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Abstract: In various capacities of statistical signal processing two-dimensional (2-D) chirp
models have been considered significantly, particularly in image processing− to model gray-
scale and texture images, magnetic resonance imaging, optical imaging etc. In this paper we
address the problem of estimation of the unknown parameters of a 2-D chirp model under
the assumption that the errors are independently and identically distributed (i.i.d.). The key
attribute of the proposed estimation procedure is that it is computationally more efficient than
the least squares estimation method. Moreover, the proposed estimators are observed to have
the same asymptotic properties as the least squares estimators, thus providing computational
effectiveness without any compromise on the efficiency of the estimators. We extend the
propounded estimation method to provide a sequential procedure to estimate the unknown
parameters of a 2-D chirp model with multiple components and under the assumption of i.i.d.
errors we study the large sample properties of these sequential estimators. Simulation studies
and a synthetic data analysis show that the proposed estimators perform satisfactorily.

1 Introduction

A two-dimensional (2-D) chirp model has the following mathematical expression:

y(m,n) =
p∑

k=1
{A0

k cos(α0
km+ β0

km
2 + γ0

kn+ δ0
kn

2) +B0
k sin(α0

km+ β0
km

2 + γ0
kn+ δ0

kn
2)}+X(m,n);

m = 1, . . . ,M ;n = 1, . . . , N.
(1)
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Here, y(m,n) is the observed signal data, and the parameters A0
ks, B0

ks are the amplitudes, α0
ks,

γ0
ks are the frequencies and β0

ks, δ0
ks are the frequency rates. The random component X(m,n)

accounts for the noise component of the observed signal. In this paper, we assume that X(m,n)
is an independently and identically distributed (i.i.d.) random field.

It can be seen that the model admits a decomposition of two components− the deterministic
component and the random component. The deterministic component represents a gray-scale
texture and the random component makes the model more realistic for practical realisation. For
illustration, we simulate data with a fixed set of model parameters. Figure 1 represents the gray-
scale texture corresponding to the simulated data without the noise component and Figure 2
represents the contaminated texture image corresponding to the simulated data with the noise
component. This clearly suggests that the 2-D chirp signal models can be used effectively in
modelling and analysing black and white texture images.

Figure 1: Original texture. Figure 2: Noisy texture.

Apart from the applications in image analysis, these signals are commonly observed in mobile
telecommunications, surveillance systems, in radars and sonars etc. For more details on the appli-
cations, one may see the works of Francos and Friedlander [6], [7], Simeunović and Djurović [14]
and Zhang et al. [8] and the references cited therein.

Parameter estimation of a 2-D chirp signal is an important statistical signal processing prob-
lem. Recently Zhang et al. [8], Lahiri et al. [11] and Grover et al. [18] proposed some estimation
methods of note. For instance, Zhang et al. [8] proposed an algorithm based on the product cubic
phase function for the estimation of the frequency rates of the 2-D chirp signals under low signal
to noise ratio and the assumption of stationary errors. They conducted simulations to verify the
performance of the proposed estimation algorithm, however there was no study of the theoretical
properties of the proposed estimators. Lahiri et al. [13] suggested the least squares estimation
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method. They observed that the least squares estimators (LSEs) of the unknown parameters of
this model are strongly consistent and asymptotically normally distributed under the assumption
of stationary additive errors. The rates of convergence of the amplitude estimates were observed
to be M−1/2N−1/2, of the frequencies estimates, they are M−3/2N−1/2 and M−1/2N−3/2 and of
the frequency rate estimates, they are M−5/2N−1/2 and M−1/2N−5/2. Grover et al. [18] proposed
the approximate least squares estimators (ALSEs), obtained by maximising a periodogram-type
function and under the same stationary error assumptions, they observed that ALSEs are strongly
consistent and asymptotically equivalent to the LSEs.

A chirp signal is a particular case of the polynomial phase signal when the phase is a quadratic
polynomial. Although work on parameter estimation of the aforementioned 2-D chirp model is
rather limited, several authors have considered the more generalised version of this model−the
2-D polynomial phase signal model. For references, see Djurović et al. [10], Djurović [16], Francos
and Friedlander [6, 7], Friedlander and Francos [5], Lahiri and Kundu [15], Simeunović et al. [12],
Simeunović and Djurović [14] and Djurović and Simeunović [19].

