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Abstract

The principal component analysis (PCA) is widely used for data decorrelation and dimensionality reduction. However, the use of PCA may be
impractical in real-time applications, or in situations were energy and computing constraints are severe. In this context, the discrete cosine transform
(DCT) becomes a low-cost alternative to data decorrelation. This paper presents a method to derive computationally efficient approximations to the DCT.
The proposed method aims at the minimization of the angle between the rows of the exact DCT matrix and the rows of the approximated transformation
matrix. The resulting transformations matrices are orthogonal and have extremely low arithmetic complexity. Considering popular performance measures,
one of the proposed transformation matrices outperforms the best competitors in both matrix error and coding capabilities. Practical applications in image
and video coding demonstrate the relevance of the proposed transformation. In fact, we show that the proposed approximate DCT can outperform the
exact DCT for image encoding under certain compression ratios. The proposed transform and its direct competitors are also physically realized as digital
prototype circuits using FPGA technology.

Keywords

DCT Approximation, Fast algorithms, Image/video encoding

1 Introduction

Data decorrelation is a central task in many statistical and signal pro-
cessing problems [1–3]. Decorrelation can be accomplished by means
of a linear transformation that converts correlated observations into lin-
early uncorrelated values. This operation is commonly performed by
principal component analysis (PCA) [2]. PCA is widely used to reduce
the dimensionality of data [2, 4], where the information contained in all
the original variables is replaced by the data variability information of
the initial few uncorrelated principal components. The quality of such
approximation depends on the number of components used and the pro-
portion of variance explained, or energy retained, by each of them.

In the field of analysis and processing of images and signals, PCA,
also known as the discrete Karhunen–Loève transform (KLT) [3], is
considered the optimal linear transformation for data decorrelation
when the signal is a first order Markov process [3, 5]. The KLT has
the following features [3]: (i) decorrelates the input data completely
in the transform domain; (ii) minimizes the mean square error in data
compression; and (iii) concentrates the energy (variance) in a few coef-
ficients of the output vector. Because the KLT matrix depends on the
variance and covariance matrix of the input data, deriving computation-
ally efficient algorithms for real-time processing becomes a very hard
task [3, 6–13].

If the input data follows a stationary highly correlated first-order
Markov process [3, 12, 14], then the KLT is very closely approximated
by the discrete cosine transform (DCT) [3, 12]. Natural images fall into
this particular statistical model category [15]. Thus DCT inherits the
decorrelation and compaction properties of the KLT, with the advantage
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of having a closed-form expression independent of the input signal. Im-
age and video communities widely adopt the DCT in their most success-
ful compression standards, such as JPEG [16] and MPEG [17]. Often
such standards include two-dimensional (2-D) versions of the DCT ap-
plied to small image blocks ranging from 4×4 to 32×32 pixels.

The 8×8 block is employed in a large number of standards, for exam-
ple: JPEG [16], MPEG [18], H.261 [19], H.263 [20], H.264/AVC [21],
and HEVC [22]. The arithmetic cost of the 8-point DCT is 64 multipli-
cations and 56 additions, when computed by definition. Fast algorithms
can dramatically reduce the arithmetic cost to 11 multiplications and
29 additions, as in the Loeffler DCT algorithm [23].

However, the number of DCT calls in common image and video
encoders is extraordinarily high. For instance, a single image frame
of high-definition TV (HDTV) contains 32.400 8×8 image subblocks.
Therefore, computational savings in the DCT step may effect signifi-
cant performance gains, both in terms of speed and power consump-
tion [24, 25]. Being quite a mature area of research [26], there is lit-
tle room for improvement on the exact DCT computation. Thus, one
approach to further minimize the computational cost of computing the
DCT is the use of matrix approximations [14,27]. Such approximations
provide matrices with similar mathematical behavior to the exact DCT
while presenting a dramatically low arithmetic cost.

The goals of this paper are as follows. First, we aim at establishing
an optimization problem to facilitate the derivation of 8-point DCT ap-
proximations. To this end, we adopt a vector angle based objective func-
tion to minimize the angle between the rows of the approximate and the
exact DCT matrices subject to orthogonality constraints. Second, the
sought approximations are (i) submitted to a comprehensive assessment
based on well-known figures of merit and (ii) compared to state-of-the-
art DCT approximations. Third, fast algorithms are derived and realized
in FPGA hardware with comparisons with competing methods. We also
examine the performance of the obtained transformations in the con-
text of image compression and video coding. We demonstrate that one
of our DCT approximations can outperform the exact DCT in terms of
effected quality after image compression.

This paper is organized as follows. In Section 2, the 8-point DCT
and popular DCT approximations are discussed. Section 3 introduces
an optimization problem to pave the way for the derivation of new DCT
approximations. In Section 4 the proposed approximations are detailed
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Table 1: Computational cost of the fast algorithms for the DCT

Algorithm Multiplications Additions

Loeffler et al. [23, 35, 36] 11 29
Yuan et al. [28, 37] 12 29
Lee [32, 38, 39] 12 29
Hou [33, 40, 41] 12 29
Arai et al. [29, 35, 42] 13 29
Chen et al. [30, 35, 43] 16 26
Feig–Winograd [31, 44] 22 28

and assessed according to well-known performance measures. In Sec-
tion 5 a fast algorithm for the proposed approximation is presented.
Moreover, a field-programmable gate array (FPGA) design is proposed
and compared with competing methods. Section 6 furnishes compu-
tational evidence of the appropriateness of the introduced approximate
DCT for image and video encoding. Section 7 concludes the paper.

2 DCT Approximations

Let x and X be 8-point column vectors related by the DCT. Therefore,
they satisfy the following expression: X = C ·x, where

C =


γ3 γ3 γ3 γ3 γ3 γ3 γ3 γ3
γ0 γ2 γ4 γ6 −γ6 −γ4 −γ2 −γ0
γ1 γ5 −γ5 −γ1 −γ1 −γ5 γ5 γ1
γ2 −γ6 −γ0 −γ4 γ4 γ0 γ6 −γ2
γ3 −γ3 −γ3 γ3 γ3 −γ3 −γ3 γ3
γ4 −γ0 γ6 γ2 −γ2 −γ6 γ0 −γ4
γ5 −γ1 γ1 −γ5 −γ5 γ1 −γ1 γ5
γ6 −γ4 γ2 −γ0 γ0 −γ2 γ4 −γ6

 ,

and γk = cos(2π(k+1)/32), for k = 0,1, . . . ,6.
Common algorithms for efficient DCT computation include: (i) Yuan

et al. [28], (ii) Arai et al. [29], (iii) Chen et al. [30], (iv) Feig–
Winograd [31], (v) Lee [32], and (vi) Hou [33]. Table 1 lists the compu-
tational costs associated to such methods. The theoretical minimal mul-
tiplicative complexity is 11 multiplications [23,34], which is attained by
the Loeffler algorithm [23].

A DCT approximation is a matrix Ĉ capable of furnishing X̂ = Ĉ ·x
where X̂ ≈ X according to some prescribed criterion, such as ma-
trix proximity or coding performance [3]. In general terms, as shown
in [3, 45–48], Ĉ is a real valued matrix which consists of two compo-
nents: (i) a low-complexity matrix T and (ii) a diagonal matrix S. Such
matrices are given by:

Ĉ = S ·T, (1)

where

S =
√

(T ·T⊤)−1. (2)

The operation
√
· is the matrix square root operation [49, 50].

