Abstract
To perform the integration of radar and communication in waveform, we design an integrated system combining multiple-input multiple-output radar with orthogonal frequency division multiplexing (OFDM) communication. In this system, each antenna transmits the integrated waveform with a nonoverlapping block sub-frequency band. The utilized waveform is a variation of the classical OFDM communication waveform. In order to sufficiently exploit the entire system bandwidth and array aperture, a joint time and space processing approach is proposed, and hence the range and angle estimations with high resolution are obtained, whereas the range and angle are coupled. Moreover, the loss in processing gain and the Cramér–Rao bounds of range and angle estimates based on integrated waveform are derived, respectively. Theoretical analysis validates that the designed system is capable of implementing the radar and communication functions simultaneously. Finally, numerical results are presented to verify the effectiveness of the proposed approach.











Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Blunt, S. D., Cook, M. R. & Stiles J (2010). Embedding information into radar emissions via waveform implementation. In 2010 International waveform diversity and design conference, niagara falls, on, August 8–13, 2010 (pp. 195–199).
Bölcskei, H., Borgmann, M., & Paulraj, A. J. (2003). Impact of propagation environment on the performance of space-frequency coded MIMO–OFDM. IEEE Journal on Selected Areas in Communications, 21(3), 427–439.
Bölcskei, H., Gesbert, D., & Paulraj, A. J. (2002). On the capacity of OFDM-based spatial multiplexing systems. IEEE Transactions on Communications, 50(2), 225–234.
Cao, Y., & Xia, X. (2015). IRCI free MIMO–OFDM SAR using circularly shifted Zadoff-Chu sequences. IEEE Geoscience and Remote Sensing Letters, 12(5), 1126–1130.
Cao, Y., Xia, G., & Wang, S. (2015). IRCI free colocated MIMO radar based on sufficient cyclic prefix ofdm waveforms. IEEE Transactions on Aerospace and Electronic Systems, 51(3), 2107–2120.
Dogandžić, A., & Nehorai, A. (2001). Cramér–Rao bounds for estimating range, velocity, and direction with an active array. IEEE Transactions on Signal Processing, 49(6), 1122–1137.
Fishler, E., Haimovich, A., Blum, R., Cimini L., Chizhik, D., & Valenzuela R (2004). MIMO radar: An idea whose time has come. In Proceedings of the IEEE radar conference, April 26–29, 2004 (pp. 71–78).
Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.
Foschini, G. J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell labs technical journal, 1(1), 41–59.
Garmatyuk, D., Kauffman, K., Schuerger, J., & Spalding, S. (2009). Wideband OFDM system for radar and communications. In 2009 IEEE radar conference, Pasadena, CA, May 4–8, 2009 (pp. 1–6).
Han, L., & Wu, K. (2011). Multifunctional transceiver for future intelligent transportation systems. IEEE Transactions on Microwave Theory and Techniques, 59(7), 1879–1892.
Han, L., & Wu, K. (2012). 24-GHz integrated radio and radar system capable of time-agile wireless communication and sensing. IEEE Transactions on Microwave Theory and Techniques, 60(3), 619–631.
Hassanien, A., Amin, M. G., Zhang, Y. D., & Ahmad, F. (2016a). Dual-function radar-communications: information embedding using sidelobe control and waveform diversity. IEEE Transactions on Signal Processing, 64(8), 2168–2181.
Hassanien, A., Amin, M. G., Zhang, Y. D., & Ahmad, F. (2016b). Signaling strategies for dual-function radar communications: an overview. IEEE Aerospace and Electronic Systems Magazine, 31(10), 36–45.
Hu, L., Du, Z. C., & Xue, G. R. (2014). Radar-communication integration based on OFDM signal. In 2014 IEEE international conference on signal processing, communications and computing (ICSPCC), Guilin, August 5–8, 2014 (pp 442–445).
Jankiraman, M., Wessels, B. J., & Van Genderen, P. (1998). Design of a multifrequency FMCW radar. In 28th European microwave conference, Amsterdam, Netherlands, October 1998 (pp. 584–589).
Jankiraman, M., Wessels, B. J., van Genderen, P. “Pandora multifrequency FMCW/SFCW radar”, in 2000 IEEE International Radar Conference, Alexandria, VA, May 7–12, 2000 (pp. 750–757).