In this paper, we address the problem of parameter estimation of a one-component 2-D chirp
model as well as the more general multiple-component 2-D chirp model. We put forward two
methods for this purpose. The key characteristic of the proposed estimation method is that it
reduces the foregoing 2-D chirp model into two 1-D chirp models. Thus, instead of fitting a 2-D
chirp model, we are required to fit two 1-D chirp models to the given data matrix. For the fitting,
we use a simple modification of the least squares estimation method. The proposed algorithm is
numerically more efficient than the usual least squares estimation method proposed by Lahiri et
al. [13]. For instance, for a one-component 2-D chirp model, to estimate the parameters using
these algorithms, we need to solve two 2-D optimisation problems as opposed to a 4-D optimisation
problem in the case of finding the LSEs. This also leads to curtailment of the number of grid points
required to find the initial values of the non-linear parameters as the 4-D grid search required in
case of the computation of the usual LSEs or ALSEs, reduces to two 2-D grid searches. Therefore,
instead of searching along a grid mesh consisting of M3N3 points, we need to search among
only M3 + N3 points, which is much more feasible to execute computationally. In essence, the
contributions of this paper are three-fold:

1. We put forward a computationally efficient algorithm for the estimation of the unknown
parameters of 2-D chirp signal models as a practical alternative to the usual least squares
estimation method.

2. We examine the asymptotic properties of the proposed estimators under the assumption of
i.i.d. errors and observe that the proposed estimators are strongly consistent and asymptoti-
cally normally distributed. In fact, they are observed to be asymptotically equivalent to the
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corresponding LSEs. When the errors are assumed to be Gaussian, the asymptotic variance-
covariance matrix of the proposed estimators coincides with asymptotic Cramér-Rao lower
bound.

3. We conduct simulation experiments and analyse a synthetic texture (see Figure 2) to assess
the effectiveness of the proposed estimators.

The rest of the paper is organised as follows. In the next section, we provide some preliminary
results required to study the asymptotic properties of the proposed estimators. In Section 3, we
consider a one-component 2-D chirp model and state the model assumptions, some notations and
present the proposed algorithms along with the asymptotic properties of the proposed estimators.
In Section 4, we extend the algorithm and develop a sequential procedure to estimate the param-
eters of a multiple-component 2-D chirp model. We also study the asymptotic properties of the
proposed sequential estimators in this section. We perform numerical experiments for different
model parameters in Section 5.1 and analyse a synthetic data for illustration in Section 5.2. Fi-
nally, we conclude the paper in Section 6 and we provide the proofs of all the theoretical claims in
the appendices.

2 Preliminary Results

In this section, we provide the asymptotic results obtained for the usual LSEs of the unknown
parameters of a 1-D chirp model by Lahiri et al. [13]. These results are later exploited to prove
the asymptotic normality of the proposed estimators.

2.1 One-component 1-D Chirp Model

Consider a 1-D chirp model with the following mathematical expression:

y(t) = A0 cos(α0t+ β0t2) +B0 sin(α0t+ β0t2) +X(t). (2)

Here y(t) is the observed data at time points t = 1, . . . , n, A0, B0 are the amplitudes and α0 is
the frequency and β0 is the frequency rate parameter. {X(t)}nt=1 is the sequence of error random
variables.

The LSEs of α0 and β0 can be obtained by minimising the following reduced error sum of squares:

Rn(α, β) = Qn(Â, B̂, α, β) = Y>(I−PZn(α, β))Y

where,
Qn(A,B, α, β) = (Y− Zn(α, β)φ)>(Y− Zn(α, β)φ),
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is the error sum of squares, PZn(α, β) = Zn(α, β)(Zn(α, β)>Zn(α, β))−1Zn(α, β)> is the projection
matrix on the column space of the matrix Zn(α, β),

Zn(α, β) =


cos(α + β) sin(α + β)

... ...
cos(nα + n2β) sin(nα + n2β)

 , (3)

Y =
[
y(1) . . . y(n)

]>
is the observed data vector and φ =

[
A B

]T
is the the vector of linear

parameters.

Following are the assumptions, we make on the error component and the parameters of model (2):

Assumption P1. X(t) is a sequence of i.i.d. random variables with mean zero, variance σ2 and
finite fourth order moment.