Hereafter low-complexity matrices are referred to as T∗, where the
subscript ∗ indicates the considered method. Also DCT approximations
are referred to as Ĉ∗. If the subscript is absent, then we refer to a generic
low-complexity matrix or DCT approximation.

A traditional DCT approximation is the signed DCT (SDCT) [51]
which matrix is obtained according to: 1√

8
· sgn(C), where sgn(·) is

the entry-wise signum function. Therefore, in this case, the entries of
the associated low-complexity matrix TSDCT = sgn(C) are in {0,±1}.
Thus matrix TSDCT is multiplierless.

Notably, in the past few years, several approximations for the
DCT have been proposed as, for example, the rounded DCT (RDCT,
TRDCT) [27], the modified RDCT (MRDCT, TMRDCT) [48], the series

Table 2: Common 8-point low-complexity matrices associated to DCT approxi-
mations

Method Transformation Matrix

TRDCT [27]


1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 0 0 −1 −1 0 0 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
0 −1 1 0 0 1 −1 0
0 −1 1 −1 1 −1 1 0



TBAS-2008b [52]


1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 0 −1 0 0 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 0 0 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1



TLO [57]


1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1

2 −
1
2 −1 −1 − 1

2
1
2 1

1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
1
2 −1 1 − 1

2 −
1
2 1 −1 1

2
0 −1 1 −1 1 −1 1 0



T6 [14]


1 1 1 1 1 1 1 1
2 1 1 0 0 −1 −1 −2
2 1 −1 −2 −2 −1 1 2
1 0 −2 −1 1 2 0 −1
1 −1 −1 1 1 −1 −1 1
1 −2 0 1 −1 0 2 −1
1 −2 2 −1 −1 2 −2 1
0 −1 1 −2 2 −1 1 0



T4 [14]


1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
1 −1 1 −1 −1 1 −1 1
0 −1 1 −1 1 −1 1 0



of approximations proposed by Bouguezel–Ahmad–Swamy (BAS) [52–
56], the Lengwehasatit–Ortega approximation (LO, TLO) [57], the ap-
proximation proposed by Pati et al. [58], and the collection of approxi-
mations introduced in [14]. Most of these approximations are orthogo-
nal with low computational complexity matrix entries. Essentially, they
are matrices defined over the set {0,±1/2,±1,±2}, with the multipli-
cation by powers of two implying simple bit-shifting operations.

Such approximations were demonstrated to be competitive substitutes
for the DCT and its related integer transformations as shown in [14, 27,
48, 52–57]. Table 2 illustrates some common integer transformations
linked to the DCT approximations.

3 Greedy Approximations

3.1 Optimization Approach

Approximate DCT matrices are often obtained by fully considering the
exact DCT matrix C, including its symmetries [59], fast algorithms [23,
33], parametrizations [31], and numerical properties [28]. Usually the
low-complexity component of a DCT approximation is found by solving
the following optimization problem:

T = argmin
T′

approx(T′,C),

where approx(·, ·) is a particular approximation assessment function—
such as proximity measures and coding performance metrics [3]—and
subject to various constraints, such as orthogonality and low-complexity
of the candidate matrices T′.

However, the DCT matrix can be understood as a stack of row vectors
c⊤k , k = 1,2, . . . ,8, as follows:

C =
[
c1 c2 c3 c4 c5 c6 c7 c8

]⊤
. (3)

In the current work, to derive an approximation for C, we propose to
individually approximate each of its rows in the hope that the set of
approximate rows generate a good approximate matrix. Such heuristic
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Table 3: Examples of approximated vectors for the search space D1

n Approximated Vector

1
[
1 1 1 1 1 1 1 1

]⊤
2

[
1 1 1 1 1 1 1 −1

]⊤
3

[
1 1 1 1 1 1 1 0

]⊤
4

[
1 1 1 1 1 1 −1 1

]⊤
...

...
6558

[
−1 −1 −1 −1 −1 −1 1 −1

]⊤
6559

[
−1 −1 −1 −1 −1 −1 −1 1

]⊤
6560

[
−1 −1 −1 −1 −1 −1 −1 0

]⊤
6561

[
−1 −1 −1 −1 −1 −1 −1 −1

]⊤
Table 4: Examples of approximated vectors for the search space D2

n Approximated Vector

1
[
2 2 2 2 2 2 2 −1

]⊤
2

[
2 2 2 2 2 2 2 0

]⊤
3

[
2 2 2 2 2 2 2 1

]⊤
4

[
2 2 2 2 2 2 2 2

]⊤
...

...
390622

[
−2 −2 −2 −2 −2 −2 −2 −2

]⊤
390623

[
−2 −2 −2 −2 −2 −2 −2 −1

]⊤
390624

[
−2 −2 −2 −2 −2 −2 −2 1

]⊤
390625

[
−2 −2 −2 −2 −2 −2 −2 0

]⊤

can be categorized as a greedy method [60]. Therefore, our goal is to
derive a low-complexity integer matrix

T =
[
t1 t2 t3 t4 t5 t6 t7 t8

]⊤ (4)

such that its rows t⊤k , k = 1,2, . . . ,8, satisfy:

tk = argmin
t∈D

error(t,ck), k = 1,2, . . . ,8, (5)

subject to constraints such as (i) low-complexity of the candidate vec-
tor t and (ii) orthogonality of the resulting matrix T. The objective func-
tion error(·, ·) returns a given error measure and D is a suitable search
space.

3.2 Search Space

In order to obtain a low-complexity matrix T, its entries must be com-
putationally simple [3, 11]. We define the search space as the collection
of 8-point vectors whose entries are in a set, say P , of low-complexity
elements. Therefore, we have the search space D = P8. Some choices
for P include: P1 = {0,±1} and P2 = {0,±1,±2}. Tables 3 and 4
display some elements of the search spaces D1 = P8

1 and D2 = P8
2 .

These search spaces have 6,561 and 390,625 elements, respectively.

3.3 Objective Function

The problem posed in (5) requires the identification of an error function
to quantify the “distance” between the candidate row vectors from D
and the rows of the exact DCT. Related literature often consider error
functions based on matrix norms [46], proximity to orthogonality [61],
and coding performance [3].

In this work, we propose the utilization of a distance based on the
angle between vectors as the objective function to be minimized. Let u
and v be two vectors defined over the same Euclidean space. The angle
between vectors is simply given by:

angle(u,v) = arccos
(
⟨u,v⟩
∥u∥ · ∥v∥

)
,

where ⟨·, ·⟩ is the inner product and ∥ · ∥ indicates the norm induced by
the inner product [62].

3.4 Orthogonality and Row Order

In addition, we require that the ensemble of rows t⊤k , k = 1,2, . . . ,8,
must form an orthogonal set. This is to ensure that an orthogonal ap-
proximation can be obtained. As shown in [45, 47], for this property to
be satisfied, it suffices that:

T ·T⊤ = [diagonal matrix].

