes. Also the repetitive process setting is applicable to differential
dynamics, for which no lifted model analysis is possible. Hence the repetitive
process setting is applicable to applications where design by emulation is re-
quired or is the only feasible approach.

The ILC designs in [Haldowski et al. (2010)] and [Hladowski et al. (2012)]
extend without difficulty to robust design where the uncertainty is described by
either the norm-bounded or polytopic models. Many alternative approaches
to robust ILC control design for discrete linear systems have been reported
and one option is again to use the lifted model of the dynamics but this will
encounter serious difficulties due to the presence of matrix products in the
resulting model. For example, the ILC law (64) results in pass-to-pass error
dynamics described by the lifted model

By = QF, (65)
where
I -KCB 0 0
~-KCAB I-KCB --- 0
0= _ . : (66)

~KCA*"'B -KCA*“2B... | - KCB
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Hence when the state-space model matrices A, B, C' have uncertainty associ-
ated with them that belong to a convex set, Q does not belong to a convex set
and only a bound is possible that increases the conservativeness of the results.

The repetitive process based ILC designs given in the previous section are
based on sufficient but not necessary stability conditions and the question of
how conservative these designs are arises. In particular, how conservative are
these designs against those based on the necessary and sufficient conditions
for stability along the pass given in the previous section. No general answer is
available for this question but the necessary and sufficient conditions require
frequency attenuation over the complete frequency spectrum and by analogy
with the standard linear systems case is likely to be very stringent. One option
is to use the GKYP lemma [Paszke et al. (2013)] to permit design over finite
frequency ranges of interest and again these designs have been experimentally
benchmarked on the gantry robot. As another problem demonstrating the
scope of repetitive process models in ILC design, [Cichy et al. (2014)] has used
the wave repetitive process setting to examine how best to make use of previous
pass data.

4.3 Strong Practical Stability and Disturbance Rejection

Stability along the pass requires uniform boundedness of the pass profiles gen-
erated for all k¥ and «. As a result, the condition expressed in terms of the
transfer-function matrix (39), that is, the transfer-function matrix that de-
scribes the contribution of the previous pass dynamics to the current pass
dynamics is imposed. Consider the single-input single-output case for simplic-
ity. Then this condition, in terms of control law design, requires frequency
attenuation of the error dynamics from pass-to-pass. As in the 1D case, this
condition is very stringent and unnecessary in many practical cases where the
system involved is only required to operate over finite frequency ranges.

Physical repetitive processes will only ever complete a finite number of
passes and motivated by this fact strong practical stability removes the uniform
boundedness requirement as both £ — oo and @ — oo but still demands this
property when a) both k and p are finite, b) the pass index k¥ — oo and the
pass length « is finite and c¢) the pass index k is finite and the pass length
a — oo : Cases a) and b) have obvious practical motivation and Case c) is
the mathematical formulation of an application where the process completes
a finite number of passes but the pass length is very long, and there is a
requirement to control the along the pass dynamics. In particular, in control
law design to force the pass profile to track a reference attenuation at each
frequency component is relaxed to that of requiring this property at a subset
of frequencies.

Strong practical stability of processes described by (15) holds by the anal-
ysis in [Dabkowski et al. (2009)] if and only if [a] p(Dy) < 1, [b] p(4) < 1, [c]
p(A+Bo(I—Do)"1C) < 1, and [d] p(C(I—A)"'By+ Dy) < 1, where the ma-
trix inverses in [c] and [d] hold if [a] and [b] hold, respectively. To formulate
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Hoo disturbance attenuation for this model one way would be to use stability
along the pass and the norm on 2D signals defined over (k, p) € [0, 0o] x [0, o],
considered in, for example, [Du and Xie (2002)] for 2D discrete linear systems.

This approach for control law design would have the same implications
in terms of frequency attenuation detailed in the previous section for stability
along the pass. Instead, the analysis that follows uses strong practical stability
and measures of disturbance attenuation defined in terms of the evolution over
one independent variable with the other fixed, that is, with p fixed and k
ranging over [0, oo] and also k fixed and p ranging over [0, oo]. The state-space
model of the process dynamics now is

Trr1(p+1) = Avgy1(p) + Bugt1(p) + Boyk(p) + Biwrt1(p),
Ur+1(p) = Cxpy1(p) + Dugy1(p) + Doyr(p) + Diwrr1(p),  (67)

where x(p), yr(p) and ug(p) are as in (15) and wg(t) € R™ is a disturbance
vector acting on both the state and pass profile vectors. In some cases, it may
be required to consider different disturbances acting on the state and pass
profile dynamics. Let Bfw{(p) and Diw?(p) denote the additive disturbances
on the state and pass profile dynamics, respectively, and this case is included
in the model of (67) on setting

wi(p) = {5%83] , Bi=[By0], D, =[0D!].