Assumption P2. (A0, B0, α0, β0) is an interior point of the parameter space Θ = (−K,K) ×
(−K,K)× (0, π)× (0, π), where K is a positive real number and A02 +B02

> 0.

Theorem P1. Let us denote R′n(α, β) as the first derivative vector and R′′n(α, β) as the second
derivative matrix of the function Rn(α, β). Then, under the assumptions P1 and P2, we have:

−R′n(α0, β0)∆→ N2(0, 2σ2Σ−1), (4)

∆R′′n(α0, β0)∆→ Σ−1. (5)

Here, ∆ = diag( 1
n
√
n
, 1
n2√n),

Σ = 2
A02 +B02

 96 −90
−90 90

 and (6)

Σ−1 =
A02+B02

12
A02+B02

12
A02+B02

12
4(A02+B02)

45

 . (7)

The notation N2(µ,V) means bivariate normally distributed with mean vector µ2×1 and variance-
covariance matrix V2×2.

Proof. This proof follows from Theorem 2 of Lahiri et al. [13].
�
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2.2 Multiple-component 1-D Chirp Model

Now we consider a 1-D chirp model with multiple components, mathematically expressed as follows:

y(t) =
p∑

k=1
{A0

k cos(α0
kt+ β0

kt
2) +B0

k sin(α0
kt+ β0

kt
2)}+X(t); t = 1, . . . , n.

Here, A0
ks, B0

ks are the amplitudes, α0
ks are the frequencies and β0

k are the frequency rates, the
parameters that characterise the observed signal y(t) and X(t) is the random noise component.

Lahiri et al. [13] suggested a sequential procedure to estimate the unknown parameters of the
above model. We discuss in brief, the proposed sequential procedure and then state some of the
asymptotic results they established, germane to our work.

Step 1: The first step of the sequential method is to estimate the non-linear parameters of the
first component of the model, α0

1 and β0
1 , say α̂1 and β̂1 by minimising the following reduced

error sum of squares:
R1,n(α, β) = Y>(I−PZn(α, β))Y

with respect to α and β simultaneously.

Step 2: Then the first component linear parameter estimates, Â1 and B̂1 are obtained using the
separable linear regression of Richards [1] as follows:

Â1

B̂1

 = [Zn(α̂1, β̂1)>Zn(α̂1, β̂1)]−1Zn(α̂1, β̂1)>Y.

Step 3: Once we have the estimates of the first component parameters, we take out its effect
from the original signal and obtain a new data vector as follows:

Y1 = Y− Zn(α̂1, β̂1)
Â1

B̂1

 .
Step 4: Then the estimates of the second component parameters are obtained by using the new

data vector and following the same procedure and the process is repeated p times.

Under the Assumption P1 on the error random variables and the following assumption on the
parameters:

Assumption P3. (A0
k, B

0
k, α

0
k, β

0
k) is an interior point of Θ, for all k = 1, . . . , p and the frequencies

and the frequency rates are such that (α0
i , β

0
i ) 6= (α0

j , β
0
j ) ∀i 6= j.
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Assumption P4. A0
ks and B0

ks satisfy the following relationship:

K2 > A0
1

2 +B0
1

2
> A0

2
2 +B0

2
2
> . . . > A0

p
2 +B0

p
2
> 0,

we have the following results.

Theorem P2. Let us denote R′k,n(α, β) as the first derivative vector and R′′k,n(α, β) as the second
derivative matrix of the function Rk,n(α, β), k = 1, . . . , p. Then, under the assumptions P1, P3
and P4:

− 1√
n

R′k,n(α0, β0)∆→ 0, (8)

−R′k,n(α0, β0)∆→ N2(0, 2σ2Σ−1
k ), (9)

∆R′′k,n(α0, β0)∆→ Σ−1
k . (10)

Here, ∆ is as defined in Theorem P1,

Σk = 2
A0
k

2 +B0
k

2

 96 −90
−90 90

 and (11)

Σ−1
k =

A0
k

2+B0
k

2

12
A0

k
2+B0

k
2

12
A0

k
2+B0

k
2

12
4(A0

k
2+B0

k
2)

45

 . (12)

Proof. The proof of (8) follows along the same lines as proof of Lemma 4 of Lahiri et al. [13]
and that of (9) and (10) follows from Theorem 2 of Lahiri et al. [13]. Note that Lahiri et al. [13]
showed that the sequential LSEs have the same asymptotic distribution as the usual LSEs based
on a famous number theory conjecture (see the reference).

