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Abstract In this paper we introduce a notion of a directional uncertainty product
for multivariate periodic functions and multivariate discrete signals. It measures
a localization of a signal along a particular direction. We study properties of the
uncertainty product and give an example of well localized multivariate periodic
Parseval wavelet frames.
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1 Introduction

A notion of uncertainty product is a sufficiently well-studied object in harmonic
analysis. Initially, it was introduced for functions on the real line to measure a
simultaneous localization of a function and its Fourier transform [19]. The essence
of this measurement is concentrated in the fundamental Heisenberg uncertainty
principle, which says that for any appropriate function the uncertainty product
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cannot be smaller than a positive absolute constant. Later, numerous versions
of this framework were developed for different algebraic and topological struc-
tures such as abstract locally compact groups, high-dimensional spheres, etc. (see,
e.g., [8], [13], [16]). For more detailed information concerning this topic, we refer
the interested reader to surveys [3] and [18] and the references therein.

In this paper we focus on the case of multivariate periodic functions and mul-
tivariate discrete signals. For periodic functions of one variable a notion of uncer-
tainty product was introduced in 1985 by Breitenberger in [2]. The corresponding
uncertainty principle is also valid in this setup. One possible extension of this
notion to the case of multivariate periodic functions was suggested by Goh and
Goodman in [5] (see formula (2)). However, this approach does not take into ac-
count the main difference between periodic functions of one variable and many
variables, namely the localization of a function along particular directions. The
main contribution of this paper is a new approach that allows to include the di-
rectionality into the definition of the uncertainty product (see formula (3)). We
compare these two approaches and show that they are not equivalent (see Lemma
3). At the same time, both definitions fit into a more general operator approach
(see formula (1)). This approach was established by Folland in [4] and was ex-
tended to two normal or symmetric operators by Selig in [20] and Goh, Micchelli
in [6]. For several operators this approach was generalized by Goh and Goodman
in [5].

From the other point of view, this directional uncertainty product is applicable
for multidimensional discrete signals due to the duality: periodic signal - discrete
spectrum (Fourier series) and discrete signal - periodic spectrum (the Discrete-
Time Fourier Transform, DTFT). In this sense, our definition is an alternative to
the one given in [11] and allows to take into account the directionality of signals.

The paper is organized as follows. Section 2 is devoted to basic definitions. In
Section 3 we study the properties of the directional uncertainty product for peri-
odic functions and compare this product with one defined by Goh and Goodman.
Lemma 2 gives a sequence of trigonometric polynomials such that the sequence
of their directional uncertainty products tends to the optimal value. Lemma 3 il-
lustrates a difference between these two uncertainty products. In Subsection 3.1.
we study the behavior of both uncertainty products for the Dirichlet and Fejér
kernels. Lemmas 4 and 5 concern the directional case. In Lemma 6 we address the
same question to the Goh and Goodman case. In Subsection 3.2. we minimize the
directional angular variance for trigonometric polynomials. Theorem 4 describes
the case of the directional uncertainty product, and Theorem 5 corresponds to the
case of the uncertainty product defined by Goh and Goodman. In Section 4 we
give an example of a multivariate periodic Parseval wavelet frame with a small
directional uncertainty product (see Theorem 6).

2 Basic notations and definitions

We use the standard multi-index notation. Let d ∈ N, Rd be the d-dimensional
Euclidean space, {ej , 1 ≤ j ≤ d} be the standard basis in R

d, Zd be the integer
lattice in R

d, Td = R
d/Zd be the d-dimensional torus. Let x = (x1, . . . , xd)

T and
y = (y1, . . . , yd)

T be column vectors in R
d. Then 〈x, y〉 := x1y1 + · · · + xdyd,

‖x‖ :=
√

〈x, x〉, ‖x‖1 =
∑d

j=1 |xj |, ‖x‖∞ = maxj |xj |. We say that x ≥ y, if
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xj ≥ yj for all j = 1, . . . , d, and we say that x > y, if x ≥ y and x 6= y. Further,
Z
d
+ := {α ∈ Z

d : α ≥ 0}, where 0 = (0, . . . , 0) denotes the origin in R
d. For

α = (α1, . . . , αd)
T ∈ Z

d
+, denote |α| := α1+· · ·+αd. For x ∈ R, x+ :=

{
0, x ≤ 0,

x, x > 0.

For a sufficiently smooth function f defined on Ω ⊂ R
d and a multi-index α ∈

Z
d
+, D

αf denotes the derivative of f of order α and Dαf = ∂|α|f
∂xα = ∂|α|f

∂α1x1...∂
αdxd

.

For α = ej , we also use Dejf = f ′
j . The directional derivative of a sufficiently

smooth function f defined on Ω along a vector L = (L1, ...,Ld) ∈ R
d is denoted

by ∂f
∂L =

∑d
j=1 Lj

∂f
∂xj

.

For a function f ∈ L2(T
d) its norm is denoted by ‖f‖2

Td =
∫
Td |f(x)|2dx. The

Fourier series coefficients of a function f ∈ L2(T
d) are given by ck = ck(f) =

f̂(k) =
∫
Td f(x)e

−2πi〈k,x〉dx, k ∈ Z
d. The Sobolev space H1(Td) consists of func-

tions in L2(T
d) such that all its derivatives of the first order are also in L2(T

d),
which can be written as

H1(Td) =



f ∈ L2(T

d) :
∑

k∈Zd

‖k‖2|ck(f)|2 <∞



 .

LetH be a Hilbert space with inner product 〈·, ·〉 and with norm ‖·‖ := 〈·, ·〉1/2.
Let A, B be two linear operators with domains D(A), D(B) ⊆ H and ranges in
H. The variance of non-zero f ∈ D(A) with respect to the operator A is defined
to be

∆(A, f) = ‖Af‖2 − |〈Af, f〉|2
‖f‖2 =

∥∥∥∥
(
A− 〈Af, f〉

‖f‖2
)
f

∥∥∥∥
2

.

The commutator of A and B is defined by [A,B] := AB − BA with domain
D(AB)

⋂
D(BA).

Theorem 1 [5, Theorem 4.1] Let A1, . . .An, B1, . . .Bn be symmetric or normal
operators acting from a Hilbert space H into itself. Then for any non-zero f in
D(AjBj)

⋂D(BjAj), j = 1, . . . , n,

1

4




n∑

j=1

|〈[Aj,Bj ]f, f〉|




2

≤




n∑

j=1

∆(Aj , f)






n∑

j=1

∆(Bj , f)


 . (1)

If the commutator 〈[Aj ,Bj ]f, f〉 is non-zero for all j = 1, . . . , n, then the un-
certainty product for f is defined as

UP(f) :=




n∑

j=1

∆(Aj, f)






n∑

j=1

∆(Bj , f)






n∑

j=1

|〈[Aj,Bj ]f, f〉|




−2

.

In this terms, the uncertainty principle says that the uncertainty product UP(f)
cannot be smaller than 1

4 , for any appropriate function f .
The well-known Heisenberg uncertainty product for functions defined on the

real line fits in this operator approach, if n = 1, H = L2(R) and the two operators
are as follows Af(x) = 2πxf(x), Bf(x) = i

2π
df
dx (x).
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The Breitenberger uncertainty product is defined for periodic functions. In
this case, n = 1, H = L2(T) and ATf(x) = e2πixf(x), BTf(x) = i

2π
df
dx (x). The

commutator is [AT,BT] = AT. It is more convenient for the Breitenberger uncer-
tainty product, to use the notions of the angular and frequency variance. Since
‖ATf‖2T = ‖f‖2T,

varA(f) =
‖f‖2T∆(AT, f)

|〈[AT,BT]f, f〉|2 =

(
‖f‖2T

|〈ATf, f〉|

)2

− 1,

varF (f) =
∆(BT, f)

‖f‖2
T

=
‖BTf‖2

Rd

‖f‖2
T

− |〈BTf, f〉|2
‖f‖4

T

,

UPT(f) := varA(f)varF (f).

It is known that the lower bound for UPT does not attain on any function. But
there exist sequences of functions such that UPT tends to the optimal value 1

4 (see,
e.g., [15]).

For the space L2(T
d) of multivariate periodic functions, Goh and Goodman

in [5] suggest to take the operators as follows Ajf(x) = e2πixjf(x), Bjf(x) =
i

2π
∂f
∂xj

(x), j = 1, . . . , d. Note that the domains of the operators are
⋂d

j=1 D(Aj) =

L2(T
d),
⋂d

j=1 D(Bj) = H1(Td). Operators Aj are normal, Bj are self-adjoint. The

commutators for f ∈ H1(Td) are [Aj,Bj ]f = Ajf. The uncertainty principle for
these operators is stated as follows.

Theorem 2 For a function f ∈ H1(Td), such that 〈Ajf, f〉 6= 0, j = 1, . . . , d, the

uncertainty product UPT
d

GG(f) is well-defined and

UPT
d

GG(f) =

d∑
j=1


‖f‖4

Td −
∣∣∣∣∣
∑

k∈Zd

ck−ej ck

∣∣∣∣∣

2



(
d∑

j=1

∣∣∣∣∣
∑

k∈Zd

ck−ej ck

∣∣∣∣∣

)2

d∑

j=1




∑

k∈Zd

k2j |ck|2

‖f‖2
Td

−




∑

k∈Zd

kj |ck|2

‖f‖2
Td




2

 ≥ 1

4
,

(2)

where k = (k1, . . . , kd), ck = ck(f) are the Fourier coefficients of f.