Johnson, D. H., & Dudgeon, D. E. (1993). Array signal processing-concepts and techniques. Englewood Cliffs, NJ: Prentice Hall.
Kelly, E. J. (1961). The radar measurement of range, velocity and acceleration. IRE Transactions on Military Electronics, 1051, 51–57.
Levanon, N. (2000a). Multifrequency complementary phase-coded radar signal. IEE Proceedings Radar, Sonar and Navigation, 147(6), 276–284.
Levanon, N. (2000) Multifrequency radar signals. In 2000 IEEE international radar conference, Alexandria, VA, May 7–12, 2000 (pp. 683–688).
Levanon, N., & Mozeson, E. (2004). Radar signals. Hoboken, New Jersey: Wiley.
Liu, Y., Liao, G., Xu, J., Yang, Z., Huang, L., & Zhang, Y. (2017a). Transmit power adaptation for orthogonal frequency division multiplexing integrated radar and communication systems. Journal of Applied Remote Sensing, 11(3), 1–17.
Liu, Y., Liao, G., Xu, J., Yang, Z., & Zhang, Y. (2017b). Adaptive OFDM integrated radar and communications waveform design based on information theory. IEEE Communications Letters, 21(10), 2174–2177.
Liu, Y., Liao, G., Yang, Z., & Xu, J. (2017c). Multiobjective optimal waveform design for OFDM integrated radar and communication systems. Signal Processing, 141, 331–342.
Liu, Y., Liao, G., Yang, Z., & Xu, J. (2017d). Design of integrated radar and communication system based on MIMO–OFDM waveform. Journal of Systems Engineering and Electronics, 28(4), 669–680.
Liu, W., Wang, Y., Liu, J., Xie, W., Chen, H., & Gu, W. (2015). Adaptive detection without training data in colocated MIMO radar. IEEE Transactions on Aerospace and Electronic Systems, 51(3), 2469–2479.
Liu, Y., Liao, G., & Yang, Z. (2016). Range and angle estimation for MIMO–OFDM integrated radar and communication systems. In 2016 CIE international conference on radar, Guangzhou, China, October 10–13, 2016.
Liu, J., Zhou, S., Liu, W., Zheng, J., Liu, H., & Li, H. (2018). Tunable adaptive detection in colocated MIMO radar. IEEE Transactions on Signal Processing, 66(4), 1080–1092.
Mealey, R. M. (1963). A method for calculating error probabilities in a radar communication system. IEEE Transaction on Space Electronics and Telemetry, 9(2), 37–42.
Mishra, A. K., & Inggs, M. (2014). “FOPEN capabilities of commensal radars based on whitespace communication systems”, in IEEE CONECCT. Bangalore, Jan., 6–7, 1–5.
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHZ Band, IEEE Standard 802.11a, 1999.
Rabaste, O., & Savy, L. (2015). Mismatched filter optimization for radar applications using quadratically constrained quadratic programs. IEEE Transactions on Aerospace and Electronic Systems, 51(4), 3107–3122.
Raleigh, G. G., & Cioffi, J. M. (1998). Spatio-temporal coding for wireless communication. IEEE Transactions on Communications, 46(3), 357–366.
Roger, S. C., & Sergio, V. (1993). Gaussian multiaccess channels with ISI: capacity region and multiuser water-filling. IEEE Transactions on Information Theory, 39(3), 773–785.
Sen, S., & Nehorai, A. (2009a). OFDM MIMO radar design for low-angle tracking using mutual information. In 2009 3rd IEEE international workshop on computational advances in multi-sensor adaptive processing (CAMSAP), Aruba, Dutch Antilles, December 13–16, 2009 (pp. 173–176).
Sen, S., & Nehorai, A. (2009b). OFDM MIMO radar for low-grazing angle tracking. In 2009 conference record of the forty-third asilomar conference on signals, systems and computers, Pacific Grove, CA, November 1–4, 2009 (pp. 125–129).
Scharf, L. L. (1991). Statistical signal processing-detection, estimation, and time series analysis. Reading, MA: Addison-Wesley.
Sen, S. (2013). OFDM radar space-time adaptive processing by exploiting spatio-temporal sparsity. IEEE Transactions on Signal Processing, 61(1), 118–130.