�

3 One-Component 2-D Chirp Model

In this section, we provide the methodology to obtain the proposed estimators for the parameters
of a one-component 2-D chirp model, mathematically expressed as follows:

y(m,n) = A0 cos(α0m+ β0m2 + γ0n+ δ0n2) +B0 sin(α0m+ β0m2 + γ0n+ δ0n2) +X(m,n);
m = 1, . . . ,M ;n = 1, . . . , N.

(13)

Here y(m,n) is the observed data vector and the parameters A0, B0 are the amplitudes, α0, γ0

are the frequencies and β0, δ0 are the frequency rates of the signal model. As mentioned in the
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introduction, X(m,n) accounts for the noise present in the signal.

We will use the following notations: θ = (A,B, α, β, γ, δ) is the parameter vector,
θ0 = (A0, B0, α0, β0, γ0, δ0) is the true parameter vector and Θ = (−K,K)× (−K,K)× (0, π)×
(0, π)× (0, π)× (0, π) is the parameter space.

3.1 Proposed Methodology

Let us consider the above-stated 2-D chirp signal model with one-component. Suppose we fix
n = n0, then (13) can be rewritten as follows:

y(m,n0) = A0 cos(α0m+ β0m2 + γ0n0 + δ0n2
0) +B0 sin(α0m+ β0m2 + γ0n0 + δ0n2

0) +X(m,n0)
= A0(n0) cos(α0m+ β0m2) +B0(n0) sin(α0m+ β0m2) +X(m,n0); m = 1, · · · ,M,

(14)

which represents a 1-D chirp model with A0(n0), B0(n0) as the amplitudes, α0 as the frequency
parameter and β0 as the frequency rate parameter. Here,

A0(n0) = A0 cos(γ0n0 + δ0n2
0) +B0 sin(γ0n0 + δ0n2

0), and
B0(n0) = −A0 sin(γ0n0 + δ0n2

0) +B0 cos(γ0n0 + δ0n2
0).

Thus for each fixed n0 ∈ {1, . . . , N}, we have a 1-D chirp model with the same frequency and
frequency rate parameters, though different amplitudes. This 1-D model corresponds to a column
of the 2-D data matrix.

Our aim is to estimate the non-linear parameters α0 and β0 from the columns of the data
matrix and one of the most reasonable estimators for this purpose are the least squares estimators.
Therefore, the estimators of α0 and β0 can be obtained by minimising the following function:

RM(α, β, n0) = Y>n0(I−PZM
(α, β))Yn0

for each n0. Here, Yn0 =
[
y[1, n0] . . . y[M,n0]

]>
is the n0th column of of the original data

matrix, PZM
(α, β) = ZM(α, β)(ZM(α, β)>ZM(α, β))−1ZM(α, β)> is the projection matrix on the

column space of the matrix ZM(α, β) and the matrix ZM(α, β) can be obtained by replacing n
by M in (3). This process involves minimising N 2-D functions corresponding to the N columns
of the matrix. Thus, for computational efficiency, we propose to minimise the following function
instead:

R
(1)
MN(α, β) =

N∑
n0=1

RM(α, β, n0) =
N∑

n0=1
Y>n0(I−PZM

(α, β))Yn0 (15)
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with respect to α and β simultaneously and obtain α̂ and β̂ which reduces the estimation process
to solving only one 2-D optimisation problem. Note that since the errors are assumed to be i.i.d.
replacing these N functions by their sum is justifiable.

Similarly, we can obtain the estimates, γ̂ and δ̂, of γ0 and δ0, by minimising the following
criterion function:

R
(2)
MN(γ, δ) =

M∑
m0=1

RN(γ, δ,m0) =
M∑

m0=1
Y>m0(I−PZN

(γ, δ))Ym0 (16)

with respect to γ and δ simultaneously. The data vector Ym0 =
[
y[m0, 1] . . . y[m0, N ]

]>
, is the

m0th row of the data matrix, m0 = 1, . . . ,M , PZN
(γ, δ) is the projection matrix on the column

space of the matrix ZN(γ, δ) and the matrix ZN(γ, δ) can be obtained by replacing n by N and α
and β by γ and δ respectively in the matrix Zn(α, β), defined in (3).