Consider an asymptotically stable process described by (67) with zero in-
put vector (ury1(p) = 0) and a sequence {wy}r>1 that converges strongly
t0 woo as k — oo. Then (following the analysis for the input only case
in [Rogers et al. (2007)]) the repetitive process dynamics converge as k — oo
to the limit profile

Too(p+ 1) = (A+ Bo(I — Do) ' C)aoe(p) + (B1 + Bo(I — Do) ™' D1)wes (p),
Yoo (P) = (I = Do) "' Czoo(p) + (I — Do) ™' D1wso(p), (68)

where (I —Dg) =" exists since p(Dg) < 1. This is a discrete linear systems state-
space model with indeterminate p and condition [c] is the requirement for
this model to be stable. Furthermore, under condition [b] for strong practical
stability the repetitive dynamics converge as p — oo for any finite k are (again
following the analysis in for the input only case in [Rogers et al. (2007)]) to
the limit profile

yr+1(00) = (C(I = A)~' By + Do) y(00) + (C(I = A) ™' B1 + D1) wi1(o0),
zp+1(00) = (I — A) "' Boyx (o), +(I — A) ' Biwyt1(00), (69)
where (I — A)~! exists since p(A) < 1. This a discrete linear systems state-

space model with indeterminate k and condition [d] is the requirement for this
model to be stable. In what follows, the initial pass profile at p = 0 with zero
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state initial vector sequence and control input vector, respectively, is used,
that is,

Yr+1(0) = Doyx(0) + D1wi+1(0). (70)

Consider H, disturbance attenuation for these processes, where the 2D
systems formulation would consider this property over (k,p) € [0, co] x [0, o00].
Under strong practical stability, this requirement is relaxed to the ‘bound-
aries’ of this domain, that is, is imposed on (a) yi(0) for all values of the
variable k, (b) yx(oo) for all values of k and (¢) yoo(p) for all values of p.
These disturbance attenuation measures are practically relevant since control
design for applications should aim to reach a limit profile, that is, produce the
same output of each pass, with acceptable along the pass dynamics and ensure
that each pass completed also has acceptable along the pass dynamics. The
required conditions can be formulated in terms of the standard linear systems
H,, norm as detailed next.

Definition 1 (Performance): Suppose that the discrete linear repetitive pro-
cess (67) with zero boundary conditions z4(0) = 0 for k£ > 1 and zero input
ug(p) = 0 for k,p > 0, has the strong practical stability property. Given any 2D
disturbance sequence w = {wy }r>0, of p-indexed sequences {wy(p)}p>0, that
has the 1D strong limit @ := {woo(p)}p>0 in k& and/or 1D strong limit & :=
{wk(c0) }k>0 in p, define the corresponding 1D sequences § := {Yoo(P)}p>0
and/or § := {yx(00)}x>0 according to (68) and/or (69). Moreover, let & :=
{wr(0)}r>0 and define the corresponding 1D sequence § := {yx(0)}r>0 ac-
cording to (70). Then the process (13) is said to achieve H, strong practical
performance at the level of 41 > 0 in & (or trial) if

wp Ll Dl

= T <M
ozaet, ||@|l2 0£eel, [|Ol2

and/or at the level of v9 > 0 in p (or pass) if

. 7]2
sup

— < 72,
0#wEly lloo]l2

where /5 denotes the Hilbert space of square summable 1D sequences with

norm [{ug}rzollz = /2 pso ui ur (or [{u(p)}polla = /32,50 u” (P)u(p)).