Defining the variances for f ∈ H1(Td) as

varAGG(f) =

‖f‖2
Td

d∑
j=1

∆(Aj, f)

(∑n
j=1 |〈[Aj,Bj ]f, f〉|

)2 , varFGG(f) =
d∑

j=1

∆(Bj , f)/‖f‖2Td,

it can be shown, that the variances attain the value ∞ if and only if 〈Ajf, f〉 = 0,

for all j = 1, . . . , d. In these cases, we can also assign to UPT
d

GG(f) the value ∞,
except the following case varFGG(f) = 0 and varAGG(f) = ∞. This case happens if
and only if f is a monomial, since varFGG(f) = 0 if and only if f is a monomial.
Indeed, since varFGG(f) = varFGG(af) for any appropriate f ∈ H1(Td) and a ∈ R

d,
a 6= 0, we can assume that ‖f‖Td = 1. Therefore,

varFGG(f) = 0 if and only if |〈Bjf, f〉|2 = ‖Bjf‖2Td ‖f‖2Td ∀j = 1, . . . , d.
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Due to the Cauchy-Bunyakovsky-Schwarz inequality the equality is possible only
if f = αj

∂f
∂xj

, where αj ∈ C for all j = 1, . . . , d. Thus, f should be a monomial.

However, in this case, i.e., varFGG(f) = 0 and varAGG(f) = ∞, inequality (1) takes
the form 1/4 · 0 ≤ C · 0. It is trivially true. Thus, inequality (1) is valid for all
non-zero functions f ∈ H1(Td).

In fact, the above approach for the definition of the uncertainty product does
not deal with a new phenomenon, that appears in the multidimensional case,
namely, the localization of a function along particular directions. We suggest an
approach that allows to include the directionality into the definition.

The directional uncertainty product for T
d along a direction L ∈ Z

d (L 6= 0)
is defined using the operators

ALf(x) = e2πi〈L,x〉f(x), BLf(x) =
i

2π

∂f

∂L
(x).

with domains D(AL) = L2(T
d), D(BL) = H1(Td). Note that AL is normal, BL is

self-adjoint. The commutator for f ∈ D(AL) ∩ D(BL) is [AL,BL]f = ‖L‖2ALf.
Thus, the directional uncertainty product for a function f ∈ D(AL)∩D(BL) such
that ALf 6= 0 is defined as

UPT
d

L (f) =
1

‖L‖42

(
‖f‖4

Td

|〈ALf, f〉|2
− 1

)(
‖BLf‖2

Td

‖f‖2
Td

− |〈BLf, f〉|2
‖f‖4

Td

)
:=

1

‖L‖4
varAL(f)varFL(f),

where varAL(f) is the angular directional variance and varFL(f) is the frequency
directional variance.

Theorem 3 For L ∈ Z
d and a function f ∈ H1(Td), such that 〈ALf, f〉 6= 0, the

uncertainty product UPT
d

L (f) is well-defined and

UPT
d

L (f) =
1

‖L‖4




(
∑

k∈Zd

|ck|2
)2

∣∣∣∣∣
∑

k∈Zd

ck−Lck

∣∣∣∣∣

2
− 1







∑

k∈Zd

〈L, k〉2|ck|2

∑

k∈Zd

|ck|2
−




∑

k∈Zd

〈L, k〉|ck|2

∑

k∈Zd

|ck|2




2

 ≥ 1

4
,

(3)

where ck = ck(f) are the Fourier coefficients of f.

The statement easily follows from the operator approach and

ALf(x) =
∑

k∈Zd

ck−Le
2πi〈k,x〉, BLf(x) = −

∑

k∈Zd

〈L, k〉cke2πi〈k,x〉.

It can be shown, that the directional variances attain the value ∞ if and only

if 〈ALf, f〉 = 0. In this case, we can also assign to UPT
d

L (f) the value ∞, except
the following case varFL(f) = 0 and varAL(f) = ∞. This case happens if and only if
f is a monomial (with the arguments as above). Thus analogously, inequality (1)
for operators AL and BL is valid for all non-zero functions f ∈ H1(Td).
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3 The properties of the directional uncertainty product for the
periodic case

First of all, we note that the standard manipulations of functions like shifts, modu-

lations and multiplying by numbers do not change the uncertainty product UPT
d

L .

Lemma 1 Let f ∈ H1(Td). Suppose g(x) = a e2πi〈K,x〉f(x− x0), where K ∈ Z
d,

a ∈ R, a 6= 0, x0 ∈ R
d, then UPT

d

L (g) = UPT
d

L (f).

The proof can be done by straightforward computations.
As for the Breitenberger uncertainty product and for the uncertainty product

defined by Goh and Goodman, the optimal function for the directional uncertainty
product does not exist. Indeed, let a(f) = 〈ALf,f〉

‖f‖2
2

and b(f) = 〈BLf,f〉
‖f‖2

2

. Since BL is

self-adjoint, b(f) is real. Due to Theorem 3.1 in [20] the equality for the uncertainty
principle is attained if and only if there exist λ ∈ C such that

(BL − b(f))f = λ(AL − a(f))f = −λ(A∗
L − a(f))f.

The second identity yields

f(x)
(
λe2πi〈L,x〉 + λe−2πi〈L,x〉 − a(f)λ− λa(f)

)

= 2f(x)(Re(λe2πi〈L,x〉)−Re(a(f)λ)) ≡ 0.

This condition can be satisfied only if f = 0 or λ = 0. For the second case, we
get (BL − b(f))f = 0 or i

2π
∂f
∂L (x) = b(f)f(x), which is only possible when f

is a monomial, i.e. f(x) = Ce2πi〈k,ξ〉. Recall that for monomials the directional
uncertainty product is not defined.

The next lemma gives a sequence of trigonometric polynomials such that the
sequence of their directional uncertainty products tends to the optimal value.

Lemma 2 Suppose pn(x) = (1 + cos 2π〈L,x〉)n for n ∈ N. Then

UPT
d

L (pn) =
1

4
+O

(
1

n

)
, as n→ ∞.

Proof. Denote I2n :=
∫
Td(1 + cos 2π〈L,x〉)2ndx = ‖pn‖2Td . Since pn is even

〈ALpn, pn〉 = I2n+1 − I2n. Further,

‖BLpn‖2Td = n2‖L‖4
∫

Td

(1 + cos 2π〈L, x〉)2n−2 sin2 2π〈L, x〉 dx

= n2‖L‖4(2I2n−1 − I2n),

since sin2 2π〈L,x〉 = 2(1 + cos 2π〈L,x〉) − (1 + cos 2π〈L, x〉)2. Again, since pn is
even and sin 2π〈L, x〉 is odd, we get 〈BLpn, pn〉 = 0. So, finally,

UPT
d

L (pn) = n2 I2n+1

I2n

(2I2n − I2n+1)(2I2n−1 − I2n)

(I2n+1 − I2n)2
. (4)
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It remains to compute In. Since (1 + cos 2π〈L,x〉)n = 2n cos2n 2π〈L,x〉
2 ,

In =
2n

2d

∫

[0,2)d

cos2n
2π〈L, x〉

2
dx = 2n

∫

[0,1)d

cos2n(2π〈L,x〉)dx.

Using Euler’s formula we get

cosn(2π〈L,x〉) = 1

2n

n∑

j=0

(
n

j

)
e2πij〈L,x〉e−2πi(n−j)〈L,x〉

=
1

2n

n∑

j=0

(
n

j

)
e2πi(2j−n)〈L,x〉.

Due to the Parseval equality for the function cosn(2π〈L,x〉) we obtain

∫

Td

cos2n(2π〈L,x〉)dx =
1

22n

n∑

j=0

(
n

j

)2

=
1

22n

(
2n

n

)
=

1

22n
(2n)!

(n!)2
.

Therefore, In = (2n−1)!!
n! . Here (2n− 1)!! is the double factorial of 2n− 1. Substi-

tuting this in (4), we obtain UPT
d

L (pn) =
1
4 + 1

8n−2 . ♦
Let us compare the uncertainty product defined by Goh and Goodman and the

directional uncertainty product. They are not equivalent. The next lemma gives a
pair of examples where the uncertainty products behave differently.

Lemma 3 Let L ∈ Z
d.

(A) Suppose p̃n(x) = (1 + cos 2π〈L, x〉)n + 2 cos 2πx1, where L is not collinear to
e1. Then

UPT
d

L (p̃n) →
1

4
,

UPT
d

GG(p̃n)

n 4n
→ d‖L‖2

32
n→ ∞.

(B) Suppose t̃n(x) = (1 + cos 2πx1)
n + 2 cos 2π〈L, x〉, where L is not collinear to

all ej and |Lj | > 1 for all j = 1, ..., d. Then

UPT
d

L (t̃n)

n 4n
→ L2

1

32‖L‖4 ,
UPT

d

GG(t̃n)

n
→ d− 1

4
, n→ ∞.