Because we aim at approximating each of the exact DCT matrix rows
individually, the row sequential order according to which the approxi-
mations are performed may matter. Notice that we approximate the rows
of the DCT based on a set of low-complexity rows, the search space. For
instance, let us assume that we approximate the rows in the following
order: ℘ = (1,2,3,4,5,6,7,8). Once we find a good approximate row
for the first exact row, i.e., a row vector in the search space which has
the smallest angle in relation to that exact row, the second row is ap-
proximated considering only the row vectors in the search space that
are orthogonal to the approximation for the first row. After that, the
third exact row is approximated considering only the row vectors in the
search space that are orthogonal to the first and second rows already
chosen. And so on. This procedure characterize the greedy nature of
the proposed algorithm.

Consider now the approximation order (4,3,5,6,1,2,7,8), a permu-
tation of ℘. In this case, we start by approximating the fourth exact
row considering the whole search space because we are starting from
it. Hence, the obtained approximate row might be different from the
one obtained by considering ℘, since in that case the search space is
restricted in a different manner.

As an example, consider the DCT matrix of length 8, introduced
in Section 2 of the manuscript. If considering the low complexity set
{−1,0,1} and the approximation order (1, 2, 3, 4, 5, 6, 7, 8) we obtain
the following approximate matrix:

1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 0 0 −1 −1 0 0 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
0 −1 1 0 0 1 −1 0
0 −1 1 −1 1 −1 1 0

 .

In other hand, if we consider the reverse approximation order, (8, 7, 6,
5, 4, 3, 2, 1), we obtain the following matrix:

1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
1 −1 1 −1 −1 1 −1 1
0 −1 1 −1 1 −1 1 0

 .

Therefore, the row sequence considered matters for the resulting matrix.
The sequence matters during the process of finding the approximate ma-
trix.

Thus, the row vectors c⊤k from the exact matrix must be approximated
in all possibles sequences. For a systematic procedure, all the 8! =
40320 possible permutations of the sequence ℘ must be considered.
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1: procedure ABMAPPROX(C, ℘, D)
2: approximations← null 3D matrix of size 8×8×n;
3: for m← 1, |℘| do
4: ℘m←℘(m, :)
5: for k← 1,2, . . . ,8 do
6: θmin← 2π;
7: index← 1;
8: for i← 1,2, . . . , |D | do
9: aux← approximations(:, :,m) · (D(i, :))⊤

10: if sum(aux) = 0 then
11: θ ← angle(C(℘m(k), :),D(i, :));
12: if θ < θmin then
13: θmin← θ ;
14: index← i;
15: end if
16: end if
17: end for
18: approximations(℘m(k), : m)←D(index, :);
19: end for
20: end for
21: end procedure

Figure 1: Algorithm for the proposed method.

Let ℘m, m = 1,2, . . . ,40320, be the resultant sequence that determines
the mth permutation; e.g. ℘1250 = (1,3,7,6,5,4,8,2). The particular
elements of a sequence are denoted by ℘m(k), k = 1,2, . . . ,8. Then, for
the given example above, we have ℘1250(2) = 3.

3.5 Proposed Optimization Problem

Considering the above discussion, we can re-cast (5) in more precise
terms. For each permutation sequence ℘m, we have the following opti-
mization problem:

t℘m(k) = arg min
d∈D

angle(c℘m(k),d), k = 1,2, . . . ,8, (6)

subject to:

⟨t℘m(i), t℘m( j)⟩= 0, i ̸= j,

m = 1,2, . . . ,40320 and a fixed search space D ∈ {D1,D2}. For
each m, the solution of the above problem returns eight vectors,
t⊤℘m(1)

, t⊤℘m(2)
, . . . , t⊤℘m(8)

, that are used as the rows of the desired low-
complexity matrix. Note that each sequence ℘m may result in a differ-
ent solution. Effectively, there are 8! = 40320 problems to be solved. In
principle, each permutation ℘m can furnish a different matrix.

Because the search space is relatively small, we solved (6) by means
of exhaustive search. Although simple, such approach ensures the at-
tainment of a solution and avoids convergence issues [60]. Figure 1
shows the pseudo-code for the adopted procedure to solve (6). It is im-
portant to highlight that although the proposed formulation is applicable
to arbitrary transform lengths, it may not be computationally feasible.
For this reason, we restrict our analysis to the 8-point case. Section 6.2
discusses an alternative form of generating higher order DCT approxi-
mations.

4 Results and Evaluation

In this section, we apply the proposed method aiming at the derivation
of new approximations for the 8-point DCT. Subsequently, we analyze

and compare the obtained matrices with a representative set of DCT ap-
proximations described in the literature according to several well-known
figures of merit [63].

4.1 New 8-point DCT Approximations

Considering the search spaces D1 and D2 (cf. Table 3 and Ta-
ble 4, respectively), we apply the proposed algorithm to solve (6).
Because the first and fifth rows of the exact DCT are trivially ap-
proximated by the row vectors

[
1 1 1 1 1 1 1 1

]
and[

1 −1 −1 1 1 −1 −1 1
]
, respectively, we limited the

search to the remaining six rows. As a consequence, the number of pos-
sible candidate matrices is reduced to 6! = 720. For D1, only two dif-
ferent matrices were obtained, which coincide with previously archived
approximations, namely: (i) the RDCT [27] and (ii) the matrix T4 intro-
duced in [14]. These approximations are depicted in Table 2.

On the other hand, considering the search space D2, the following
two new matrices were obtained:

T1 =


1 1 1 1 1 1 1 1
2 2 1 0 0 −1 −2 −2
2 1 −1 −2 −2 −1 1 2
1 0 −2 −2 2 2 0 −1
1 −1 −1 1 1 −1 −1 1
2 −2 0 1 −1 0 2 −2
1 −2 2 −1 −1 2 −2 1
0 −1 2 −2 2 −2 1 0

 ,

T2 =


1 1 1 1 1 1 1 1
2 1 2 0 0 −2 −1 −2
2 1 −1 −2 −2 −1 1 2
2 0 −2 −1 1 2 0 −2
1 −1 −1 1 1 −1 −1 1
1 −2 0 2 −2 0 2 −1
1 −2 2 −1 −1 2 −2 1
0 −2 1 −2 2 −1 2 0

 .

According to (1) and (2), the above low-complexity matrices T1 and
T2 can be modified to provide orthogonal transformations Ĉ1 and Ĉ2.
The selected orthogonalization procedure is based on the polar decom-
position as described in [45,47,64]. Thus, the orthogonal DCT approx-
imations associated to the matrices T1 and T2 are given by

Ĉ1 = S1 ·T1 and Ĉ2 = S2 ·T2,

where

Si =

√
(Ti ·Ti

⊤)−1, i = 1,2.

Thus, it follows that:

S1 = S2 = diag
(

1√
8
,

1√
18

,
1√
20

,
1√
18

,
1√
8
,

1√
18

,
1√
20

,
1√
18

)
.

Other simulations were performed considering extended sets of el-
ements. In particular, following sets were considered: {0,±1,±4},
{0,±1,±8}, {0,±1,±2,±4}, {0,±1,±2,±8}, and {0,±2,±4,±8}.
Generally, the resulting matrices did not perform as well as the ones
being proposed. Moreover, the associate computational cost was con-
sistently higher.