Sen, S., & Nehorai, A. (2011a). Sparsity-based multi-target tracking using OFDM radar. IEEE Transactions on Signal Processing, 59(4), 1902–1906.
Sen, S., & Nehorai, A. (2010a). Adaptive design of OFDM radar signal with improved wideband ambiguity function. IEEE Transactions on Signal Processing, 58(2), 928–933.
Sen, S., & Nehorai, A. (2011b). Adaptive OFDM radar for target detection in multipath scenarios. IEEE Transactions on Signal Processing, 59(1), 78–90.
Sen, S., & Nehorai, A. (2009b). Target detection in clutter using adaptive OFDM radar. IEEE Signal Processing Letter, 16(7), 592–595.
Sen, S., & Nehorai, A. (2010b). OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking. IEEE Transactions on Signal Processing, 58(6), 3152–3162.
Sit, Y. L., Nguyen, T. T., & Zwick, T. (2013). 3D radar imaging with a MIMO OFDM-based radar. In 2013 Asia-Pacific microwave conference proceedings (APMC), Seoul, November 5–8, 2013 (pp. 68–70).
Sit, Y. L., Sobhani, B., Wiesbeck, W., & Zwick, T. (2015). Simple OFDM-based MIMO radar for real-time short-range area surveillance. In 2015 European radar conference (EuRAD), Paris, France, September 9–11, 2015 (pp. 121–124).
Sit, Y. L., Sturm, C., Baier, J., & Zwick, T. (2012). Direction of arrival estimation using the MUSIC algorithm for a MIMO OFDM radar. In 2012 IEEE radar conference, Atlanta, GA, May 7–11, 2012 (pp. 226–229).
Sit, Y. L., Reichardt, L., Sturm, C., & Zwick, T. (2011). Extension of the OFDM joint radar-communication system for a multipath, multiuser scenario. In Radar conference, Kansas City, May 23–27, 2011 (pp. 718–723).
Sit, Y. L., & Zwick, T. (2014). MIMO OFDM radar with communication and interference cancellation features. In 2014 IEEE radar conference, Cincinnati, OH, May 19–23, 2014 (pp. 265–268).
Stoica, P., & Nehorai, A. (1989). MUSIC, maximum likelihood, and Cramer–Rao bound. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(5), 720–741.
Sturm, C., Sit, Y. L., Braun, M., & Zwick, T. (2013). Spectrally interleaved multi-carrier signals for radar network applications and multi-input multi-output radar. IET Radar Sonar Navigation, 7(3), 261–269.
Sturm, C., & Wiesbeck, W. (2011). Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proceedings of the IEEE, 99(7), 1236–1259.
Swindlehurst, A. L., & Stoica, P. (1998). Maximum likelihood methods in radar array signal processing. Proceedings of the IEEE, 86(2), 421–441.
Takase, H., & Shinriki, M. (2014). A dual-use radar and communication system with complete complementary codes. In 2014 15th international radar symposium (IRS), Gdansk, June 16–18, 2014 (pp. 16–18).
Takahara, H., Ohno, K., & Itami, M. (2012). A study on UWB radar assisted by inter-vehicle communication for safety applications. In 2012 IEEE international conference on vehicular electronics and safety, Istanbul, Turkey, July 24–27, 2012 (pp. 99–104).
Tigrek, R. F., De Heij, W. J. A., & Van Genderen, P. (2009). Multi-carrier radar waveform schemes for range and Doppler processing. In 2009 radar conference, Pasadena, CA, May 4–8, 2009 (pp. 1–5).
Theagenis, J. A., & Gregory, O. G. (1988). Range, radial velocity, and acceleration MLE using radar LFM pulse train. IEEE Transactions on Aerospace and Electronic Systems, 34(4), 1070–1084.
Van Trees, H. L. (1971a). Detection, Estimation and Modulation Theory, Part III. New York: Wiley.
Van Trees, H. L. (1971b). Detection, estimation and modulation theory Part IV. New York: Wiley.
Van Zelst, A., & Schenk, T. C. W. (2004). Implementation of a MIMO OFDM-based wireless LAN system. IEEE Transactions on Signal Processing, 52(2), 483–494.
Ward, J. (1995). Cramér–Rao bounds for target angle and Doppler estimation with space-time adaptive processing radar. In The Twenty-Ninth Asilomar conference on signals, systems and computers, Pacific Grove, CA, Octber 30–November 1, 1995 (vol. 2, pp. 1198–1202).