Proof. Let us prove item (A). For convenience, we will use the notation
pn(x) = (1 + cos 2π〈L,x〉)n and some facts used in the proof of Lemma 2. Then

‖p̃n‖2Td = ‖pn‖2Td+2 =
(4n− 1)!!

(2n)!
+2, 〈ALp̃n, p̃n〉 = 〈ALpn, pn〉 = I2n+1−I2n,

BLp̃n(x) = i‖L‖2n(1 + cos(2π〈L,x〉))n−1 sin(2π〈L,x〉) + 2iL1 sin 2πx1,

‖BLp̃n‖2Td = n2‖L‖4(2I2n−1 − I2n) + 2L2
1.

Since p̃n is even and BLp̃n is odd we get 〈BLp̃n, p̃n〉 = 0. Therefore,

UPT
d

L (p̃n) =
1

‖L‖4




(
(4n−1)!!
(2n)!

+ 2
)2

(
2n

(4n−1)!!
(2n+1)!

)2 − 1







n2‖L‖4 (4n−3)!!
(2n)!

+ 2L2
1

(4n−1)!!
(2n)!

+ 2



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=
n2

(2n+ 1)(4n− 1)

(
1 + 2 (2n)!(2n+1)

(4n−1)!!

)(
2 + 2 (2n)!

(4n−1)!!
− 1

2n+1

)

(
2n

2n+1

)2




1 + 2
L2

1

‖L‖4
(2n)!(4n−1)
n2(4n−1)!!

1 + 2 (2n)!
(4n−1)!!


 .

By the Stirling formula n! =
√
2πn

(
n
e

)n
(1 + O(1/n)), it follows that (2n)!

(4n−1)!! =√
2πn(1+O( 1

n
))

22n → 0, n → ∞. Therefore, UPT
d

L (p̃n) → 1
4 , n → ∞.

Now, we compute UPT
d

GG(p̃n). Let c̃k = c̃k(p̃n) be the Fourier coefficients of
p̃n. Then

c̃0 =

∫

Td

p̃n(x)dx =

∫

Td

pn(x)dx = In =
(2n− 1)!!

n!
,

〈Aj p̃n, p̃n〉 =
∑

k∈Zd

c̃k−ej
c̃k = δj,1(c̃e1

c̃0 + c̃0c̃e1
) = 2δj,1

(2n− 1)!!

n!
,

for j = 1, . . . , d. Further,

Bj p̃n(x) = −iLjn(1 + cos(2π〈L,x〉))n−1 sin(2π〈L,x〉)− 2iδj,1 sin 2πx1.

Therefore, ‖Bj p̃n‖2Td = n2L2
j (2I2n−1 − I2n) + 2δj,1. Since p̃n is even and Bj p̃n

is odd, we get 〈Bj p̃n, p̃n〉 = 0. Hence, combining all results in the definition of

UPT
d

GG(p̃n) (2) and after some simplifications, we obtain

UPT
d

GG(p̃n) =
n2‖L‖2
4(4n− 1)

(
d

(
(4n − 1)!!

(2n)!

n!

(2n− 1)!!
+ 2

n!

(2n− 1)!!

)2

− 4

)
1 +

2(2n)!

n2‖L‖2(4n−1)!!

1 + 2 (2n)!
(4n−1)!!

.

By the Stirling formula (2n)!
(4n−1)!! =

√
2πn(1+O( 1

n
))

22n → 0 as n → ∞ and n!
(2n−1)!! =√

πn(1+O( 1

n
))

2n → 0 as n → ∞. Thus, (4n−1)!!
(2n)!

n!
(2n−1)!! =

2n

√
2
(1 + O( 1

n )) as n → ∞.

Finally, it follows that
UPT

d

GG
(p̃n)

n4n → d‖L‖2

32 as n→ ∞.
Item (B) can be proved analogously. By similar arguments it can be shown

that

UPT
d

L (t̃n) =
1

‖L‖4







(4n−1)!!
(2n)!

(2n−1)!!
n!




2
(
1 + 2 (2n)!

(4n−1)!!

)2

4
− 1




L2
1/2 + 2‖L‖4 (2n−1)!

n(4n−3)!!

1 + 2 (2n)!
(4n−1)!!

2n2

4n− 1

and

UPT
d

GG(t̃n) =

(
d

(
2n+ 1

2n
+ 2

(2n)!

(4n− 1)!!

2n+ 1

2n

)2

− 1

) n
2
+ 2‖L‖2 (2n−1)!

(4n−3)!!

1 + 2
(2n)!

(4n−1)!!

2n

4n− 1
.

The Stirling formula yields Item (B).♦

3.1 The uncertainty products for the Dirichlet and Fejér kernels

As it was noted in [15], the sequence of the Breitenberger uncertainty products of
the Dirichlet kernels Dn(x) =

∑n
k=−n e2πikx tends to infinity as n → ∞. In [14]

it was noted that the sequence of Breitenberger uncertainty products of the Fejér

kernels Fn(x) =
n∑

k=−n

(1− |k|/n)e2πikx tends to 3
10 as n→ ∞. In the multivariate
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case the analogous difference between these kernels also holds for the directional
uncertainty product and the one defined by Goh and Goodman. Different methods
of summation can be used for the Dirichlet kernel. Let us consider a rectangular
one.

Lemma 4 Let DN (x) =
∑

−N≤k≤N

e2πi〈k,x〉, where N ∈ Z
d, N > 0, L ∈ Z

d. Then

UPT
d

L (DN ) → ∞, ‖N‖ → ∞.

Proof. Let N > L, N = (N1, . . . , Nd). Since ‖DN‖2
Td =

∏d
j=1(2Nj + 1) and

〈BLDN , DN 〉 = 0, 〈ALDN , DN 〉 = ∏d
j=1(2Nj + 1− Lj) and

‖BLDN‖2Td =
∑

−N≤k≤N




d∑

j=1

(Ljkj)
2 +

d∑

j=1

d∑

n=1,n6=j

LjLnkjkn




=

d∏

j=1

(2Nj + 1)

d∑

j=1

L2
j
Nj(Nj + 1)

3
,

we obtain

UPT
d

L (DN ) =
1

‖L‖4

( ∏d
j=1(2Nj + 1)2

∏d
j=1(2Nj + 1− Lj)2

− 1

)
d∑

j=1

L2
j

Nj(Nj + 1)

3

=
1

‖L‖4

(
1−

∏d
j=1

(
1− Lj

2Nj+1

))(
1 +

∏d
j=1

(
1− Lj

2Nj+1

))

∏d
j=1

(
1− Lj

2Nj+1

)2
d∑

j=1

L2
j

Nj(Nj + 1)

3

≥ 1

‖L‖4

(
1−

(
1−min

j

Lj

2Nj + 1

)d
)

d∑

j=1

L2
j

Nj(Nj + 1)

3

≥ d

2d−1‖L‖4
min
j

Lj

2Nj + 1

d∑

j=1

L2
j

Nj(Nj + 1)

3
,

where the last inequality is due to the mean value theorem. Thus, UPT
d

L (DN ) → ∞
as ‖N‖ → ∞. ♦

For the case of the multivariate Fejér kernel

Fn(x) =
∑

k∈Zd,‖k‖∞<n

(
1− ‖k‖∞

n

)
e2πi〈k,x〉

the computation of the directional uncertainty product is more involved. For com-
putations we need the following notations

F(d, n) =
n∑

j=1

jd, Fo(d, n) =

n−1∑

j=0

(2j + 1)d = F(d, 2n)− 2dF(d, n).

Also, we need the rate of growth of the above functions when n → ∞. Due to the
Faulhaber formula, we get

F(d, n) =
nd+1

d+ 1
+
nd

2
+
dnd−1

12
+O(nd−3),
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Fo(d, n) =
2dnd+1

d+ 1
− 2d−1d nd−1

12
+O(nd−3),

Fo(d, n− 1) =
2d

d+ 1
nd+1 − 2dnd +

2d 11d

12
nd−1 +O(nd−2).

Lemma 5 Let Fn be the Fejér kernel, n ∈ N, L ∈ Z
d. Then

UPT
d

L (Fn) →
(d+ 1)2(d+ 2)2

6d (d+ 3) (d+ 4)
, n→ ∞.

Proof. Firstly, we compute

‖Fn‖2Td =
∑

‖k‖∞<n

(
1− ‖k‖∞

n

)2

= 1 +

n∑

j=1

∑

‖k‖∞=j

(
1− j

n

)2

.

It is not hard to see that the number of vectors k ∈ Z
d such that ‖k‖∞ = j is

equal to (2j + 1)d − (2j − 1)d. Applying the above equalities we can estimate the
rate of growth

‖Fn‖2Td = 1 +

n∑

j=1

((2j + 1)d − (2j − 1)d)

(
1− j

n

)2

=
2Fo(d, n)

n
− Fo(d+ 1, n)

n2

=
2d+1

(d+ 1)(d+ 2)
nd +

2d

12
nd−2 +O(nd−4).