Once we have the estimates of the non-linear parameters, we estimate the linear parameters
by the usual least squares regression technique as proposed by Lahiri et al. [13]:

Â
B̂

 = [W(α̂, β̂, γ̂, δ̂)TW(α̂, β̂, γ̂, δ̂)]−1W(α̂, β̂, γ̂, δ̂)TY.

Here, YMN×1 =
[
y(1, 1) . . . y(M, 1) . . . y(1, N) . . . y(M,N)

]T
is the observed data vec-

tor, and

W(α, β, γ, δ)MN×2 =



cos(α + β + γ + δ) sin(α + β + γ + δ)
cos(2α + 4β + γ + δ) sin(2α + 4β + γ + δ)

... ...
cos(Mα +M2β + γ + δ) sin(Mα +M2β + γ + δ)

... ...
cos(α + β +Nγ +N2δ) sin(α + β +Nγ +N2δ)

cos(2α + 4β +Nγ +N2δ) sin(2α + 4β +Nγ +N2δ)
... ...

cos(Mα +M2β +Nγ +N2δ) sin(Mα +M2β +Nγ +N2δ)



. (17)

We make the following assumptions on the error component and the model parameters before we
examine the asymptotic properties of the proposed estimators:

Assumption 1. X(m,n) is a double array sequence of i.i.d. random variables with mean zero,
variance σ2 and finite fourth order moment.

Assumption 2. The true parameter vector θ0 is an interior point of the parametric space Θ1,
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and A02 +B02
> 0.

3.2 Consistency

The results obtained on the consistency of the proposed estimators are presented in the following
theorems:

Theorem 1. Under assumptions 1 and 2, α̂ and β̂ are strongly consistent estimators of α0 and
β0 respectively, that is,

α̂
a.s.−−→ α0 as M →∞.

β̂
a.s.−−→ β0 as M →∞.

Proof. See Appendix A.
�

Theorem 2. Under assumptions 1 and 2, γ̂ and δ̂ are strongly consistent estimators of γ0 and δ0

respectively, that is,

γ̂
a.s.−−→ γ0 as N →∞.

δ̂
a.s.−−→ δ0 as N →∞.

Proof. This proof follows along the same lines as the proof of Theorem 1.
�

3.3 Asymptotic distribution.

The following theorems provide the asymptotic distributions of the proposed estimators:

Theorem 3. If the assumptions, 1 and 2 are satisfied, then

[
(α̂− α0) , (β̂ − β0)

]
D−1

1
d−→ N2(0, 2σ2Σ) as M →∞.

Here, D1 = diag(M −3
2 N

−1
2 ,M

−5
2 N

−1
2 ) and Σ is as defined in (6).

Proof. See Appendix A.
�

Theorem 4. If the assumptions, 1 and 2 are satisfied, then

[
(γ̂ − γ0) , (δ̂ − δ0)

]
D−1

2
d−→ N2(0, 2σ2Σ) as N →∞.

Here, D2 = diag(M −1
2 N

−3
2 ,M

−1
2 N

−5
2 ) and Σ is as defined in (6).
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Proof. This proof follows along the same lines as the proof of Theorem 3.
�

The asymptotic distributions of (α̂, β̂) and (γ̂, δ̂) are observed to be the same as those of the
corresponding LSEs. Thus, we get the same efficiency as that of the LSEs without going through
the exhaustive process of actually computing the LSEs.

4 Multiple-Component 2-D Chirp model

In this section, we consider the multipl-component 2-D chirp model with p number of components,
with the mathematical expression of the model as given in (1). Although estimation of p is an
important problem, in this paper we deal with the estimation of the other important parameters
characterising the observed signal, the amplitudes, the frequencies and the frequency rates, as-
suming p to be known. We propose a sequential procedure to estimate these parameters. The
main idea supporting the proposed sequential procedure is same as that behind the ones proposed
by Prasad et al. [9] for a sinusoidal model and Lahiri et al. [13] and Grover et al. [17] for a
chirp model− the orthogonality of different regressor vectors. Along with the computationally ef-
ficiency, the sequential method provides estimators with the same rates of convergence as the LSEs.