Theorem 3 [Dabkowski et al. (2012)] A discrete linear repetitive process de-
scribed by (67) is strongly practically stable and has Hoo disturbance attenua-
tion y1 > 0 in the direction k, and o > 0 in the direction p if and only if there
exist matrices W1 = 0, Wy = 0, Q1 = 0, Q2 = 0 and nonsingular matrices
G1, Ga, and Sz, such that the following set of LMIs is feasible

W, 0 ST¥pDT  SIDT
0 —9¢I Df DY
DoSs Dy I 0
DySy Dy 0 Wy—S8,— ST

<0, (71)
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Wi WlAT}
<0 72
{AWl - ’ (72)
(@ 0 GL AT GTCT
0 —2 B 0
4G, B Q-EG -GIEr o |70 (73)
| GGy 0 0 -1 |
Q2 0 G1.Af GICT
0 — B 0
AGy B Qo EsGy—GIEF 0 | =0 (74)
el 0 1|

where
- A0 =~ = |I =Dy = | B
A= {OO}’ ¢=[o1].B = [OIDO} B = [DJ’
- 10By - |[I-A0
ST R
Returning to the ILC setting, the dynamics to be controlled are assumed

to be represented by discrete linear time-invariant state-space model, written
in the ILC setting as

Tr41(p + 1) = Azp1(p) + Bug1(p) + Biwg 441 (p),
Yr+1(p) = Cap11(p) + Diwy 1 (p),

where z(p) € R™, yi(p) € R™ and ui(p) € R” are as in (32) and w® € R*!
and wY € R% are disturbances acting on the current pass state and output
vectors.

Introduce, for analysis purposes only, the following

(75)

Me+1(p + 1) = Trt1(p) — 2k(p),
Aupy1(p) = ury1(p) — ur(p), (76)
le-s-l(p) = ngcc+1(p) — wi(p),
C;i/+1(p) = ng+1<p) - wi(p),
where it is assumed that wi ,(p) # wi(p) and wy ,(p) # w](p). Consider
also an ILC law in the form defined by (34), (35) and (36) and again ey (p) =
r(p) — yr(p). Then the controlled ILC dynamics can be written in the form

M1 (p+1) = Angy1(p) + Boer(p) + Biera(p),
ek+1(p) = Cis1 () + Doer(p) + DiCirr (), (77)
where
A= A+ BK,, By = BK»,
By =[Bi 0], C=-C(A+ BK)),
Dy = (I - CBKs), Dy = [-CB; — D1 ],

> _ |G —1)
Cer1(p) = [ kail(]?) } . (78)
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This is a linear repetitive process state-space model of the form (67) with
current pass state and pass profile vectors ng+1(p) and ex11(p) respectively.
Hence the following results can be established based on Theorem 3.

Lemma 1 The ILC dynamics described by (77) cannot be strongly practically
stable if the matriz CBKs is singular.

Theorem 4 Strong practical stability holds for the ILC dynamics described
by (77) with Hoo disturbance attenuation vy, > 0 in the direction k, and v > 0
in the direction p if there exist matrices W1 =0, Wy =0, Q1 =0, Q2 = 0, a
nonsingular matriz G = diag(G1,G2) and rectangular matrices Ny = [Nl O]

and Ny = [O Ng] such that the following set of LMIs is feasible

—Wsy * % *
0 21 * *
Gs—CBN; Dy —I o |7 (79)
Gy —CBNy Dy 0 Wy—Gy—GY
—W1 *
Aél + BNy W7 — Gl — G’? <0, (80)
[ —Q * % k]
0 -2 x *
~ ~ 1
iGN, B oo« |70 (81)
e 0 0 —1I|
—Q- * % k]
0 -2 x x
~ ~ 2
LG+1N, B 1o« |0 (82)
cG 0 0 —1I|

where

I =Q - EG—(B:G)" =Q, — E:G+IIN, - GTET + NI 117,

Iy = Qs — ByG — (B2G)T = Qy — E;G + IIN, — GTET + NI,

C=1[01]
and
r-[ 2] w88 )
w-py
By = [IC_AA ﬂ

If this set of LMIs is feasible, stabilizing control law matrices are given by

Ky = NG, Ko = NoGy 't (83)
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Proof This result follows from applying the results of Theorem 3 to (77) and
applying routine operations. Hence the details are omitted.

Remark 1 To find stabilizing K; and K> it is necessary to use G = diag(G1, G2)
in Theorem 4 to avoid introducing additional strong links between these ma-
trices and a potential cost of additional conservativeness.