Now we compute ‖BLFn‖2Td . Firstly, consider
∂Fn

∂x1
. LetDn(u) be the one-dimensio-

nal Dirichlet kernel. Since Fn(x) =
1
n

∑n−1
j=0

∏d
l=1Dj(xl), we obtain

∂Fn

∂x1
=

1

n

n−1∑

j=0

d∏

l=2

Dj(xl)(Dj(x1))
′
x1
.

Therefore,

‖Be1
Fn‖2Td =

1

n2

∫

Td

∣∣∣∣∣∣

n−1∑

j=0

d∏

l=2

Dj(xl)
(Dj(x1))

′
x1

2π

∣∣∣∣∣∣

2

dx

=
1

n2

n−1∑

j=0

d∏

l=2

∫

T

|Dj(xl)|2dxl
∫

T

∣∣∣∣
1

2π

dDj(x1)

dx1

∣∣∣∣
2

dx1

+
1

n2

n−1∑

j=0

n−1∑

m=0,

m6=j

d∏

l=2

∫

T

Dj(xl)Dm(xl)dxl

∫

T

1

4π2

dDj(x1)

dx1

dDm(x1)

dx1
dx1 =: S1+S2.

The first sum is equal to

S1 =
1

n2

n−1∑

j=0

(2j + 1)d−1 j(j + 1)(2j + 1)

3
=

1

n2

n−1∑

j=0

(2j + 1)d
j(j + 1)

3
.
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The second sum we rewrite as follows

S2 =
2

n2

n−1∑

j=0

n−1∑

m=j+1

d∏

l=2

∫

T

Dj(xl)Dm(xl)dxl

∫

T

1

4π2

dDj(x1)

dx1

dDm(x1)

dx1
dx1

=
2

n2

n−1∑

j=0

n−1∑

m=j+1

(2j + 1)d−1 j(j + 1)(2j + 1)

3

=
2

n2

n−2∑

j=0

(n− 1− j)(2j + 1)d
j(j + 1)

3
.

Combining the two sums together we get

‖Be1
Fn‖2Td = S1+S2 =

1

n2

n−2∑

j=0

(2n− 1− 2j)(2j+1)d
j(j + 1)

3
+

(n− 1)(2n− 1)d

3n
.

Let ck = ck(Fn) be the Fourier coefficients of Fn. Then

‖BLFn‖2Td =
∑

k∈Zd

〈L, k〉2c2k =
∑

k∈Zd




d∑

j=1

Ljkj




2

c2k

=

d∑

j=1

L2
j

∑

k∈Zd

k2j c
2
k +

d∑

j=1

d∑

m=1,

m6=j

LjLm

∑

k∈Zd

kjkmc
2
k = ‖L‖2 ‖Be1

Fn‖2Td

due to the symmetry of the coefficients. Now we establish the rate of growth of

‖BLFn‖2
Td =

‖L‖2
3n



2

n−2∑

j=0

(2j + 1)d(j2 + j)−
n−2∑

j=0

(2j + 1)d+1(j2 + j)

n
+ (n− 1)(2n− 1)d



 .

Denote G(d, n− 1) =
∑n−2

j=0 (2j + 1)d(j2 + j). It can be stated that

G(d, n− 1) =
1

4
(Fo(d+ 2, n− 1)−Fo(d, n− 1)) .

Again, we need to estimate the rate of growth of G(d, n− 1) and G(d+ 1, n− 1).
Thus,

G(d, n− 1) =
1

4

(
2d+2

d+ 3
(n− 1)d+3 +O((n− 1)d+2)

)
=

2d

d+ 3
nd+3 +O(nd+2).

Therefore,

G(d+ 1, n− 1) =
2d+1

d+ 4
nd+4 +O(nd+3).

Also note that (n− 1)(2n− 1)d = O(nd+1). So, finally,

‖BLFn‖2Td =
‖L‖2
3n

(
2G(d, n− 1)− 1

n
G(d+ 1, n− 1) + (n− 1)(2n− 1)d

)

=
‖L‖2
3n

(
2d+1

d+ 3
nd+3 − 2d+1

d+ 4
nd+3 +O(nd+2)

)

=
‖L‖2
3

(
2d+1

(d+ 3)(d+ 4)
nd+2 +O(nd+1)

)
.
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Thus, the rate of growth of ‖BLFn‖2Td/‖Fn‖2Td is given by

‖BLFn‖2Td

‖Fn‖2Td

=
‖L‖2
3

2d+1

(d+3)(d+4)n
d+2 + O(nd+1)

2d+1

(d+1)(d+2)n
d +O(nd−2)

=
‖L‖2
3

(d+ 1)(d+ 2)

(d+ 3)(d+ 4)
n2 +O(n).

Since Fn is even and ∂Fn

∂xl
, l = 1, . . . , d, are odd, then 〈BLFn, Fn〉 = 0 and also

varFL(f) = ‖BLFn‖2Td/‖Fn‖2Td .
Now, we compute the commutator

〈ALFn, Fn〉 =
∫

Td

e2πi〈L,x〉F 2
n(x)dx =

1

n2

∫

Td

e2πi〈L,x〉

∣∣∣∣∣∣

n−1∑

j=0

d∏

l=1

Dj(xl)

∣∣∣∣∣∣

2

dx

=
1

n2

n−1∑

j=0

d∏

l=1

∫

T

e2πiLlxl |Dj(xl)|2 dxl

+
1

n2

n−1∑

j=0

n−1∑

m=0,m6=j

d∏

l=1

∫

T

e2πiLlxlDj(xl)Dm(xl)dxl := R1 +R2.

Let us consider the first sum. The inner integral is the dot product of two Dirichlet
kernels which are the same but one of them is shifted by Ll. Thus, this integral is
equal to 2j + 1− |Ll|. Hence, for big enough n we get

R1 =
1

n2

n−1∑

j=n∗

d∏

l=1

(2j + 1− |Ll|),

where n∗ is such that 2n∗+1−|Ll| > 0 for all l = 1, . . . , d and 2n∗−1−|Ll| < 0 for
some l = 1, . . . , d. In fact, we need to compute the rate of growth of R1. Applying
Vieta’s formulas for R1 and the formulas for Fo(d, n) and Fo(d− 1, n), we obtain

R1 =
1

n2

n−1∑

j=n∗

(
(2j + 1)d − ‖L‖1(2j + 1)d−1

)
+O(nd−3)

=
2d

d+ 1
nd−1 − ‖L‖1

2d−1

d
nd−2 +O(nd−3),

as n→ ∞. Now, we consider

R2 =
2

n2

n−2∑

j=0

n−1∑

m=j

d∏

l=1

∫

T

e2πiLlxlDj(xl)Dm(xl)dxl.

The inner integral is the dot product of two Dirichlet kernels which are of different
size and one of them is shifted by Ll. Its value is equal to

∫

T

e2πiLlxlDj(xl)Dm(xl)dxl = 2j + 1− (|Ll| − (m− j))+.

Changing the variable of summation m to m̃ = m− j in R2, we obtain

R2 =
2

n2

n−2∑

j=0

n−1−j∑

m̃=1

d∏

l=1

(2j + 1− (|Ll| − m̃)+).
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Applying Vieta’s formulas, we get

R2 =
2

n2

n−2∑

j=0

(n− 1− j)(2j + 1)d − 2

n2

n−2∑

j=0

(2j + 1)d−1
n−1−j∑

m̃=1

d∑

l=1

(|Ll| − m̃)+ +O(nd−3),

as n→ ∞. Note that

n−1−j∑

m̃=1

d∑

l=1

(|Ll| − m̃)+ =
d∑

l=1

|Ll|∑

m̃=1

(|Ll| − m̃) =
d∑

l=1

|Ll|(|Ll| − 1)

2
=

‖L‖2 − ‖L‖1
2

.

Therefore,

R2 =
2n− 1

n2

n−2∑

j=0

(2j+1)d − 1

n2

n−2∑

j=0

(2j+1)d+1 − 2

n2

n−2∑

j=0

(2j+1)d−1 ‖L‖2 − ‖L‖1
2

+O(nd−3),

as n → ∞. Applying the Faulhaber formulas for Fo(d, n − 1), Fo(d + 1, n − 1),
Fo(d− 1, n− 1), we get

R2 =
2n− 1

n2
Fo(d, n− 1) − 1

n2
Fo(d + 1, n− 1) − 2

n2
Fo(d − 1, n− 1)

‖L‖2 − ‖L‖1
2

=
2d+1

(d+ 1)(d + 2)
nd − 2d

d+ 1
nd−1 +

(
2d

12
− 2d−1 ‖L‖2 − ‖L‖1

d

)
nd−2 +O(nd−3),

as n→ ∞. Thus,

〈ALFn, Fn〉 = R1 +R2 =
2d+1

(d+ 1)(d+ 2)
nd+

(
2d

12
− 2d−1‖L‖2

d

)
nd−2 +O(nd−3),

as n→ ∞. Combining these estimates we obtain for the angular variance

( ‖Fn‖2Td

〈ALFn, Fn〉

)2

− 1 =
‖L‖2
n2

(d+ 1)(d+ 2)

2d
+O

(
1

n3

)
, n → ∞.