The number of vectors in the search space can be calculated as
|D | = |P|8 (cf. Section 3.2). Therefore, including more elements to
P effects a noticeable increase in the size of the search space. As a
consequence, the processing time to derive all the 6! candidate matrices
increases accordingly.
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4.2 Approximation Measures

Approximations measurements are computed between an approximate
matrix Ĉ (not the low-complexity matrix T) relative to the exact DCT.
To evaluate the performance of the proposed approximations, Ĉ1 and
Ĉ2, we selected traditional figures of merit: (i) total error energy
(ε(·)) [46]; (ii) mean square error (MSE(·)) [3, 65]; (iii) coding gain
(Cg(·)) [3, 66, 67]; and (iv) transform efficiency (η(·)) [3]. The MSE
and total error energy are suitable measures to quantify the difference
between the exact DCT and its approximations [3]. The coding gain
and transform efficiency are appropriate tools to quantify compression,
redundancy removal, and data decorrelation capabilities [3]. Addition-
ally, due the angular nature of the objective function required by the
proposed optimization problem, we also considered descriptive circular
statistics [68,69]. Circular statistics allows the quantification of approx-
imation error in terms of the angle difference between the row vectors
of the approximated and exact matrix.

Hereafter we adopt the following quantities and notation: the inter-
pixel correlation is ρ = 0.95 [3, 35, 66], Ĉ is an approximation for the
DCT, and R̂y = Ĉ ·Rx · Ĉ⊤, where Rx is the covariance matrix of x,
whose elements are given by ρ |i− j|, i, j = 1,2, . . . ,8. We detail each of
these measures below.

4.2.1 Total Energy Error

The total energy error is a similarity measure given by [46]:

ε(Ĉ) = π · ∥C− Ĉ∥2
F,

where ∥ · ∥F represents the Frobenius norm [70].

4.2.2 Mean Square Error

The MSE of a given approximation Ĉ is furnished by [3, 65]:

MSE(Ĉ) =
1
8
· tr

(
(C− Ĉ) ·Rx · (C− Ĉ)⊤

)
.

where tr(·) represents the trace operator [3]. The total energy error and
the mean square error are appropriate measures for capturing the ap-
proximation error in a Euclidean distance sense.

4.2.3 Coding Gain

The coding gain quantifies the energy compaction capability and is
given by [3]:

Cg(Ĉ) = 10 · log10

 1
8 ∑

8
i=1 ri,i(

∏
8
i=1 ri,i · ∥ĉi∥2

)1/8

 ,

where ri,i is the ith element of the diagonal of R̂y [3] and ĉ⊤i is the ith
row of Ĉ.

However, as pointed in [67], the previous definition is suitable for
orthogonal transforms only. For non-orthogonal transforms, such as
SDCT [51] and MRDCT [48], we adopt the unified coding gain [67].
For i = 1,2, . . . ,8, let ĉ⊤i and ĝ⊤i be ith row of Ĉ and Ĉ−1, respectively.
Then, the unified coding gain is given by:

C∗g(Ĉ) = 10 · log10

{
8

∏
i=1

1
8
√

Ai ·Bi

}
,

where Ai = su
[(

ĉi · ĉ⊤i
)
⊙Rx

]
, su(·) returns the sum of all elements of

the input matrix, the operator ⊙ represents the element-wise product,
and Bi = ∥ĝi∥2.

4.2.4 Transform Efficiency

The transform efficiency is an alternative measure to the coding gain,
being expressed according to [3]:

η(Ĉ) =
∑

8
i=1 |ri,i|

∑
8
i=1 ∑

8
j=1 |ri, j|

·100,

where ri, j is the (i, j)th entry of R̂y, i, j = 1,2, . . . ,8 [3].

4.2.5 Circular Statistics

Because the objective function in (6) is the operator angle, its associate
values are distributed around the unit circle. This type of data is suit-
ably analyzed by circular statistics tools [68, 69, 71]. Let a be an arbi-
trary 8-point vector and q =

[
1 0 0 0 0 0 0 0

]
. The angle

function is given by [68]:

θ = angle(a′,q), k = 1,2, . . . ,8,

where a′ = a
∥a∥ is the normalized vector of a.

The mean angle (circular mean) is given by [69, 71]:

θ̄ =



arctan(S/C), if C > 0 and S≥ 0,
π/2, if C = 0 and S > 0,
arctan(S/C)+π, if C < 0,
arctan(S/C)+2π, if C ≥ 0 and S < 0,
undefined, if C = 0 and S = 0,

where C = ∑i cos(θi) , S = ∑i sin(θi), and {θi} is a collection of angles.
The circular variance is given by [68]:

V = 1−
√

C2 +S2

8
.

The minimal variance occurs when all observed angles are identical. In
this case, we have V = 0. In other hand, the maximum variance occurs
when the observations are uniformly distributed around the unit circle.
Thus, V = 1 [69].

Considering the rows of the 8-point DCT matrix and of a given 8-
point DCT approximate matrix, the angle function furnishes the fol-
lowing angles, respectively: θck = angle(ck,q) and θtk = angle(tk,q),
k = 1,2, . . . ,8 (cf. (3) and (4)). In this particular case, the mean circu-
lar difference, which measures the mean difference between the pairs of
angles is defined as follows:

D̄ =
1
82 ·

8

∑
i=1

8

∑
j=1

(
π−|π−|θci −θt j ||

)
.

The expression above considers the difference between all the possible
pairs of angles. However, we are interested in comparing the angle be-
tween the ith row of the DCT and the corresponding row of the approx-
imated matrix, i.e., the cases where i = j. Thus we have the modified
circular mean difference according to:

D̄mod =
1
8
·

8

∑
i=1

(π−|π−|θci −θti ||) .

4.3 Results and Comparisons

Table 5 shows the obtained measurements for all approximations de-
rived, according to (1), from the low-complexity matrices considered in
this paper. Table 6 brings a summary of the descriptive circular statis-
tics. We also included the exact DCT and the integer DCT (IDCT) [72]
for comparison. The considered IDCT is the 8-point approximation
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Table 5: Performance measures for DCT approximations derived from low-
complexity matrices. Exact DCT measures listed for reference

Method ε MSE C∗g η

DCT [12] 0 0 8.8259 93.9912
IDCT (HEVC) [72] 0.0020 8.66×10−6 8.8248 93.8236

Ĉ1 (proposed) 1.2194 0.0046 8.6337 90.4615
Ĉ2 (proposed) 1.2194 0.0127 8.1024 87.2275
ĈLO [57] 0.8695 0.0061 8.3902 88.7023
ĈSDCT [51] 3.3158 0.0207 6.0261 82.6190
ĈRDCT [27] 1.7945 0.0098 8.1827 87.4297
ĈMRDCT [48] 8.6592 0.0594 7.3326 80.8969
ĈBAS-2008a [53] 5.9294 0.0238 8.1194 86.8626
ĈBAS-2008b [52] 4.1875 0.0191 6.2684 83.1734
ĈBAS-2009 [54] 6.8543 0.0275 7.9126 85.3799
ĈBAS-2011 [55] 26.8462 0.0710 7.9118 85.6419
ĈBAS-2013 [56] 35.0639 0.1023 7.9461 85.3138
Ĉ′1 [14] 3.3158 0.0208 6.0462 83.0814
Ĉ4 [14] 1.7945 0.0098 8.1834 87.1567
Ĉ5 [14] 1.7945 0.0100 8.1369 86.5359
Ĉ6 [14] 0.8695 0.0062 8.3437 88.0594