Remark 2 This last theorem gives sufficient conditions for solvability of Ho
control law design problem as specified by =; from pass-to-pass and 7- along
the pass. Hence the interest in minimizing the values of v; and -5 but this
may not be possible as the two criteria involved do not need to have a joint
minimum. An alternative is to create a convex combination of 7; and o and
design the control law to minimize the resulting function. One choice is to
solve the convex optimization problem:

min o subject to (79) — (82) (84)

(where o = a;y? + asv3)

for some 0 < @; < 1, 0 < @y < 1, such that a; + @y = 1. Also varying the
selected values of @&y and @s increases the options in this respect.

5 nD Systems Applications in Civil Engineering and Agriculture

With a view to further increasing the range of applications for nD systems
and/or repetitive processes, two areas are considered in this section. The first
of these argues the case for extending the linear model stability theory to non-
linear dynamics and the second concerns systems described by partial differ-
ential equations. These add to the ongoing work on an nD systems approach
to spatially interconnected and related systems, which have received some
attention in the literature, see, for example, [D’Andrea and Dullerud (2003),
Recht and D’Andrea (2004),Liu et al. (2014)].

5.1 Soil Compaction

Compacting soil is a key task in construction and farming applications where
the machine, or compactor, makes repeated passes over an area of soil that is
periodically built up with additional layers. The performance criterion is to
achieve a specified height above some datum line with a desired compaction
to meet the requirements of a particular application.

Consider the schematic diagram [Mooney and Adam (2007)] of Fig. 18
where a compactor makes repeated passes over an area of soil that is peri-
odically built up with additional layers, termed lifts. The ultimate goal is to
achieve a desired compaction to meet the requirements of the application. It is
possible to determine the stiffness resulting from a pass due to the transmission
of known energy from the compactor to the soil, and accelerometers can be
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used to measure the energy that is reflected back to the roller. The availability
of this measurement motivates the idea of controlling the applied energy as a
function of spatial location from pass-to-pass, in an effort to reduce the overall
number of passes needed and also reduce the risk of over-compaction without
unnecessary manual measurements.

Lift 3 N 2

Lift2

Lift1

Base Layer

Fig. 18 Schematic diagram of soil compaction.

Fig. 19 shows a vibratory roller of mass M acting on the soil with a force
F(z,t), and moving at a velocity V(z,t). The objective is to deliver some
amount of energy to the soil within a given unit of distance Ax, termed the
impact interval, and the energy, which is a function of spatial location z, is
the control variable. Moreover, the force is produced by a combination of the
static weight of the system, and the oscillation frequency w and amplitude A
of an eccentric mass rotated inside the roller. The net effect is that an amount
of energy is delivered to the soil at each point in space x, denoted by E(x). The
energy is treated as a function of spatial location x, as the control variable for
the problem, though in practice the control variables are the velocity V(x,t),
and the values of w and A.

B

k(xp) Lﬁ

Fig. 19 A simplified model of the soil compaction problem used to obtain a model for
control-related studies.

x
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Typically the soil can be characterized by its mass, stiffness, and damp-
ing, and modeled by a mass-spring-damper system as shown in Fig. 19. By
constructing a more relevant model of the roller, and its associated eccen-
tric rotation mass, it is possible to extract the value of the soil stiffness, as
measured by the spring constant k(x), using accelerometer measurements as-
sociated with the motion of the roller [Mooney and Adam (2007)].

All the variables in the system except the mass of the roller are spatio-
temporal, but the scale of the problem makes it reasonable to assume initially
that the time-variation can be ignored, and hence it is necessary only to con-
sider the steady-state behavior of each variable or parameter. Therefore it is
necessary only to consider spatial variation in the variables.

As discussed above, the time variation of the roller’s velocity, and its ap-
plied force can be aggregated to an effective energy value as a function of x,
and, since the interest is in pass-to-pass behavior, it is reasonable to assume
that time-domain transients have died out between passes. Hence the need to
solve a partial differential equation, to determine the values of height, stiffness,
and damping in response to the application of force as a function of time from
the roller, can be replaced by the problem of solving an ordinary differential
equation in space.

Suppose that, before a given pass of the roller, the soil has a current state
of compaction given by k;(x), where the subscript j denotes the pass number.
Suppose also that during the pass the compactor adds energy E;(x) to the
soil, where the energy results from the combined effect of the velocity of the
roller along the pass, and the frequency and amplitude of the rotating eccentric
mass inside the roller. The assumption needed to proceed is that there is a
function that computes kj+1(z) from k;(z), and the applied energy E;(x),
that is, a mapping that describes the pass-to-pass updating structure. Hence,
as illustrated in Fig. 20, in the simplest case a relationship of the form

kit () = f(k;(2), Bj(2), (85)

can be expected.