So, the directional uncertainty product of the sequence of Fejér kernels is given by

UPT
d

L (Fn) =
(d+ 1)2(d+ 2)2

6d (d+ 3) (d+ 4)
+O

(
1

n

)
, n → ∞.♦

For d = 1, the limit is equal to 3
10 which coincides with the known results. For

d = 2, the limit is equal to 2
5 . For d = 3, the limit is 100

189 . Similar results are valid

for UPT
d

GG.

Lemma 6 Let DN (x) =
∑

−N≤k≤N

e2πi〈k,x〉, where N ∈ Z
d, N > 0, L ∈ Z

d. Let

Fn be the Fejér kernel, n ∈ N, L ∈ Z
d. Then

UPT
d

GG(DN ) → ∞, ‖N‖ → ∞, and UPT
d

GG(Fn) →
(d+ 1)2(d+ 2)2

6d (d+ 3) (d+ 4)
,

as n → ∞.
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Proof. Since ‖DN‖2
Td =

∏d
j=1(2Nj + 1), 〈AjDN , DN 〉 = 2Nj

∏d
i=1,i 6=j(2Ni +

1),

‖BjDN‖2Td =
Nj(Nj + 1)(2Nj + 1)

3

d∏

i=1,i 6=j

(2Ni + 1) = ‖DN‖2Td

Nj(Nj + 1)

3
,

〈BjDN , DN 〉 = 0,
〈AjDN , DN 〉

‖DN‖2
Td

= 1− 1

2Nj + 1
,

UPT
d

GG(DN ) =
d−∑d

j=1

(
1− 1

2Nj+1

)2

(
d−

∑d
j=1

1
2Nj+1

)2
d∑

j=1

Nj(Nj + 1)

3
.

Thus, UPT
d

GG(DN ) → ∞ as ‖N‖ → ∞.

Concerning the Fejér kernel, using the rates of growths and decays established
in the previous lemma, we get for j = 1, . . . , d: 〈BjFn, Fn〉 = 0,

‖BjFn‖2Td

‖Fn‖2
Td

=
1

3

(d+ 1)(d+ 2)

(d+ 3)(d+ 4)
n2 +O(n), n→ ∞,

|〈AjFn, Fn〉|
‖Fn‖2

Td

= 1− (d+ 1)(d+ 2)

4dn2
+O(1/n3), n→ ∞,

varAGG(Fn) =
(d+ 1)(d+ 2)

2d2n2
+O(1/n3), n→ ∞,

then

UPT
d

GG(Fn) = varAGG(Fn)

d∑

j=1

‖BjFn‖2Td

‖Fn‖2Td

→ (d+ 1)2(d+ 2)2

6d (d+ 3) (d+ 4)
, n→ ∞.♦

Also, we can place the Dirichlet and Fejér kernels along the direction vector L.
Namely, let

DL
n (x) =

n∑

m=−n

e2πi〈k0+Lm,x〉, FL
n (x) =

n∑

m=−n

(
1− |m|

n

)
e2πi〈k0+Lm,x〉,

for some k0 ∈ Z
d.

Lemma 7 Let L ∈ Z
d. Then UPT

d

L (DL
n ) → ∞, UPT

d

L (FL
n ) → 3

10 , as n→ ∞.

The proof can be done by straightforward computations.
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3.2 The minimal angular variance

Now we give a multivariate analogue of Rauhut’s result in [17] on minimizing the
angular variance for trigonometric polynomials. For a finite subset S in Z

d, denote
the set of trigonometric polynomials

ΠS =

{∑

k∈S

cke
2πi〈k,x〉 : ck ∈ C

}
.

Then, one is interested in best localized polynomials, i.e., for a fixed L ∈ Z
d find

all trigonometric polynomials p, whose coefficient support is inside some fixed set
S ⊂ Z

d and its directional uncertainty product takes its minimal value, i.e.

min
p∈ΠS

{UPT
d

L (p)}.

This problem is difficult for an arbitrary set S.
Nevertheless, it is possible to minimize the angular frequency and the frequency

variance separately. For the frequency variance the minimum value is equal to zero
and it attains on trigonometric polynomials that have only one non-zero coefficient
as it was shown above.

For the angular variance the situation is not so trivial. Again, since varLA(f) =
varLA(af) for any appropriate f ∈ L2(T

d) and a ∈ R
d, we can assume that ‖p‖Td =

1. So, let us consider the problem

min
p∈ΠS

{varAL(p) : ‖p‖Td = 1}. (5)

Since the set {p ∈ ΠS , ‖p‖Td = 1} is a compact set and varLA(p) is continuous
(except the cases when 〈ALp, p〉 = 0), we can conclude that the minimum exists.
During the proof of the theorem below, we need to split the set S into several
disjoint ”threads” of points. Each ”thread” U is a subset of S that looks as follows
(the order of elements is fixed)

U = {k, k + L, k + 2L, . . . , k +mL},

where m ∈ N and k ∈ S are chosen such that k − L /∈ S, and k + (m+ 1)L /∈ S.
These ”threads” are sorted by decreasing number of elements. Assume that the
number of ”threads” is u and U0 is the longest (if there are several of them, we
can take any). Therefore,

S =

u−1⋃

i=0

Ui =

u−1⋃

i=0

{ki, ki + L, . . . , ki +miL}.

The next Theorem states that the minimal angular variance (5) depends on the
length of the longest ”thread” inside S.

Theorem 4 The minimal angular variance for trigonometric polynomials with
coefficient support inside S is equal to

min
p∈ΠS

{varAL(p), ‖p‖Td = 1} = tan2 π

m0 + 2
,
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where m0+1 is the length of the longest ”thread” inside S. The minimum is attained
by the trigonometric polynomial pmin whose non-zero coefficients are placed on this
”thread”. The Fourier coefficients ck = ck(p

min) of such a polynomial are defined
as follows

ck =

{
sin πj

m0+2 if k = k0 + (j − 1)L, j = 1, . . . ,m0 + 1,

0 else.
(6)

The directional uncertainty product is given by

UPT
d

L (pmin) =
m0(m0 + 4)

12
tan2

π

m0 + 2
− 1

2
.

Proof. Note that varAL(p) =
∣∣∑

k∈Zd ck−Lck
∣∣−2 − 1. Then the minimization

problem (5) is equivalent to max

{∣∣∣∣
∑
k∈S

ck−Lck

∣∣∣∣
2

:
∑
k∈S

|ck|2 = 1

}
. Firstly, we re-

duce the problem to real coefficients. Let ck = rke
iφk , k ∈ S. Thus, we have to

maximize ∣∣∣∣∣
∑

k∈S

rk−Lrke
i(φk−L−φk)

∣∣∣∣∣

2

, as
∑

k∈S

|rk|2 = 1.

The maximum is attained only if ei(φk−L−φk) = const, ∀k ∈ S or (φk−L −φk) ≡ α
mod 2π, ∀k ∈ S, for some α ∈ R. Then we can take phases as follows φk =
β + α 〈L,k〉

‖L‖2 , where β ∈ R.

Therefore, the minimization problem (5) is reduced to the following
∑
k∈S

ck−Lck

∑
k∈S

c2k
→ max, ck ∈ R, ck ≥ 0. (7)

Let us rewrite the problem using quadratic forms. We enumerate all coefficients
using one index according to the order of ”threads” in S and the order of the
elements inside ”threads”. Hence, (7) can be written in matrix form

∑
k∈S

ck−Lck
∑
k∈S

c2k
=
CTMC

CTC
,

where C = {ck}k∈S is a column vector and M is a block diagonal matrix

M =




M0 0 . . . 0
0 M1 . . . 0
...

...
. . .

...
0 0 . . . Mu−1


 , Mi =




0 1
2 0 . . . 0

1
2 0 1

2 . . . 0
0 1

2 0 . . . 0
...

...
...
. . .

...
0 0 1

2 0 1
2

0 0 0 1
2 0



, i = 0, . . . , u− 1.

Here Mi is a (mi + 1) × (mi + 1) tridiagonal Toeplitz matrix with zeros on the
main diagonal and halves on the sub- and super-diagonal. Therefore, it remains to
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find the maximal eigenvalue of the matrix M and the corresponding eigenvector,

since CTMC
CTC

≤ λmax(M). The eigenvalues of these matrices Mi are known (see,
e.g., [12, p. 53]). They are equal to cos πn

mi+2 , n = 1, . . . ,mi + 1. Since the set of
eigenvalues of the block-diagonal matrixM is the union of eigenvalues of its blocks,
the maximum eigenvalue of M is equal to λmax(M) = cos π

m0+2 . Moreover, the
corresponding eigenvector also can be found. For the matrix Mi the eigenvector
v(i,n) corresponding to the eigenvalue cos πn

mi+2 is given coordinate-wise as follows

v
(i,n)
j = sin

πnj

mi + 2
, j = 1, . . . ,mi + 1, n = 1, . . . ,mi + 1.

Therefore, the eigenvectors of the block-diagonal matrix M can be easily defined.
Hence, the eigenvector Cmax corresponding to the maximal eigenvalue is given
by (6). The above considerations yield that

min
p∈ΠS

{varAL(p),‖p‖Td = 1} =
1

λ2max(M)
− 1 =

1

cos2 π
m0+2

− 1 = tan2
π

m0 + 2
.