4.1 Proposed Sequential Algorithm

The following algorithm is a simple extension of the method proposed to obtain the estimators for
a one-component 2-D model in Section 3.1:

Step 1: Compute α̂1 and β̂1 by minimising the following function:

R
(1)
1,MN(α, β) =

N∑
n0=1

Y>n0(I−PZM
(α, β))Yn0

with respect to α and β simultaneously.

Step 2: Compute γ̂1 and δ̂1 by minimising the function:

R
(2)
1,MN(γ, δ) =

M∑
m0=1

Y>m0(I−PZN
(α, β))Ym0

with respect to γ and δ simultaneously.



12

Step 3:Once the nonlinear parameters of the first component of the model are estimated, estimate
the linear parameters A0

1 and B0
1 by the usual least squares estimation technique:

Â1

B̂1

 = [W(α̂1, β̂1, γ̂1, δ̂1)TW(α̂1, β̂1, γ̂1, δ̂1)]−1W(α̂1, β̂1, γ̂1, δ̂1)TY.

Here, YMN×1 =
[
y(1, 1) . . . y(M, 1) . . . y(1, N) . . . y(M,N)

]T
is the observed data

vector, and the matrix W(α̂1, β̂1, γ̂1, δ̂1) can be obtained by replacing α, β, γ and δ by α̂1,
β̂1, γ̂1 and δ̂1 respectively in (17).

Step 4: Eliminate the effect of the first component from the original data and construct new
data as follows:

y1(m,n) = y(m,n)− Â1 cos(α̂1m+ β̂1m
2 + γ̂1n+ δ̂1n

2)− B̂1 sin(α̂1m+ β̂1m
2 + γ̂1n+ δ̂1n

2);
m = 1, . . . ,M ; n = 1, . . . , N.

(18)

Step 5: Using the new data, estimate the parameters of the second component by following the
same procedure.

Step 6: Continue this process until all the parameters are estimated.

In the following subsections, we examine the asymptotic properties of the proposed estimators
under the assumptions 1, P4 and the following assumption on the parameters:

Assumption 3. θ0
k is an interior point of Θ1, for all k = 1, . . . , p and the frequencies α0

ks, γ0
ks

and the frequency rates β0
ks, δ0

ks are such that (α0
i , β

0
i ) 6= (α0

j , β
0
j ) and (γ0

i , δ
0
i ) 6= (γ0

j , δ
0
j ) ∀i 6= j.

4.2 Consistency.

Through the following theorems, we proclaim the consistency of the proposed estimators when the
number of components, p is unknown.

Theorem 5. If assumptions 1, 3 and P4 are satisfied, then the following results hold true for
1 6 k 6 p:

α̂k
a.s.−−→ α0

k as M →∞,

β̂k
a.s.−−→ β0

k as M →∞.

Proof. See Appendix B.
�
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Theorem 6. If assumptions 1, 3 and P4 are satisfied, then the following results hold true for
1 6 k 6 p:

γ̂k
a.s.−−→ γ0

k as N →∞,

δ̂k
a.s.−−→ δ0

k as N →∞.

Proof. This proof can be obtained along the same lines as proof of Theorem 5.
�

Theorem 7. If the assumptions 1, 3 and P4 are satisfied, and if Âk, B̂k, α̂k, β̂k, γ̂k and δ̂k are
the estimators obtained at the k-th step, then
for k 6 p,

Âk
a.s−→ A0

k as min{M,N} → ∞

B̂k
a.s−→ B0

k as min{M,N} → ∞,

and for k > p,

Âk
a.s−→ 0 as min{M,N} → ∞

B̂k
a.s−→ 0 as min{M,N} → ∞.

Proof. This proof follows from the proof of Theorem 2.4.4 of Lahiri [13].
�

Note that we do not know the number of components in practice. The problem of estimation of
p is an important problem though we have not considered it here. From the above theorem, it is
clear that if the number of components of the fitted model is less than or same as the true number
of components, p, then the amplitude estimators converge to their true values almost surely, else
if it is more than p, then the amplitude estimators upto the p-th step converge to the true values
and past that, they converge to zero almost surely. Thus, this result can be used a criterion to
estimate the number p. However, this might not work in low signal to noise ratio scenarios.