adopted in the HEVC standard [72]. A more detailed analysis on the
performance of the proposed approximation in comparison with the
IDCT is provided in Section 6.2. The proposed DCT approximation
Ĉ1 outperforms all competing methods in terms of MSE, coding gain,
and transform efficiency. It also performs as the second best for to-
tal error energy measurement. It is unusual for an approximation to
simultaneously excel in measures based on Euclidean distance (ε and
MSE) as well as in coding-based measures. The approximation by
Lengwehasatit–Ortega (ĈLO) [57] achieves second best results MSE,
and η . Because of its relatively inferior performance, we removed the
new approximation Ĉ2 from our subsequent analysis. Nevertheless, Ĉ2
could outperform the approximations ĈBAS-2008b [52], ĈBAS-2009 [54],
ĈBAS-2011 [55], ĈBAS-2013 [56], ĈSDCT [51], ĈMRDCT [48], and Ĉ′1 [14]
in all measures considered, Ĉ4 [14] and Ĉ5 [14] in terms of total er-
ror energy and transform efficiency, ĈRDCT [27] in terms of total error
energy, and ĈBAS-2008a [53] in terms of total error energy, MSE and
transform efficiency. Hereafter we focus our attention on the proposed
approximation Ĉ1.

The proposed search algorithm is greedy, i.e., it makes local optimal
choices hoping to find the global optimum solution [60]. Therefore, it
is not guaranteed that the obtained solutions are globally optimal. This
is exactly what happens here. As can be seen in Table 6, the proposed
matrix T1 is not the transformation matrix that provides the lowest cir-
cular mean difference among the approximations on literature. Despite
this fact, the proposed matrix has outstanding performance according to
the considered measures.

Figure 2 shows the effect of the interpixel correlation ρ on the per-
formance of the discussed approximate transforms as measured by the
unified coding gain difference compared to the exact DCT [73]. The
proposed method outperforms the competing methods as its coding gain
difference is smaller for any choice of ρ . For highly correlated data the
coding degradation in dB is roughly reduced by half when the proposed
approximation Ĉ1 is considered.

5 Fast Algorithm and Hardware Realization

5.1 Fast Algorithm

The direct implementation of T1 requires 48 additions and 24 bit-
shifting operations. However, such computational cost can be sig-
nificantly reduced by means of sparse matrix factorization [11]. In
fact, considering butterfly-based structures as commonly found in

Table 6: Descriptive circular statistics

Method θ̄ V D̄mod

Exact DCT [12] 70.53 0.0089 0
IDCT (HEVC) [72] 70.50 0.0086 0.0022

T1 (proposed) 71.12 0.0124 0.0711
T2 (proposed) 71.12 0.0124 0.0343
TLO [57] 70.81 0.0102 0.0483
TSDCT [51] 69.29 0 0.1062
TRDCT [27] 71.98 0.0174 0.0716
TMRDCT [48] 75.58 0.0392 0.1646
TBAS-2008a [53] 72.35 0.0198 0.1036
TBAS-2008b [52] 67.29 0.0015 0.1097
TBAS-2009 [54] 72.10 0.0183 0.1334
TBAS-2011 [55] 73.54 0.0265 0.1492
TBAS-2013 [56] 69.29 0 0.1062
T′1 [14] 73.54 0.0265 0.0901
T4 [14] 70.57 0.0085 0.0781
T5 [14] 72.45 0.0209 0.0730
T6 [14] 71.27 0.0139 0.0497

Figure 2: Curves for the coding gain error of Ĉ1, ĈLO, and Ĉ6, relative to the
exact DCT, for 0 < ρ < 1.

decimation-in-frequency algorithms, such as [5, 33, 74], we could de-
rive the following factorization for T1:

T1 = D ·A4 ·A3 ·A2 ·A1,

where:

A1 =


1 1

1 1
1 1

1 1
1 −1

1 −1
1 −1

1 −1

 , A2 =


1 1

1 1
1 −1

1 −1
1

1
1

1

 ,

A3 =


1 1
1 −1

1
1

1
1

1
1

 , A4 =


1

1
2 1 1

1 2
−1 −1 1

2
1

1
2 −1 1

−2 1
−1 1 − 1

2

 ,

and D = diag(1,2,1,2,1,2,1,2). Figure 3 shows the signal flow
graph (SFG) related to the above factorization. The computational cost
of this algorithm is only 24 additions and six multiplications by two.
The multiplications by two are extremely simple to be performed, re-
quiring only bit-shifting operations [3]. The fast algorithm proposed
requires 50% less additions and 75% less bit-shifting operations when
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Table 7: Computational cost comparison

Method Multiplications Additions Bit-shifts

DCT [23] 11 29 0
IDCT (HEVC) [72] 0 50 30

T1 (proposed) 0 24 6
TLO [57] 0 24 2
TSDCT [51] 0 24 0
TRDCT [27] 0 22 0
TMRDCT [48] 0 14 0
TBAS-2008a [53] 0 18 2
TBAS-2008b [52] 0 21 0
TBAS-2009 [54] 0 18 0
TBAS-2011 [55] 0 16 0
TBAS-2013 [56] 0 24 0
T′1 [14] 0 18 0
T4 [14] 0 24 0
T5 [14] 0 24 4
T6 [14] 0 24 6

compared to the direct implementation. The computational costs of the
considered methods are shown in Table 7. The additive cost of the dis-
cussed approximations varies from 14 to 28 additions.

In general terms, DCT approximations exhibit a trade-off between
computational cost and transform performance [61], i.e., less complex
matrices effect poor spectral approximations [3]. Departing from this
general behavior, the proposed transformation T1 has (i) excelling per-
formance measures and (ii) lower or similar arithmetic cost when com-
pared to competing methods, as shown in Tables 5, 6, and 7. Regarding
considered performance measures, three transformations are consistenly
placed among the five best methods: T1, TLO, and T6. Thus, we sepa-
rate them for hardware analysis.

5.2 FPGA Implementation

The proposed design along with TLO and T6 were implemented on an
FPGA chip using the Xilinx ML605 board. Considering hardware co-
simulation the FPGA realization was tested with 100,000 random 8-
point input test vectors. The test vectors were generated from within the
MATLAB environment and, using JTAG based hardware co-simulation,
routed to the physical FPGA device where each algorithm was realized
in the reconfigurable logic fabric. Then the computational results ob-
tained from the FPGA algorithm implementations were routed back to
MATLAB memory space. The diagrams for the designs can be seen in
Figure 4.

The metrics employed to evaluate the FPGA implementations were:
configurable logic blocks (CLB), flip-flop (FF) count, and critical path
delay (Tcpd), in ns. The maximum operating frequency was determined
by the critical path delay as Fmax = (Tcpd)

−1, in MHz. Values were
obtained from the Xilinx FPGA synthesis and place-route tools by ac-
cessing the xflow.results report file. Using the Xilinx XPower An-
alyzer, we estimated the static (Qp in W) and dynamic power (Dp in
mW/MHz) consumption. In addition, we calculated area-time (AT ) and
area-time-square (AT 2) figures of merit, where area is measured as the
CLBs and time as the critical path delay. The values of those metrics for
each design are shown in Table 8.