Now we compute the directional uncertainty product for the polynomials with
the minimal angular variance. In fact, it remains to compute the frequency vari-
ance:

‖pmin‖2Td =
∑

k∈S

c2k =

m0+1∑

n=1

sin2 πn

m0 + 2
=
m0 + 2

2
,

∑

k∈S

〈L, k〉c2k =

m0+1∑

n=1

〈L, k0 + nL〉 sin2 πn

m0 + 2
= 〈L, k0〉

m0 + 2

2
+ ‖L‖2

m0+1∑

n=1

n sin2
πn

m0 + 2
,

∑

k∈S

〈L, k〉2c2k =

m0+1∑

n=1

〈L, k0 + nL〉2 sin2 πn

m0 + 2

= 〈L, k0〉2
m0 + 2

2
+ 2〈L, k0〉‖L‖2

m0+1∑

n=1

n sin2
πn

m0 + 2
+ ‖L‖4

m0+1∑

n=1

n2 sin2
πn

m0 + 2
.

Based on trigonometric formulas, the formulas for the Dirichlet kernel and for the
conjugate Dirichlet kernel, and taking the derivatives of those kernels we compute

varFL(p
min) =

∑
k∈Zd

〈L, k〉2|ck|2

‖pmin‖2
Td

−




∑
k∈Zd

〈L, k〉|ck|2

‖pmin‖2
Td




2

= ‖L‖4
(
m2

0 + 4m0

12
− 1

2
cot2

π

m0 + 2

)
.

Finally,

UPT
d

L (pmin) =
m0(m0 + 4)

12
tan2

π

m0 + 2
− 1

2
.

This finishes the proof. ♦

Note, for m0 → ∞, we obtain UPT
d

L (pmin) → π2

12 − 1
2 ≈ 0.3224 > 1

4 .
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Next, we establish a similar result for the uncertainty product defined by
Goh and Goodman in case where the coefficients support S is a rectangle S =∏d

j=1[−Nj , Nj ] ∩ Z
d, where all Nj > 0. The problem is to minimize

varAGG(p) =


d−

d∑

j=1

∣∣∣∣∣
∑

k∈S

ck−ej
ck

∣∣∣∣∣

2





d∑

j=1

∣∣∣∣∣
∑

k∈S

ck−ej
ck

∣∣∣∣∣




−2

when ‖p‖2
Td = 1. From the above considerations it follows that for ‖p‖2

Td = 1 the

sum

∣∣∣∣
∑
k∈S

ck−ej
ck

∣∣∣∣ for any j = 1, . . . , d cannot be greater than cos π
m+1 , where

m is the length of the longest ”thread”. Since S =
∏d

j=1[−Nj , Nj ] ∩ Z
d and

L = ej , then

∣∣∣∣
∑
k∈S

ck−ej
ck

∣∣∣∣ ≤ cos π
2Nj+2 , j = 1, . . . , d and for fixed j the equality

∣∣∣∣
∑
k∈S

ck−ej
ck

∣∣∣∣ = cos π
2Nj+2 attains, if

ck =

{
1√

Nj+1
sin πl

2Nj+2
if kj = −Nj − 1 + l, l = 1, . . . , 2Nj + 1, ki = 0, for i 6= j,

0 else,

where k = (k1, . . . , kd).
If it is possible to achieve for some pmin those values cos π

2Nj+2 for all j =

1, . . . , d simultaneously, then we get the minimal possible value for varAGG(p) which
is equal to

varAGG(pmin) =


d−

d∑

j=1

cos2
π

2Nj + 2






d∑

j=1

cos
π

2Nj + 2




−2

. (8)

Theorem 5 The value min
p∈ΠS

{varAGG(p), ‖p‖Td = 1} is given by (8) and it is at-

tained by pmin if the Fourier coefficients ck of pmin are given by

ck =
d∏

j=1

1√
Nj + 1

sin
πlj

2Nj + 2
,

where lj = kj +Nj + 1, j = 1, . . . , d, k ∈ S.

Proof. Let us show that the maximum values

∣∣∣∣
∑
k∈S

ck−ej
ck

∣∣∣∣ = cos π
2Nj+2 are

attained for all j = 1, . . . , d simultaneously. This can be checked by direct compu-
tations. Let us fix i = 1, . . . , d. Therefore,

∑

k∈S

ck−ei
ck =

d∏

j=1

1

Nj + 1

2N1+1∑

l1=1

· · ·
2Nd+1∑

ld=1

d∏

j=1

sin
πlj

2Nj + 2
sin

π(lj − δij)

2Nj + 2

=

d∏

j=1

1

Nj + 1




d∏

j=1,j 6=i

2Nj+1∑

lj=1

sin2 πlj
2Nj + 2




2Ni+1∑

li=1

sin
πli

2Ni + 2
sin

π(li − 1)

2Ni + 2
.
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It remains to note that
2Nj+1∑
lj=1

sin2
πlj

2Nj+2 = Nj + 1 and

2Ni+1∑

li=1

sin
πli

2Ni + 2
sin

π(li − 1)

2Ni + 2
=

1

2

2Ni+1∑

li=1

sin
πli

2Ni + 2

(
sin

π(li − 1)

2Ni + 2
+ sin

π(li + 1)

2Ni + 2

)

=

2Ni+1∑

li=1

sin2
πli

2Ni + 2
cos

π

2Ni + 2
= (Ni + 1) cos

π

2Ni + 2
.♦

4 Well localized multivariate periodic Parseval wavelet frames

First of all, we recall the notion of a Parseval frame. Let H be a separable Hilbert
space. If there exist constants A, B > 0 such that for any f ∈ H the following
inequality holds

A‖f‖2 ≤
∞∑

n=1

|(f, fn)|2 ≤ B‖f‖2,

then the sequence (fn)n∈N is called a frame for H. A frame is a complete system.
Moreover, any element f ∈ H can be expanded in a series

∑
n αnfn, αn ∈ C, with

respect to a frame. However, the series expansion is not unique. If A = B(= 1),
then the sequence (fn)n∈N is called a tight frame (a Parseval frame) for H.

In this section we design a family of well-localized multivariate periodic Par-
seval wavelet frames. This is a generalization of the wavelet family constructed in
[10]. It turns out that these wavelet frames have optimal localization with respect
to the dimension d of the torus Td. More precisely, we claim that

lim
j→∞

UPT
d

L (ψj) =
1

4

(d+ 2)(d2 − 2d+ 4)

d3
,

so limd→∞ limj→∞ UPT
d

L (ψj) =
1
4 .

Let A ∈ Z
d×d be a dilation matrix that means that all the eigenvalues of

the matrix are greater then 1. The determinant of A is equal to 2. Therefore,
a full collection of coset representatives of Z

d/AZd consists of 2 elements (see,
e.g., [9]). We denote these collection as {0, k0}. Further, B = AT, Kj = Z

d ∩
Bj [−1/2, 1/2)d. Put by definition fj(k) = exp

(
−‖L‖2‖k‖2

j(j−1)

)
, where L ∈ Z

d, j ≥ 2.

Let us define a Bj-periodic sequence νj(k)

νj(k) =





fj(k) k ∈ int(Kj−1),(
1− f2

j (k −Bj−1k0)
)1/2

k −Bj−1k0 ∈ int(Kj−1),

1/
√
2 k ∈ Kj−1 \ int(Kj−1),

(9)

where int(Kj) = Z
d ∩ Bj(−1/2, 1/2)d and Kj = Z

d ∩ Bj [−1/2, 1/2]d. The Bj-
periodicity means that νj(k +Bjp) = νj(k) for any k, p ∈ Z

d.
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For instance, if d = 2, A =

(
1 1
−1 1

)
, then on the main period Kj the sequence

νj(k) is defined as follows

νj(k) =





fj(k) k ∈ int(Kj−1),(
1− f2

j (k −Bj−1(v1(r) v2(r))
T)
)1/2

Bj−2[j/2]k ∈ Qr, k ∈ Kj \Kj−1,

1/
√
2 k ∈ Kj−1 \ int(Kj−1),

where Qr is the r-th quadrant of R2, v1(r) = − cos(πr/2), v2(r) = − sin(πr/2),
r = 1, . . . , 4, [y] = max{n ∈ N : n ≤ y}. Finally, let us define an auxiliary
function ξj ∈ L2(T

d) with the Fourier coefficients

ξ̂j(k) :=
∞∏

r=j+1

νr(k).

Later, in Theorem 6, we will prove that the infinite product converges. Then
scaling masks, scaling functions, wavelet masks, and wavelet functions are defined
respectively as

µj(k) :=
√
2νj(k),

ϕ̂j(k) := 2−j/2ξ̂j(k),

λj(k) := e2πi〈k0,B
−jk〉µj(k +Bj−1k0),

ψ̂j(k) := λj+1(k)ϕ̂j+1(k).