Having started the process with the soil in a current state of compaction
given by k;(z), and introducing energy E;(z) to the soil during the pass using
the compactor, resulting in the next state of compaction kji1(x), the task
now is to design a suitable controller update algorithm that can compute the
energy to be applied on the next pass. In algorithm terms hence

Eji(x) = h(Ej(x), ka(x) — k;(2)), (86)

where kq(z) is the desired compaction or stiffness.

The term kq(x) — kj(z) is the difference between the soil stiffness that
resulted from the applied energy on pass j and the desired stiffness kq(x).
On pass j + 1, (86) applies energy that is a function of the energy applied
on the previous pass and the error between the desired stiffness and that at
the completion of pass j. Hence the unique feature of a repetitive process is
present, that is, pass-to-pass updating over a finite duration or pass length.
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(B
T » X
Pass j <
k()
» X
I
E;H (x) . .
Next-pass applied energy profile to be determined by the controller
i » X
Pass j+1 <
kJ“"‘ ) New compaction determined by the physics of the process
X
A

Fig. 20 A schematic representation of model building for the soil compaction.

Here it is assumed that during a pass it is possible to measure the compaction

behind the compactor, that is, before the pass starts the soil has an existing

compaction level. As the compactor travels over the soil there is a resulting

change in compaction and it is assumed that the compaction be measured

during the pass but no correcting action can be applied until the next pass.
Combining (85) and (86) gives the state-space model

kjvi(z) = f(k;j(), £;(x)),
Eji1(z) = h(Ej(2), ka(z) — k;(2)), (87)

for the controlled system, with Eg(z) and ko(z) given. Assuming that X is
quantized over the pass length, (87) describes a discrete nonlinear repetitive
process but there are cases where the model may need extending to provide
a more realistic description of the dynamics. The reason is the assumption
in (87) that kji1(z) is a nonlinear function of k£ and E at the same point
on the previous pass j, that is, the point contact only occurs between the
vibratory roller and the soil. In practice, the compactor has an impact on the
soil in front of it as it moves along the pass and therefore a wave discrete
nonlinear repetitive process is one way of representing the dynamics.
Examples such as this one motivate the need for further research to de-
velop a stability theory for nonlinear repetitive processes and nD nonlinear
systems. Early work in the nD systems case can be found in [Kurek (1995)],
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with more recent results in [Yeganefar et al. (2013), Emelianova et al. (2014),
Emelianova et al. (2015)]. Another emerging application area for repetitive
processes that will require a nonlinear stability theory on which to base con-
trol law design is laser metal deposition process modeling and control, see, for
example, [Sammons et al. (2013)].

5.2 Dry Land Farming

All of the repetitive process models previously considered executed multiple
passes that start from the same location. Dry-land farming results in a repet-
itive process model where the along the pass dynamics are defined spatially
rather than with respect to a time axis and the control degrees of freedom are
coupled multiplicatively.

In dry land farming, where irrigation is required to support crop growth, it
is common [Moore and Chen (2006)] to find center pivot irrigators as shown
in Fig. 21. The sprayer rotates about a central pumping station, with the
result that each part of the field is irrigated once per cycle. Flow rates and
fertilizer additions can be variably controlled along the length of the sprayer.
The sprayer may be programmed to provide less water over areas of the field
with clay-like soil, with a slower diffusion rate, and more over areas with
sandy soil and a higher diffusion rate, in an attempt to provide more uniform
moisture levels. Such usage is open-loop, but using low-power, commercial
off-the-shelf radio transmitters, with associated transducers and embedded
computers, such as Motes, or aerial-obtained hyperspectral images, moisture
measurements over the entire area of a field can be obtained in real-time and
then used to control flow rates and fertilizer addition.

Fig. 21 Dry-land farming.

A schematic representation of model building for the irrigator is shown in
Fig. 22. Starting with the specification of a variable of interest, which could
be the concentration of a nutrient or the moisture content of a unit volume of
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soil, which varies in three spatial dimensions and with time, and the units of
variables and constants are taken to be normalized with no loss of meaning.
The irrigator is the control input. Suppose there is some variable of interest,

z-axis

m y-axis
at
Cell(iyj,K)

/ _—

Fig. 22 A schematic representation of model building for the irrigator.

such as the concentration of a nutrient or the moisture content of a unit volume
of soil, which varies in three spatial dimensions and with time, and the units
of variables and constants are taken to be normalized with no loss of meaning
from this point onwards.