Wu, X. H., Kishk, A. A., & Glisson, A. W. (2010). MIMO–OFDM radar for direction estimation. IET Radar, Sonar and Navigation, 4(1), 28–36.
Xia, X., Zhang, T., & Kong, L. (2015). MIMO OFDM radar IRCI free range reconstruction with sufficient cyclic prefix. IEEE Transactions on Aerospace and Electronic Systems, 51(3), 2276–2293.
Young, G. O., Tavik, G., Hilterbrick, C., Evins, J., Alter, J., Crnkovich, J., Jr., et al. (2005). The advanced multifunction RF concept. IEEE Transactions on Microwave Theory and Techniques, 53(3), 1009–1020.
Zhang, T. X., & Xia, X. G. (2015). OFDM synthetic aperture radar imaging with sufficient cyclic prefix. IEEE Transactions on Geoscience and Remote Sensing, 53(1), 394–404.
Zhao, J. J., Huo, K., & Li, X. (2014). A chaos-based phase-coded OFDM signal for joint radar-communication systems. In 2014 12th international conference on signal processing (ICSP), Hangzhou, October 19–23, 2014 (pp. 1997–2002).
Acknowledgements
This work was supported by the National Nature Science Foundation of China (NSFC) (Grants Nos. 61231017 and 61671352), and by China Scholarship Council (CSC).
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix A
1.1 Calculation of \( \tilde{r}_{i,p} ( \tau) \)
The \( \tilde{r}_{i,p} ( \tau)\) can be equivalently defined as \( \tilde{r}_{i,p} ( \tau ) = \int_{{\left( {p - 1} \right)T_{\text{r}} + T_{\text{p}} }}^{{\left({p + 1} \right)T_{\text{r}} - T_{\text{p}} }} {\tilde{s}_{i,p} (t)\tilde{s}_{i,p}^{*} \left( {t - \tau }\right){\text{d}}t} \). Consider \( p = 0\), hence
Case 1
For \( T_{\text{p}} \le \left| \tau \right| \le T_{\text{r}} - T_{\text{p}} \), it is obvious that
Case 2
For \( - T_{\text{p}} < \tau \le 0 \) and \( \left\lfloor {{\tau \mathord{\left/ {\vphantom {\tau {T_{\text{s}} }}} \right. \kern-0pt} {T_{\text{s}} }}} \right\rfloor = n_{0} \) with \( \left\lfloor x \right\rfloor \) denoting the integer part of \( x \), simplifying (A.1) yields
where \( {\text{sinc}}\left( x \right) = \sin x/x \cdot\)
Case 3
For \( 0 < \tau < T_{\text{p}} \) and \( \left\lfloor {{\tau \mathord{\left/ {\vphantom {\tau {T_{\text{s}} }}} \right. \kern-0pt} {T_{\text{s}} }}} \right\rfloor = n_{0} \), we can obtain
Since \( a_{i} \left( {m,n,p} \right) \) varies with the communication information, the expected value of \( \tilde{r}_{i,p} ( \tau) \) is interested. Assume that \( a_{i} \left( {m,n,p} \right) \) is random phase code with uniform distribution. The following can be achieved
For \( - T_{\text{p}} < \tau \le 0 \), according to (A.3), \( {\text{E}}\left[ {\tilde{r}_{i,p} ( \tau)} \right] \) can be expressed as
For \( 0 < \tau < T_{\text{p}} \), \( {\text{E}}\left[ {\tilde{r}_{i,p} ( \tau)} \right] \) can be described as
The (A.2a), (A.4a) and (A.4b) are summarized as
For \( \tilde{r^{\prime}}_{i,p} ( \tau) = {{\tilde{r}_{i,p} ( \tau)} \mathord{\left/ {\vphantom {{\tilde{r}_{i,p} ( \tau)} {r_{i,p} \left( 0 \right)}}} \right. \kern-0pt} {r_{i,p} \left( 0 \right)}} \), we can obtain that
Appendix B
2.1 CRB derivation for range and angle
Assume that the sample rate is \( f_{\text{s}} \), each pule is sampled by \( N \) times, the received signal at each antenna is divided into \( M \) channels and the band-pass of the \( q \)th channel is \( \left[ {\left( {q - 1} \right)N_{\text{c}} \Delta f\;,\;qN_{\text{c}} \Delta f} \right] \), for \( q = 1,2, \ldots ,M \). The received signals of the \( p \)th pulse, \( q \)th channel, and \( i \)th antenna can be expressed as