(10)

Theorem 6 Suppose ϕj , ψj are the functions defined in (10) and νj is a sequence
defined in (9). Then the set Ψ = {ϕj , ψj(· − (A−jk)}j∈N∪{0},k∈Lj

, where Lj is

a full collection of coset representatives of Z
d/Aj

Z
d, forms a Parseval frame of

L2(T
d), and the following equalities hold true

lim
j→∞

UPT
d

L (ϕj) = 1/4, lim
j→∞

UPT
d

L (ψj) =
1

4

(d+ 2)(d2 − 2d+ 4)

d3
. (11)

The scheme of the proof repeats in the main features Theorem 4 [10]. At the
same time, there are differences concerning technical details. In particular, we have
to provide a new proof for an analogue of Lemma 3 [10] since the existing proof
can not be rewritten for the multivariate case. We exploit Lemma 2 [10], so we
cite it here for convenience.

Lemma 8 (Lemma 2 [10]) Suppose α, β, γ ∈ R, m = 0, 1, . . . , and 0 < b < b1,
where b1 is an absolute constant, then

∑

k∈Z

(αk2 + βk + γ)m e−b(αk2+βk+γ)

= (−1)m
∂m

∂bm

(
exp

(
−b
(
γ − β2

4α

))√
π

bα

)
+ exp

(
−π

2 − ε

bα

)
O(1),

as b → 0, where ε > 0 is an arbitrary small parameter.

We need also several technical lemmas.
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Lemma 9 Let Bθ
j (0) ⊂ R

d be a ball centered at the origin with radius 1
2(1 + θ)j ,

θ > 0. Let M ∈ Z
d×d be a dilation matrix with determinant equal to 2. Then there

exists θ0 > 0 and j0 ∈ N such that Bθ0

j (0) ⊂M j
T
d for j ≥ j0.

Proof. Let ρ = infj ‖M−j‖1/j be the spectral radius of the matrix M . Since
M is a dilation matrix, it follows that ρ < 1. Given 0 < ε < 1 − ρ, there exists
j0 ∈ N such that (ρ + ε)j ≥ ‖M−j‖ for j ≥ j0. Suppose x ∈ Bθ

j (0), that is

‖x‖ ≤ 1
2 (1 + θ)j , then

‖M−jx‖ ≤ ‖M−j‖‖x‖ ≤ 1

2
(1 + θ)j(ρ+ ε)j for j ≥ j0.

Therefore, any θ satisfying the inequality 0 < θ < (ρ+ ε)−1 − 1 can be chosen as
θ0. This concludes the proof of Lemma 9. ♦

Lemma 10 Suppose b = b(h) = 2h2/(1− h), 0 < h < 1, and

F (x) := b‖L‖2‖x‖‖x− L‖
(
1− 1

4
b‖L‖2

(
‖x‖2 + ‖x− L‖2

))
exp(−h‖L‖2(‖x‖2 + ‖x− L‖2)),

then ∑

k∈Zd

F (k) =

∫

Rd

F (x) dx+O(h2) as h→ 0.

Proof. The Poisson summation formula
∑

k∈Zd

F (k) =
∑

k∈Zd

F̂ (k)

shows that it is sufficient to prove

∑

k∈Zd\{0}
F̂ (k) = O(h2) as h → 0.

So, we need only to find the Fourier transform of F . To this end, we rewrite the
function F as

F (x) =
2

1− h
f1(x)f1(x−L)− 1

(1− h)2
f2(x)f1(x−L)− 1

(1− h)2
f1(x)f2(x−L),

where f1(x) = h‖L‖‖x‖exp(−h‖L‖2‖x‖2), f2(x) = h3‖L‖3‖x‖3exp(−h‖L‖2‖x‖2).
Therefore, F̂ can be written as

F̂ (ξ) =
2

1− h
f̂1∗ ̂f1(· − L)(ξ)− 1

(1− h)2
f̂2∗ ̂f1(· − L)(ξ)− 1

(1− h)2
f̂1∗ ̂f2(· − L)(ξ).

It follows from elementary properties of the Fourier transform that

f̂1(ξ) = ‖L‖−dh1/2−d/2f̂3

(
ξ

h1/2‖L‖

)
, f̂2(ξ) = ‖L‖−dh3/2−d/2f̂4

(
ξ

h1/2‖L‖

)
,

where

f3(x) = ‖x‖exp(−‖x‖2), f4(x) = ‖x‖3exp(−‖x‖2).
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Since f3 is a radial function, we can exploit Theorem 3.3 chapter IV [21]. So, we
get

f̂3(ξ) = 2π‖ξ‖−d

2
+1
∫ ∞

0

r
d

2
+1e−r2

J d−2

2

(2π‖ξ‖r) dr,

where Jn is a Bessel function of the first kind. By [1, Formula 11.4.28, p. 486] we
conclude

f̂3(ξ) = πd/2 Γ (d/2 + 1/2)

Γ (d/2)
M(d/2 + 1/2, d/2, −π2‖ξ‖2),

where M is Kummer’s (confluent hypergeometric) function. The asymptotic be-
havior as ξ → ∞ of this function is known and can be found, for instance, in [1,
Formula 13.1.05, p. 504], therefore we obtain

f̂3(ξ) = −1/2π−d/2−3/2Γ (d/2 + 1/2)‖ξ‖−1−d(1 +O(‖ξ‖−2)) as ξ → ∞.

Analogously

f̂4(ξ) = 3/4π−d/2−7/2Γ (d/2 + 3/2)‖ξ‖−3−d(1 +O(‖ξ‖−2)) as ξ → ∞.

Thus, we get

f̂1(ξ) = C1(d)h‖ξ‖−1−d(1 + O(h‖ξ‖−2)) as ξ → ∞,

f̂2(ξ) = C2(d)h
3‖ξ‖−3−d(1 +O(h‖ξ‖−2)) as ξ → ∞,

and C1(d) = −1/2 ‖L‖π−d/2−3/2Γ (d/2+1/2), C2(d) = 3/4 ‖L‖3π−d/2−7/2Γ (d/2+

3/2). Since, in addition, the functions f̂1 and f̂2 are bounded, the convolutions

f̂1 ∗ ̂f1(· − L)(ξ), f̂2 ∗ ̂f1(· − L)(ξ), and f̂1 ∗ ̂f2(· − L)(ξ) are well-defined. There-
fore,

F̂ (k) = O(f̂1 ∗ ̂f1(· − L)(k)) = O(h2‖k‖−2) as h→ 0.

Thus, ∑

k∈Zd\{0}
F̂ (k) = O(h2) as h → 0,

which proves the result. ♦

Lemma 11 Let ξ0j ∈ L2(T
d) be a function defined by its Fourier coefficients

ξ̂0j (k) = exp(−‖L‖2‖k‖2/j).

Then

lim
j→∞

UPT
d

L (ξ0j ) =
1

4
.

Proof. Since the coefficient ξ̂0j (k) is a product of d one-dimensional corre-
sponding coefficients, it follows that it is sufficient to apply Lemma 8 to the series
∑

k∈Zd

∣∣∣ξ̂0j (k)
∣∣∣
2
,
∑

k∈Zd〈L, k〉2
∣∣∣ξ̂0j (k)

∣∣∣
2
, and

∑
k∈Zd ξ̂0j (k − L)ξ̂0j (k), and then to

substitute the results into the definition of UPT
d

L . The result follows by simple
computations. ♦
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Lemma 12 Let ηj ∈ L2(T
d) be a function defined by its Fourier coefficients

η̂j(k) = e2πi〈k0,B
−jk〉

(
1− exp

(
−2‖L‖2‖k‖2

j(j + 1)

))1/2

exp

(
−‖L‖2‖k‖2

j + 1

)
.

Then

lim
j→∞

UPT
d

L (ηj) =
1

4

(d+ 2)(d2 − 2d+ 4)

d3
.

Proof. Denote h = 1/(j + 1), b = b(h) = 2h2/(1 − h) = 2/(j(j + 1)). To
estimate

∑
k∈Zd

|η̂j(k)|2,
∑

k∈Zd

〈L, k〉2|η̂j(k)|2 one can use Lemma 8 as it was described

in Lemma 3 [10]. Namely,

∑

k∈Zd

|η̂j(k)|2 =
∑

k∈Zd

(
exp(−2h‖L‖2‖k‖2)− exp

(
− 2h

1− h
‖L‖2‖k‖2

))

=
d∏

n=1

∑

kn∈Z

exp(−2h‖L‖2k2n)−
d∏

n=1

∑

kn∈Z

exp

(
− 2h

1− h
‖L‖2k2n

)

=

(
π

2h‖L‖2
)d/2

−
(
π(1− h)

2h‖L‖2
)d/2

+O(e−h−1

).

Since
∑

k∈Zd knkm|η̂j(k)|2 = 0, we analogously get

∑

k∈Zd

〈L, k〉2|η̂j(k)|2 = ‖L‖2
∑

k∈Zd

k21 |η̂j(k)|2

= ‖L‖2 πd/2

2(2h‖L‖2)d/2+1

(
1− (1− h)d/2+1

)
+O(e−h−1

),

where k = (k1, k2, . . . , kd)
T.

However, we have to provide an alternative way to estimate
∑

k∈Zd

η̂j(k−L)η̂j(k).