The design linked to the proposed design approximation T1 possesses
the smallest Tcpd among the considered methods. Such critical path de-
lay allows for operations at a 8.55% and 19.96% higher frequency than
the designs associated to TLO and T6, respectively. In terms of area-time
and are-time-square measures, the design linked to the approximation
TLO presents the best results, followed by the one associated to T1.

6 Computational Experiments

6.1 Still Image Compression

6.1.1 Experiment Setup and Results

To evaluate the efficiency of the proposed transformation matrix, we
performed a JPEG-like image compression experiments as described
in [14, 24, 27]. Input images were divided into sub-blocks of size 8×8
pixels and submitted to a bidimensional (2-D) transformation, such as
the DCT or one of its approximations. Let A be a sub-block of size 8×8.
The 2-D approximate transform of A is an 8×8 sub-block B obtained as
follows [14, 46]:

B = Ĉ ·A · Ĉ⊤.

Considering the zig-zag scan pattern as detailed in [75], the initial r
elements of B were retained; whereas the remaining (64− r) elements
were discarded. Considering 8-bit images, this approach implies that the
fixed average bits per pixel equals r/8 bits per pixel (bpp). The previous
operation results in a matrix B′ populated with zeros which is suitable
for entropy encoding [16]. Each processed sub-block was submitted to
the corresponding 2-D inverse transformation and the image was recon-
structed. For orthogonal approximations, the 2-D inverse transform is
given by:

A = Ĉ⊤ ·B′ · Ĉ.

We considered 44 standardized images obtained from the ‘miscella-
neous’ volume from USC-SIPI image bank [76], which include com-
mon images such as Lena, Boat, Baboon, and Peppers. Without loss
of generality, images were converted to 8-bit grayscale and submit-
ted to the above described procedure. The reconstructed images were
compared with the original images and evaluated quantitatively accord-
ing to popular figures of merit: the mean square error (MSE) [3], the
peak signal-to-noise ratio (PSNR) [63] and the structural similarity in-
dex (SSIM) [77]. We consider the MSE and PSNR measures because of
its good properties and historical usage. However, as discussed in [65],
the MSE and PSNR are not the best measures when it comes to predict
human perception of image fidelity and quality, for which SSIM has
been shown to be a better measure [65, 77].

Figure 5 shows the average MSE, PSNR, and SSIM respectively, for
the 44 images considering 1 < r < 64 (bpp from 0 to 8) retained co-
efficients. The proposed approximation Ĉ1 outperforms ĈLO and Ĉ6
in terms of MSE and PSNR for any value of r. In terms of SSIM, Ĉ1
outperforms Ĉ6 for any value of r and ĈLO for r ∈ [7,63].

In order to better visualize previous curves, we adopted the relative
difference which is given by [78]:

RD =
µ(C)−µ(Ĉ)

µ(C)
,

where µ(C) and µ(Ĉ) indicate measurements according to the exact
and approximate DCT, respectively; and µ ∈ {MSE, PSNR, SSIM}.

The relative difference for the MSE, PSNR, and SSIM are presented
in Figure 6. Figure 6(c) shows that, for 12 < r < 60 (bpp from 1.5 to
7.5), Ĉ1 outperforms not only ĈLO and Ĉ6 but the DCT itself. To the
best of our knowledge, this particularly good behavior was never de-
scribed in literature, where invariably the performance of DCT approx-
imations are routinely bounded by the performance of the exact DCT.

A qualitative evaluation is provided in Figures 7 and 8, where the re-
constructed Lena images [76] for r = 3 (0.325 bpp) and r = 14 (1.75
bpp), respectively, according to the exact DCT, Ĉ1, ĈLO, and Ĉ6 are
shown. As expected from the results shown in Figure 6(c), for a bitrate
lower than 1.5, the proposed approximate transform matrix is not the
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Figure 3: Signal flow graph of the proposed transform, relating the input data xn, n = 0,1, . . . ,7, to its correspondent coefficients X̃k , k = 0,1, . . . ,7, where X̃ = x ·T1.
of T1. Dashed arrows representing multiplication by −1.

(a) (b) (c)

Figure 4: Architectures for (a) T1, (b) TLO, and (c) T6.

Table 8: Hardware resource consumption and power consumption using Xilinx Virtex-6 XC6VLX240T 1FFG1156 device

Approximation CLB FF
Tcpd
(ns)

Fmax
(MHz)

Dp
(mW/GHz)

Qp
(W) AT AT 2

T1 (proposed) 135 408 1.750 571 2.74 3.471 236 413
TLO [57] 114 349 1.900 526 2.82 3.468 217 412
T6 [14] 125 389 2.100 476 2.57 3.460 262 551
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(a) (b) (c)

Figure 5: Curves for the average of (a) MSE; (b) PSNR; and (c) SSIM corresponding to 44 images.

(a) (b) (c)

Figure 6: Relative difference curves for (a) MSE; (b) PSNR; and (c) SSIM of Ĉ1, ĈLO, and Ĉ6, relative to the exact DCT.

one that performs the best (Figure 7), although the results are very simi-
lar to the ones furnished by the exact DCT. For a bitrate value larger than
1.5, Figure 8 demonstrates a situation were the proposed approximation
overcomes the other transforms, including the DCT. In both cases, the
visual difference between the DCT and the proposed aproximate trans-
form matrix is very small.

6.1.2 Discussion

The obtained approximation was capable of outperforming the DCT un-
der the above described conditions. We think that this is relevant, be-
cause it directly offers a counter-example to the belief that the coding
performance of an approximation is supposed to always be inferior to
the DCT. The theoretical background that leads the optimal performance
of the DCT is based on assumption that the considered images must fol-
low the Markov-1 processes with high correlation (ρ → 1). In practice,
natural images tend to fit under this assumption, but at lower correlation
values the ideal case (ρ → 1) may not necessarily be met as strongly.
For instance, the average correlation of the considered image set was
roughly 0.86. This practical deviation from the ideal case (ρ → 1) may
also play a role in explaining our results.

Finding matrix approximation as described in this work is a computa-
tional and numerical task. To the best of our knowledge, we cannot iden-
tify any methodology that could furnish necessary mathematical tools
to design optimal approximations for image compression in an a pri-
ori manner, i.e., before search space approaches, optimization problem
solving, or numerical simulation. In [3,5,25,61,79,80], a large number
of methods is listed; all of them aim at good approximations. Although
the problem of matrix approximation is quite simple to state, it is also
very tricky and offers several non-linearities when combined to a more
sophisticate system, such as image compression codecs. Finding low-

complexity matrices can be categorized as an integer optimization prob-
lem. Thus, navigating in the low-complexity matrix search space might
generate non-trivial performance curves, usually leading to discontinu-
ities, which seems to be the case of the proposed approximations matrix
T1. The navigation path through the search space is highly dependent on
the search method and its objective function. Although approximation
methods are very likely to provide reasonable approximations, it is also
very hard to tell beforehand whether a given approximation method is
capable of furnishing extremely good results capable of outperforming
the state of the art. Only after experimentation with the obtained ap-
proximations one may know better. In particular, this work advances an
optimization setup based on a geometrically intuitive objective function
(angle between vectors) that could find good matrices as demonstrated
by our a posteriori experiments.