Let ¢(z,y, z,t) denote this variable and assume that the surface source of
c(z,y, z,t) is the center pivot irrigator, which travels around the field at a
constant rate with period Tj,. The irrigator is the control input in the process.
It is also assumed that the irrigator can supply the variable of interest using
a liquid spray that is applied with a flow rate F(z,y,t) = v(z,y,0,t), where
v(z,y, z,t) is the velocity through the soil of the variable, and the input is
applied on the surface only. Further, it is assumed that the variable of interest
is carried by the applied liquid in some proportion, given by c¢(z,y,0,t) =
kyv(z,y,0,t). One further assumption is that the flow process evolves spatially
only in the vertical direction.

The spatial decay rate of the velocity variable is denoted by v and D =
D(z,y) denotes the diffusion-rate as a function of space in two dimensions only.
Writing ¢ = ¢(z,y, 2z,t) and v = v(x,y, z,t) when the subscripts are obvious
from the context, the model of the system is given by the diffusion process
with coupled flow [Cantrell and Cosner (2003)] described by

ov ov

- —757 (88)
dc 0, _0Oc 0, _0c 0%c  9(ve)

_ 9 p% L L pEy i pll

o~ 92 Par) Ty Pay) T PoE T s (89)

with all initial and boundary conditions equal to zero except

C(l',.%ovt) = kvv(:r,y,(),t), v(x,y,(),t) = F(l‘,y,t). (90)
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The first three terms in (88) and (89) account for unforced diffusion, and the
last term represents the effect of the flow containing the variable of interest.

The equations (88), (89), and (90) define the dynamics of the system,
and it remains to model the input to the system, starting from treating the
action of center pivot as defining N sectors in a single cycle. Also when the
irrigator’s angle places it in a given sector, only that sector receives water.
Hence a masking function for each sector that only allows that sector to be on
is required.

Let R denote the radius of a circle in the x —y plane with center at (x., y.)-
Suppose also that N, and T}, are given and set 6(x,y) = arctan(y/z). Then
the masking function d;(x,y), i = 1,..., N, is defined by

1, (i—1)2F <O(z,y) <i3F and(z — z.)? + (y — yo)? < R,
0, otherwise,

sie.) = {

(91)
Also define the periodic function §;(t) = 6;(t — T},) as
1 <<l
%i(t) = {O, otherwise, (92)
and let
di(x,y,t) = 6i(w,y)d:(t). (93)

Figs. 23 and 24 illustrate §;(z, y), and 6;(t), respectively, when R = 12, N =
10,7, = 20,z. = 15, and y. = 15. Fig. 23 plots the function d2(z,y), and
illustrates that ¢;(x,y) can be considered as a masking function in the x — y
plane. Finally, Fig. 24 plots d1(t), d2(t), and d109(¢) and illustrates that §;(t)
can be considered as a masking function in time with pulse width T,,/N = 2.

3
0

Fig. 23 System input modeling for the dry land farming application with dynamics de-
scribed by (88), (89), and (90). For this purpose, it is necessary to use several specialized
forms of the Dirac delta function given by (91), (92), and (93). The function d2(z, y) obtained
by setting ¢ = 2 in (93) is plotted for R = 12, N = 10, z. = 15, and y. = 15.
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Fig. 24 System input modeling for the dry land farming application. The dynamics are
described by (88), (89), and (90) and it is necessary to use several specialized forms of the
Dirac delta function defined by (91), (92), and (93). In (a), (b) and (c), respectively, of this
plot are the functions 41 (¢t), d2(t), and d10(t) obtained by setting ¢ = 1,2, and 3, respectively,
in (93) plotted for N = 10, and T, = 20.

The center-pivot irrigator travels with a velocity that is defined by the
period T}, and the model assumes a type of discrete in-space and in-time motion
of the center pivot. In particular, it is assumed that it begins in sector 1, defined
by the masking function d6;(z,y), and stays there for T,/N time units. The
function 0;(¢) enables the sprayer when it is in sector 1, with zero input in all
remaining sectors. After the time has elapsed in sector 1, the center pivot then
moves to sector 2, stays there for 7,,/N time units when the sprayer is enabled
in this sector only, then moves on to sector 3 and so on. It is also assumed
that an instantaneous change between sectors is possible.