We write
∣∣∣∣∣∣
∑

k∈Zd

η̂j(k − L)η̂j(k)

∣∣∣∣∣∣
=
∑

k∈Zd

(
1− exp

(
−b‖L‖2‖k‖2

))1/2

×
(
1− exp

(
−b‖L‖2‖k − L‖2

))1/2
exp(−h‖L‖2(‖k‖2 + ‖k − L‖2)).

Using the Taylor formula for the function f(b) = (1 − exp(−b‖L‖2‖k‖2))1/2(1 −
exp(−b‖L‖2‖k − L‖2))1/2 in the neighborhood of b = 0, we get

f(b) = b‖L‖2‖k‖‖k− L‖
(
1− b‖L‖2

(
‖k‖2 + ‖k − L‖2

)
/4
)
+ f ′′′(d̄) b3/6,

and f ′′′(d̄)b3 = O(‖k‖6h6). The last equality is deduced in Lemma 3 [10]. So, using
Lemma 8 for the remainder of the series we get

∑

k∈Zd

f ′′′(d̄)

6
b3exp(−h‖L‖2(‖k‖2+‖k−L‖2)) = O


h6

∑

k∈Zd

‖k‖6exp(−h‖k‖2)


 = O(h3−d/2).
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Therefore,
∣∣∣∣∣∣
∑

k∈Zd

η̂j(k − L)η̂j(k)

∣∣∣∣∣∣
= b‖L‖2

∑

k∈Zd

‖k‖ ‖k− L‖
(
1− 1

4
b‖L‖2

(
‖k‖2 + ‖k − L‖2

))

×exp(−h‖L‖2(‖k‖2 + ‖k − L‖2)) +O(h3−d/2).

Next, by Lemma 10 we replace the series by the integral

b‖L‖2
∫

Rd

‖x‖ ‖x− L‖
(
1− 1

4
b‖L‖2

(
‖x‖2 + ‖x− L‖2

))
exp(−h‖L‖2(‖x‖2 + ‖x+ L‖2)) dx,

change the variable y = x− L/2 to obtain

b‖L‖2
∫

Rd

∥∥∥∥y − L

2

∥∥∥∥

∥∥∥∥y +
L

2

∥∥∥∥
(
1− 1

4
b‖L‖2

(
2‖y‖2 +

‖L‖2
2

))
exp

(
−h‖L‖2

(
2‖y‖2 +

‖L‖2
2

))
dy,

and convert it to the polar coordinates y = rβ, where

β = (sinφ1 sinφ2 . . . sinφd−1, cosφ1 sinφ2 . . . sinφd−1, . . . , cosφd−1)
T.

So, we get

b‖L‖2exp
(
−h

‖L‖4
2

) ∫

[0,∞)×[0, 2π)×[0, π)d−2

r2

((
1 + r−2 ‖L‖2

4

)2

− r−2〈L, β〉2
)1/2

×
(
1− 1

4
b‖L‖2

(
2r2 +

‖L‖2
2

))
exp(−2h‖L‖2r2)

×rd−1 sinφ2 sin
2 φ3 . . . sin

d−2 φd−1 dr dφ.

Next, applying the Taylor formula for
(
(1 + r−2‖L‖2/4)2 − r−2〈L, β〉2

)1/2
with

respect to 1/r, changing the variable (2h)1/2‖L‖r = t, integrating with respect to
φ, and recalling that b = 2h2(1− h)−1, we obtain

2h

1− h
exp

(
−h

‖L‖4
2

)(
π

2h‖L‖2
)d/2 1

Γ (d/2)

×
∫ ∞

0
td+1exp(−t2)

(
1 +

d− 2

2d

‖L‖4
t2

h

)(
1− ht2

2(1− h)

)
dt.

Integrating with respect to t, we finally obtain
∣∣∣∣∣∣

∑

k∈Zd

η̂j(k − L)η̂j(k)

∣∣∣∣∣∣

=
h

1− h
exp

(
−h

‖L‖4
2

)(
π

2h‖L‖2
)d/2(d

2
+

d− 2

2d
‖L‖4h− h

1− h

d(d + 2)

8
+ O(h2)

)
.

It is easy to see that
∑

k∈Zd

〈L, k〉|η̂j(k)|2 = 0. It remains to substitute the expres-

sions for
∑

k∈Zd

|η̂j(k)|2,
∑

k∈Zd

〈L, k〉2|η̂j(k)|2, and
∑

k∈Zd

η̂j(k−L)η̂j(k) to the definition

of UPT
d

L . Lemma 12 is proved. ♦
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Proof of Theorem 6. First of all, it is straightforward to see that the infinite
product ξ̂j(k) :=

∏∞
r=j+1 νr(k) converges. As usual, if an infinite product is equal

to zero then it is also considered convergent. Indeed, it follows from (9) that
νj(k) = fj(k) for k ∈ int(Kj−1), and Lemma 9 says that there exist θ0 > 0 and
j0 ∈ N such that ‖k‖ ≤ (1 + θ0)

j/2 implies k ∈ int(Kj−1) for j ≥ j0. Therefore,
νj(k) = fj(k) for ‖k‖ ≤ (1 + θ0)

j/2. So, we get

ξ̂j(k) =





j1∏
r=j+1

νr(k)
∞∏

r=j1+1
fr(k) =

(
j1∏

r=j+1
νr(k)

)
exp

(
−‖L‖2‖k‖2

j1

)
, j < j1

∞∏
r=j+1

fr(k) = exp
(
−‖L‖2‖k‖2

j

)
, j ≥ j1

(12)

where j1 = ⌊log1+θ0
(2‖k‖)⌋+ 1. Therefore, ξ̂j(k) is well-defined and ξj ∈ L2(T

d).
Then one can check that all conditions of the unitary extension principle are
fulfilled for the functions ϕj , ψj (see Theorem 2.2 [7]). Therefore, the set Ψ =
{ϕj , ψj(· − (A−jk)}j∈N∪{0},k∈Lj

, forms a Parseval frame of L2(T
d).

To check (11), as in the univariate case, we introduce two auxiliary functions
ξ0j and ηj by the Fourier coefficients

ξ̂0j (k) = exp(−‖L‖2‖k‖2/j),

η̂j(k) = e2πi〈k0B
−jk〉

(
1− exp

(
−2‖L‖2‖k‖2

j(j + 1)

))1/2

exp

(
−‖L‖2‖k‖2

j + 1

)
.

Now we claim that

lim
j→∞

‖ξ0j − ξj‖L2(Td) +

d∑

n=1

‖(ξ0j − ξj)
′
n‖L2(Td) = 0,

lim
j→∞

‖ηj − 2j/2ψj‖L2(Td) +
d∑

n=1

‖(ηj − 2j/2ψj)
′
n‖L2(Td) = 0,

where f ′
n means again the partial derivative of f with respect to xn. Indeed,

Since ξ̂0j (k) = ξ̂j(k) and η̂j(k) = 2j/2ψ̂j(k) for k ∈ int(Kj−1), and, therefore, for

‖k‖ ≤ (1 + θ0)
j/2 (see Lemma 9), it follows that

‖ξ0j − ξj‖2L2(Td) +
d∑

n=1

‖(ξ0j − ξj)
′
n‖2L2(Td)

=
∑

‖k‖≥(1+θ0)j/2

∣∣∣ξ̂j(k)− ξ̂0j (k)
∣∣∣
2
+ 4π2

d∑

n=1

∑

‖k‖≥(1+θ0)j/2

k2n

∣∣∣ξ̂j(k)− ξ̂0j (k)
∣∣∣
2
.

By (12), we have

∣∣∣ξ̂j(k)− ξ̂0j (k)
∣∣∣ ≤ 2exp

(
−‖L‖2‖k‖2

j1

)
.

Substituting this majorant to the series, we get that the series tends to zero as
j → ∞ as a remainder of a convergent series. For the functions ηj and 2j/2ψj
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it can be checked analogously. The functional UPT
d

L is continuous with respect
to the norm ‖f‖L2(Td) +

∑d
n=1 ‖f ′

n‖L2(Td), which can be checked as in the one-

dimensional case in Lemma 1 [10]. Moreover, UPT
d

L (ξ0j ), UPT
d

L (ηj) are bounded
with respect to j, which follows from Lemma 11 and Lemma 12. Therefore,

lim
j→∞

UPT
d

L (ϕj) = lim
j→∞

UPT
d

L (ξ0j ), lim
j→∞

UPT
d

L (2j/2ψj) = lim
j→∞

UPT
d

L (ηj).

Finally, the functional UPT
d

L is homogeneous that is UPT
d

L (αf) = UPT
d

L (f), α 6= 0.
So

UPT
d

L (2j/2ψj) = UPT
d

L (ψj).

Thus,

lim
j→∞

UPT
d

L (ϕj) = lim
j→∞

UPT
d

L (ξ0j ), lim
j→∞

UPT
d

L (ψj) = lim
j→∞

UPT
d

L (ηj).

To conclude the proof of Theorem 6 it remains to apply Lemma 11 and Lemma
12. ♦

Acknowledgements The authors thank Professor O.L.Vinogradov for a valuable observation
in the proof of Lemma 12.
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