where \( {\mathbf{y}}_{i,q,p} = \left[ {y_{i,q,p} \left( 1 \right)y_{i,q,p} \left( 2 \right) \ldots y_{i,q,p} \left( N \right)} \right]^{\text{T}} \) is an \( N \times 1 \) vector containing the samples of echoes; \( \theta_{\text{r}} = \theta_{\text{t}} = \theta \); \( {\mathbf{n}}_{i,q,p} = \left[ {n_{i,q,p} \left( 1 \right) \ldots n_{i,q,p} \left( 2 \right) \ldots n_{i,q,p} \left( N \right)} \right]^{\text{T}} \) is an \( N \times 1 \) Gaussian noise vector; and \( {\mathbf{s}}_{q,p} = \left[ {\begin{array}{*{20}c} {s_{q,p} \left( 1 \right)} & {s_{q,p} \left( 2 \right)} & \cdots & {s_{q,p} \left( N \right)} \\ \end{array} } \right]^{\text{T}} \) is an \( N \times 1 \) signal vector with
where \( l_{\tau } = \left\lfloor {{{2Rf_{\text{s}} } \mathord{\left/ {\vphantom {{2Rf_{\text{s}} } c}} \right. \kern-0pt} c}} \right\rfloor \).Stacking received data of \( M^{2} \) channels into a vector yields
where \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{s} }}_{p} \left( l \right) = \left[ {s_{1,p} \left( l \right)s_{2,p} \left( l \right)\; \ldots \;s_{M,p} \left( l \right)} \right]^{\text{T}} \otimes {\mathbf{1}}_{M} \) is an \( M^{2} \times 1 \) vector containing the transmitted signals; \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{p} \left( l \right) = \left[ {y_{1,1,p} \left( l \right)\; \ldots y_{M,1,p} \left( l \right) \ldots y_{M,M,p} \left( l \right)} \right]^{\text{T}} \) is an \( M^{2} \times 1 \) vector containing the received signal; and \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{n} }}_{p} \left( l \right) = \left[ {n_{1,1,p} \left( l \right) \ldots n_{2,1,p} \left( l \right) \ldots n_{M,1,p} \left( l \right) \ldots \ldots } \right]^{\text{T}} \) is an \( M^{2} \times 1 \) zero-mean complex random vector with the covariance matrix \( \sigma^{2} {\mathbf{I}}_{{M^{2} }} \). \( \sigma^{2} = N_{0} f_{\text{s}} \) is noise power and \( N_{0} \) is flat power spectral density of white noise. Assume that the \( N_{\text{p}} \) random vectors \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{n} }}_{0} \left( l \right),{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{n} }}_{1} \left( l \right), \ldots ,{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{n} }}_{{N_{\text{p}} - 1}} \left( l \right) \) are statistical independent.
The probability density function of the received signals \( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{0} \left( {\tau ,\theta } \right),{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{1} \left( {\tau ,\theta } \right), \ldots ,{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{{N_{\text{p}} - 1}} \left( {\tau ,\theta } \right) \) is
The log-likelihood function of \( p\left( {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{0} ,{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{1} , \ldots ,{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{y} }}_{{N_{\text{p}} - 1}} \left| {\tau ,\theta } \right.} \right) \) is
To obtain the CRB, the Fisher information matrix \( {\mathbf{J}}\left( {\tau ,\theta } \right) \) is required to be calculated, which is defined as (Scharf 1991)
As the sample interval \( \Delta t = 1 /f_{\text{s}} \to 0 \), the terms in Fisher information matrix are
The elements in the diagonal of \( {\mathbf{J}}^{ - 1} \left( {\tau ,\theta } \right) \) are the CRBs of the corresponding \( \tau \) and \( \theta \), i.e.,
Rights and permissions
About this article
Cite this article
Liu, Y., Liao, G., Yang, Z. et al. Joint range and angle estimation for an integrated system combining MIMO radar with OFDM communication. Multidim Syst Sign Process 30, 661–687 (2019). https://doi.org/10.1007/s11045-018-0576-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-018-0576-2