Suppose that a constant flow rate F' is the output of the irrigator. Then
the input to the system in (90) can be written as

Flz,y,t) = FZ iz, y,t). (94)

It is known that a multidimensional partial differential equation can be de-
scribed as a discrete-time nD system by making finite difference approxima-
tions in time, and space [Rabenstein and Trautmann (2000)]. Let the region
of interest be divided into a grid as shown in Fig. 22, with spacings Az, Ay,
and Az and let the values of x, y, and z at each node be given as x; = iAx,
y; = jAy, and 2, = kAz, respectively. Also let time be quantized as t,, = nAT,
where AT is the sampling time. For simplicity, variables are subscripted with
their indexes, where, for example, c(x;,y;, 2k, t,,) is denoted by ¢; j xn. Then
using the finite difference approximations [Crank (1975)], (88) and (89) can
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be rewritten as

Vijkn+l = Vijkon + ko(Vijk—1,n — Vijkn)s
Ci g+l = K1Cijkn + Kk2Ci—1 jkn + K3Ci—1,5kn
+ kaci j41,km + Es5Ci j—1,km
+ kﬁ(ci,j,k+1,n - Ci,j,k—l,n)
+ k7(Vi j knCi gk — Vijkin—1Cijkn—1) (95)

with suitably defined constants k1, which has an nD discrete systems structure.

The design objective now is to develop an ILC law for application to the
center pivot system by treating each cycle of the irrigator as a pass. After
the first cycle, whenever the irrigator is at a given point (z,y), the flow-rate
applied to that point is adjusted according to the flow rate the last time the
irrigator was at that point, combined with some measure of what has happened
since that time. The measure chosen is a function of the measurement of the
variable of interest at some fixed depth, corresponding to the idea of burying
one sensor in each sector at that depth for every sample interval along the
length of the center-pivot irrigator. It is also assumed that control of the flow
rate for each sample interval along the irrigator’s length is possible.

Assume that the input is given by (94) for the first cycle. Thereafter,
however, the update equation employed is

N

F((t, yvt) = Z [F(x,y,t - Tp) + Tf(yd - C(xaya Zsatl))} 5i($7y7t)’ (96)
i=1

where z; is the sensor depth, 7 is the learning gain, y, is the desired setpoint,
and t’ € [t — T}, t]. The function f(-) is to be defined, and could be related to
t'. For example, if the time lag to reach the depth z, is known to be A, one
possible choice is

f(yd - C(xvyaZS7t/)) = Yd — c(x7y7zsat_ Tp + A)

and alternatives include

_ s, 1)) = —c(z,y, 25, t)). 97
f(ya = e(@,y, 25, 1)) t,er[glg;(mt](yd o(@,y, 25, 1)) (97)

The finite difference representation of the dynamics obtained by combin-
ing (95) and (97) gives the ILC law

N
F 6(x,y,n) for t < T,
F . = =1
i.4n N
> Fizn-r, +7 max  (Ya— Cijk.n)| (i, 4,n) for t > T,
I=1 n'€ln—Tp,n]
(98)
Some illustrative simulation results for the case when Ax = 1,Ay =

1, Az = 0.5, and At = .05 are now given, for a grid size of 30 x 30 x 7, and the
sensor at a depth of z;, = 4 units in the z-direction and N = 36 sectors with
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period T, = N = 36. Hence the irrigator is assumed to stay in each sector
for one time unit. The initial flow rate is F' = 10, with &k, = Miizm = 0.1,
and the velocity-decay constant with respect to space taken as v = 2. The
learning gain is also chosen as 7 = 2 and the center pivot is placed on the grid
at (z¢,y.) = (15,15), with radius R = 12, and a diffusion rate of either 0.5 or
0.1. Finally, the control objective is defined using yq = 1 in (97).

The simulation was run for 24 passes, or irrigation cycles, with the ILC
turned off during the first 4 passes in order to allow the system to come to
its natural open-loop steady-state, given a constant flow rate. Fig. 25 shows
a snapshot of the process at the surface, z = 7 in the plot, and two different
depths 3 and 6 corresponding to z = 4 and z = 1 respectively. These plots
show the variable ¢; ; 1 », Where the left-hand plot is for time n = 24, which
is two-thirds the way through the first cycle, and the right-hand plot is for
time n = 48, or one-third the way through the second pass. From these plots
it follows that variable ¢ slowly sinks down and also diffuses radially at each
level.

y-axis o

[ x-axis

Fig. 25 ILC simulation results for the dry land farming example.