6.2 Video Coding

In order to assess the proposed transform Ĉ1 as a tool for video cod-
ing, we embedded it into a public available HEVC reference soft-
ware [81]. The HEVC presents several improvements relative to its
predecessors [82] and aims at providing high compression rates [22].
Differently from other standards (cf. Section 1), HEVC employs not
only an 8-point integer DCT (IDCT) but also transforms of size 4, 16,
and 32 [72]. Such feature effects a series of optimization routines al-
lowing the processing of big smooth or textureless areas [22].

The computational search used in the proposed method proved fea-
sible for the 8-point case. However, as N increases, the size of the
search space increases very quickly. For the case N = 16, if consid-
ering the low complexity set P = {−1,0,1}, we have a search space
with 316 ≈ 4.3× 107 elements. For this blocklength, The proposed al-
gorithm takes about 6 minutes to find an approximation for a fixed row
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(a) MSE = 119.91, PSNR = 27.34,
SSIM = 0.8814.

(b) MSE = 124.44, PSNR = 27.18,
SSIM = 0.8767.

(c) MSE = 131.08, PSNR = 26.95,
SSIM = 0.8781.

(d) MSE = 129.03, PSNR = 27.02,
SSIM = 0.87.63.

Figure 7: Compression of Lena using (a) DCT; (b) Ĉ1; (c) ĈLO; and (d) Ĉ6 considering r = 3 (0.325 bpp).

(a) MSE = 27.17, PSNR = 33.78,
SSIM = 0.9888.

(b) MSE = 33.48, PSNR = 32.88,
SSIM = 0.9893.

(c) MSE = 40.07, PSNR = 32.10,
SSIM = 0.9849.

(d) MSE = 42.18, PSNR = 31.87,
SSIM = 0.9844.

Figure 8: Compression of Lena using (a) DCT; (b) Ĉ1; (c) ĈLO; and (d) Ĉ6 considering r = 14 (1.75).
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sequence, considering a machine with the following specifications: 16-
core 2.4 GHZ Intel(R) Xeon(R) CPU E5-2630 v3, with 32 GB RAM
running Ubuntu 16.04.3 LTS 64-bit. Therefore, since we have N! ma-
trices to be generated, to run the whole algorithm would take approx-
imately 16!× 6 minutes. In other words, the computation time would
take an extremely large amount of time. Thus, for now, we limited the
scope of our computational search to 8-point approximations.

For this reason, aiming to derive large blocklength transforms for
HEVC embedding, we submitted the proposed transform matrix T1 to
the Jridi–Alfalou–Meher (JAM) scalable algorithm [83]. Such method
resulted in 16- and 32-point versions of the proposed matrix T1 that
are suitable for the sought video experiments. Although the JAM algo-
rithm is similar to Chen’s DCT [30], it exploits redundancies allowing
concise and high parallelizable hardware implementations [83]. From
a low-complexity N/2-point transform, the JAM algorithm generates
an N×N matrix transformation by combining two instantiations of the
smaller one. The larger N-point transform is recursively defined by:

T(N) =
1√
2

Mper
N

[
T( N

2 )
Z N

2

Z N
2

T( N
2 )

]
Madd

N , (7)

where Z N
2

is a matrix of order N/2 with all zeroed entries. Matrices

Madd
N and Mper

N are, respectively, obtained according to:

Madd
N =

[
I N

2
Ī N

2

Ī N
2
−I N

2

]

and

Mper
N =

[
PN−1, N

2
Z1, N

2

Z1, N
2

PN−1, N
2

]
,

where I N
2

and Ī N
2

are, respectively, the identity and counter-identity ma-
trices of order N/2 and PN−1, N

2
is an (N−1)×(N/2) matrix whose row

vectors are defined by:

P(i)
N−1, N

2
=

Z1, N
2
, if i = 1,3,5, . . . ,N−1

I(i/2)
N
2

, if i = 0,2,4, . . . ,N−2.

The scaling factor 1/
√

2 of (7) can be merged into the image/video com-
pression quantization step. Furthermore, (1) can be applied to generate
orthogonal versions of larger transforms. The computational cost of the
resulting N-point transform is given by twice the number of bit-shifting
operations of the original N/2-point transform; and twice the number
of additions plus N extra additions. Following the described algorithm,
we obtained the 16- and 32-point low complexity transform matrices
proposed. More explicitly, we obtained the following 16- and 32-point
matrices, respectively:

T(16) =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
2 2 1 0 0 −1 −2 −2 −2 −2 −1 0 0 1 2 2
2 2 1 0 0 −1 −2 −2 2 2 1 0 0 −1 −2 −2
2 1 −1 −2 −2 −1 1 2 2 1 −1 −2 −2 −1 1 2
2 1 −1 −2 −2 −1 1 2 −2 −1 1 2 2 1 −1 −2
1 0 −2 −2 2 2 0 −1 −1 0 2 2 −2 −2 0 1
1 0 −2 −2 2 2 0 −1 1 0 −2 −2 2 2 0 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
2 −2 0 1 −1 0 2 −2 −2 2 0 −1 1 0 −2 2
2 −2 0 1 −1 0 2 −2 2 −2 0 1 −1 0 2 −2
1 −2 2 −1 −1 2 −2 1 1 −2 2 −1 −1 2 −2 1
1 −2 2 −1 −1 2 −2 1 −1 2 −2 1 1 −2 2 −1
0 −1 2 −2 2 −2 1 0 0 1 −2 2 −2 2 −1 0
0 −1 2 −2 2 −2 1 0 0 −1 2 −2 2 −2 1 0