To further illustrate the process characteristics, the top plot in Fig. 26
shows the variables cig18,%,n for all seven depths £, through the first four
passes, and the bottom shows ci218kn, again for all seven depths & and
through the first four passes. The distinction is that the top plot in Fig. 26
shows the evolution of the concentration at a point in a region of the field
where the diffusion rate is higher with value 0.5, and the bottom shows the
evolution of the concentration at a point in a region of the field where the
diffusion rate is lower with value 0.1. It is seen that at the same flow rate the
region with the lower diffusion rate has a higher level of ¢ at a given depth
than the one at the higher rate.

Given the results in Fig. 26, it follows that the ILC control law needs to
enable a higher flow rate for the higher diffusion rate region in order to achieve
uniform levels of ¢ over all the regions. Fig. 27 confirms that the control law
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Region with diffusion rate 0.5

2z-axis

time

z-axis

time

Fig. 26 The concentration at two different rates in the dry land farming example.

meets the objective. The upper two plots in the figure show the evolution of
the flow rate over the course of 24 passes, four without ILC, and 20 with, for
the variables v1g18,0,, on the left-hand side, and v12 18,0,, on the right-hand
side. The input in the higher diffusion-rate region is larger, reflecting the fact
that a higher input is required in this region because of the faster decay. One
case where this situation can occur is for sandy soil as opposed to clay, where
the lower plots in this same figure show the variables c¢;g 15,4, on the left-hand
side, and ¢12,18,4,, on the right-hand side. Although the integral of the variable
over a cycle is still larger for the lower diffusion rate region, the maximum is
kept at one, as desired.

Region with diffusion rate 0.5 Region with diffusion rate 0.1

0 ‘ ‘ M o “(l
0 200 400 600 800 1000 0 200 400 600 800 1000
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0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

Fig. 27 Various flow rates computed by the ILC controller for the dry land farming example.

For comparison to the results in Fig. 25, Fig. 28 again shows a snapshot
of the variable ¢; j 1. at the surface, z = 7 for the same depths considered in
Fig. 25, for n = 828 on the left-hand side and n = 864 at the right after the
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ILC law has converged. The plots are at the beginning of passes 23 and 24,
and on comparing Figs. 25 and 28, the ILC law has affected the dynamics.

Concentration, ¢

Fig. 28 Comparison of the dry land farming simulation results.

Finally, it is useful to consider a global cost function, where Fig.
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for passes after cycle number 7, and demonstrates that the ILC law reduces

the error.
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Fig. 29 Convergence of global cost function (99).
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6 Conclusions and Further Research

The case studies considered in this paper demonstrate that nD control sys-
tems theory is making considerable impact in terms of translating the designs
from analysis to in some cases experimental verification. In ILC, there has also
been a transfer of laws from the industrial domain to next generation health-
care and, in particular, robotic-assisted upper-limb stroke rehabilitation with
supporting clinical trials [Freeman et al. (2012), Meadmore et al. (2012)]. For
this application it is the repeated performance of a finite duration task (with
the input on the current pass computed by adding a corrective term that is
directly influenced by the previous pass error to the previous pass input) that
makes ILC particulary suitable, as the patients attempt to relearn lost func-
tionality due the stroke, such as reaching out to a cup, by repeated attempts
with assistive stimulation applied to the relevant muscles that are electrically
stimulated. If the patient is improving with repeated attempts then his/her
voluntary effort should be increasing and the level of assistive stimulation de-
creasing, and this feature was found in the clinical trials with an ILC law
adjusting the stimulation before the start of each new attempt.

This healthcare application has not used the repetitive process setting for
design but as the area develops and there is a continual move away from sup-
plying the patient with a fixed trajectory and strapping the affected arm to
the robot there will be a need to do control law design for pass-to-pass error
convergence and along the pass performance and hence the repetitive process
setting is directly applicable. These case studies have also highlighted the need
for further research in control theory, especially for nonlinear dynamics. More-
over, onward development of the control law design algorithms, especially to
reduce the possible conservativeness from the use of sufficient but not necessary
conditions for stability along the pass have immediate applications. Another
application area for, in particular, strong practical stability of linear repetitive
processes is large-scale irrigation channels, see [Soltanian (2014)].
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