and

T(32) =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
2 2 1 0 0 −1 −2 −2 −2 −2 −1 0 0 1 2 2 2 2 1 0 0 −1 −2 −2 −2 −2 −1 0 0 1 2 2
2 2 1 0 0 −1 −2 −2 −2 −2 −1 0 0 1 2 2 −2 −2 −1 0 0 1 2 2 2 2 1 0 0 −1 −2 −2
2 2 1 0 0 −1 −2 −2 2 2 1 0 0 −1 −2 −2 −2 −2 −1 0 0 1 2 2 −2 −2 −1 0 0 1 2 2
2 2 1 0 0 −1 −2 −2 2 2 1 0 0 −1 −2 −2 2 2 1 0 0 −1 −2 −2 2 2 1 0 0 −1 −2 −2
2 1 −1 −2 −2 −1 1 2 2 1 −1 −2 −2 −1 1 2 2 1 −1 −2 −2 −1 1 2 2 1 −1 −2 −2 −1 1 2
2 1 −1 −2 −2 −1 1 2 2 1 −1 −2 −2 −1 1 2 −2 −1 1 2 2 1 −1 −2 −2 −1 1 2 2 1 −1 −2
2 1 −1 −2 −2 −1 1 2 −2 −1 1 2 2 1 −1 −2 −2 −1 1 2 2 1 −1 −2 2 1 −1 −2 −2 −1 1 2
2 1 −1 −2 −2 −1 1 2 −2 −1 1 2 2 1 −1 −2 2 1 −1 −2 −2 −1 1 2 −2 −1 1 2 2 1 −1 −2
1 0 −2 −2 2 2 0 −1 −1 0 2 2 −2 −2 0 1 1 0 −2 −2 2 2 0 −1 −1 0 2 2 −2 −2 0 1
1 0 −2 −2 2 2 0 −1 −1 0 2 2 −2 −2 0 1 −1 0 2 2 −2 −2 0 1 1 0 −2 −2 2 2 0 −1
1 0 −2 −2 2 2 0 −1 1 0 −2 −2 2 2 0 −1 −1 0 2 2 −2 −2 0 1 −1 0 2 2 −2 −2 0 1
1 0 −2 −2 2 2 0 −1 1 0 −2 −2 2 2 0 −1 1 0 −2 −2 2 2 0 −1 1 0 −2 −2 2 2 0 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
2 −2 0 1 −1 0 2 −2 −2 2 0 −1 1 0 −2 2 2 −2 0 1 −1 0 2 −2 −2 2 0 −1 1 0 −2 2
2 −2 0 1 −1 0 2 −2 −2 2 0 −1 1 0 −2 2 −2 2 0 −1 1 0 −2 2 2 −2 0 1 −1 0 2 −2
2 −2 0 1 −1 0 2 −2 2 −2 0 1 −1 0 2 −2 −2 2 0 −1 1 0 −2 2 −2 2 0 −1 1 0 −2 2
2 −2 0 1 −1 0 2 −2 2 −2 0 1 −1 0 2 −2 2 −2 0 1 −1 0 2 −2 2 −2 0 1 −1 0 2 −2
1 −2 2 −1 −1 2 −2 1 1 −2 2 −1 −1 2 −2 1 1 −2 2 −1 −1 2 −2 1 1 −2 2 −1 −1 2 −2 1
1 −2 2 −1 −1 2 −2 1 1 −2 2 −1 −1 2 −2 1 −1 2 −2 1 1 −2 2 −1 −1 2 −2 1 1 −2 2 −1
1 −2 2 −1 −1 2 −2 1 −1 2 −2 1 1 −2 2 −1 −1 2 −2 1 1 −2 2 −1 1 −2 2 −1 −1 2 −2 1
1 −2 2 −1 −1 2 −2 1 −1 2 −2 1 1 −2 2 −1 1 −2 2 −1 −1 2 −2 1 −1 2 −2 1 1 −2 2 −1
0 −1 2 −2 2 −2 1 0 0 1 −2 2 −2 2 −1 0 0 −1 2 −2 2 −2 1 0 0 1 −2 2 −2 2 −1 0
0 −1 2 −2 2 −2 1 0 0 1 −2 2 −2 2 −1 0 0 1 −2 2 −2 2 −1 0 0 −1 2 −2 2 −2 1 0
0 −1 2 −2 2 −2 1 0 0 −1 2 −2 2 −2 1 0 0 1 −2 2 −2 2 −1 0 0 1 −2 2 −2 2 −1 0
0 −1 2 −2 2 −2 1 0 0 −1 2 −2 2 −2 1 0 0 −1 2 −2 2 −2 1 0 0 −1 2 −2 2 −2 1 0



.

The resulting approximations for the above low-complexity matrices
can be found from (1) and (2). The diagonal matrices implied by (2) are
D(16) = 4 ·

[
1 0
0 1

]
⊗diag(4,9,10,9)⊗

[
1 0
0 1

]
and D(32) = 2 ·D(16)⊗

[
1 0
0 1

]
,

respectively, where ⊗ is the Kronecker product [50].
Figures 9 and 10 display the SFG for the low-complexity transform

matrices T(16) and T(32) derived from T1.

Figure 9: SFG for the proposed 16-point low complexity transform matrix.

Table 9 lists the computational costs of the proposed transform for
sizes N = 8,16,32 compared to an efficient implementation of the
IDCT [84].

In our experiments, the original 8-, 16-, and 32-point integer trans-
forms of HEVC were substituted by Ĉ1 and its scaled versions. The
original 4-point transform was kept unchanged because it is already
a very low-complexity transformation. We encoded the first 100
frames of one video sequence of each A to F class in accordance
with the common test conditions (CTC) documentation [85]. Namely
we used the 8-bit videos: PeopleOnStreet (2560×1600 at 30 fps),
BasketballDrive (1920×1080 at 50 fps), RaceHorses (832×480
at 30 fps), BlowingBubbles (416×240 at 50 fps), KristenAndSara
(1280×720 at 60 fps), and BasketbalDrillText (832×480 at 50 fps).
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Figure 10: SFG for the proposed 32-point low complexity transform matrix,
where T(16) is the 16-point matrix presented in Figure 9.

As suggested in [83], all the test parameters were set according to the
CTC documentation. We tested the proposed transforms in All Intra
(AI), Random Access (RA), Low Delay B (LD-B), and Low Delay

P (LD-P) configurations, all in the Main profile.

We selected the frame-by-frame MSE and PSNR [72] for each YUV
color channel as figures of merit. Then, for all test videos, we computed
the rate distortion (RD) curve considering the recommended quantiza-
tion parameter (QP) values, i.e. 22, 27, 32, and 37 [85]. The result-
ing RD curves are depicted in Figure 11. We have also measured the
Bjøntegaard’s delta PSNR (BD-PSNR) and delta rate (BD-Rate) [86,87]
for the modified HEVC software. These values are summarized in Ta-
ble 10. We demonstrate that replacing the IDCT by the proposed trans-
form and its scaled versions results in a loss in quality of at most 0.47dB
for the AI configuration, which corresponds to an increase of 5.82% in
bitrate. Worst performance for the other configurations—RA, LD-B,
and LD-P—are found for the KristenAndSara video sequence, where
approximately 0.55dB are lost if compared to the original HEVC imple-
mentation.

Table 9: Computational cost comparison for 8-, 16-, and 32-point transforms
embedded in HEVC reference software

N
IDCT [84] Proposed transform

Additions Bit-shifts Additions Bit-shifts

8 50 30 24 6
16 186 86 64 12
32 682 278 160 24

Despite the very low computational cost when compared to the IDCT
(cf. Table 9), the proposed transform does not introduce significant er-
rors. Figure 12 illustrates the tenth frame of the BasketballDrive

video encoded according to the default HEVC IDCT and Ĉ1 and its
scaled versions for each coding configuration. The QP was set to 32. Vi-
sual degradations are virtually nonperceptible demonstrating real-world
applicability of the proposed DCT approximations for high resolution
video coding.

7 Conclusion

In this paper, we set up and solved an optimization problem aiming at
the proposition of new approximations for the 8-point DCT. The ob-
tained approximations were determined according to a greedy heuristic
which minimized the angle between the rows of the approximate and
the exact DCT matrices. Constraints of orthogonality and low compu-
tational complexity were imposed. One of the obtained approximations
outperformed all the considered approximations in literature according
to popular performance measures. We also introduced the use of cir-
cular statistics for assessing approximate transforms. For the proposed
transform T1, a fast algorithm requiring only 24 additions and 6 bit-
shifting operations was proposed. The fast algorithm for the proposed
method and directly competing approximations were given FPGA real-
izations. Simulations were made and the hardware resource consump-
tion and power consumption were measured. The maximum operating
frequency of the proposed method was 37.4% higher when compared
with the well-known Lengwehasatit–Ortega approximation (LO) [57].
In addition, the applicability of the proposed approximation in the con-
text of image compression and video coding was demonstrated. Our
experiments also demonstrate that DCT approximations can effectively
approximate the DCT behavior, but also—under particular conditions—
outperform the DCT itself for image coding. The proposed approxi-
mation is fully HEVC-compliant, being capable of video coding with
HEVC quality at lower computational costs.
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