4.3 Asymptotic distribution.

Theorem 8. If assumptions 1, 3 and P4 are satisfied, then for 1 6 k 6 p :

[
(α̂k − α0

k) , (β̂k − β0
k)
]

D−1
1

d−→ N2(0, 2σ2Σk) as M →∞.

Here D1 is as defined in Theorem 3 and Σk is as defined in (11).

Proof. See Appendix B.
�
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Theorem 9. If the assumptions, 1, 3 and P4 are satisfied, then

[
(γ̂k − γ0

k) , (δ̂k − δ0
k)
]

D−1
2

d−→ N2(0, 2σ2Σk) as N →∞.

Here D2 is as defined in Theorem 4 and Σk is as defined in (11).

Proof. This proof follows along the same lines as the proof of Theorem 8.
�

5 Numerical Experiments and Simulated Data Analysis

5.1 Numerical Experiments

We perform simulations to examine the performance of the proposed estimators. We consider the
following two cases:

Case I: When the data are generated from a one-component model (13), with the following set
of parameters:
A0 = 2, B0 = 3, α0 = 1.5, β0 = 0.5, γ0 = 2.5 and δ0 = 0.75.

Case II: When the data are generated from a two components model (1), with the following set
of parameters:
A0

1 = 5, B0
1 = 4, α0

1 = 2.1, β0
1 = 0.1, γ0

1 = 1.25 and δ0
1 = 0.25, A0

2 = 3, B0
2 = 2, α0

2 = 1.5,
β0

2 = 0.5, γ0
2 = 1.75 and δ0

2 = 0.75.

The noise used in the simulations is generated from Gaussian distribution with mean 0 and variance
σ2. Also, different values of the error variance, σ2 and sample sizes, M and N are considered. We
estimate the parameters using the proposed estimation technique as well as the least squares
estimation technique for Case I and for Case II, the proposed sequential technique and the
sequential least squares technique proposed by Lahiri [13] are employed for comparison. For each
case, the procedure is replicated 1000 times and the average values of the estimates, the average
biases and the mean square errors (MSEs) are reported. The collation of the MSEs and the
theoretical asymptotic variances (Avar) exhibits the efficacy of the proposed estimation method.

5.1.1 One-component simulation results

In Table 1-Table 4, the results obtained through simulations forCase I are presented. It is observed
that as M and N increase, the average estimates get closer to the true values, the average biases
decrease and the MSEs decrease as well, thus verifying consistency of the proposed estimates.
Also, the biases and the MSEs of both types of estimates increase as the error variance increases.
The MSEs of the proposed estimators are of the same order as those of the LSEs and thus are
well-matched with the corresponding asymptotic variances.
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Parameters α β γ δ α β γ δ
True values 1.5 0.5 2.5 0.75 1.5 0.5 2.5 0.75
σ Proposed estimators Usual LSEs

0.10 Avg 1.5000 0.5000 2.5000 0.7500 1.5000 0.5000 2.5000 0.7500
Bias 3.26e-05 -1.23e-06 2.37e-05 -1.26e-06 2.86e-05 -1.07e-06 2.13e-05 -1.17e-06
MSE 9.01e-07 1.21e-09 8.34e-07 1.14e-09 8.75e-07 1.19e-09 8.02e-07 1.10e-09
Avar 7.56e-07 1.13e-09 7.56e-07 1.13e-09 7.56e-07 1.13e-09 7.56e-07 1.13e-09

0.50 Avg 1.4997 0.5000 2.4999 0.7500 1.4998 0.5000 2.5000 0.7500
Bias -2.78e-04 1.05e-05 -6.85e-05 3.20e-06 -2.01e-04 7.90e-06 -7.23e-06 8.39e-07
MSE 2.37e-05 3.18e-08 2.17e-05 3.11e-08 2.17e-05 2.97e-08 2.07e-05 2.95e-08
Avar 1.89e-05 2.84e-08 1.89e-05 2.84e-08 1.89e-05 2.84e-08 1.89e-05 2.84e-08

1.00 Avg 1.5004 0.5000 2.4998 0.7500 1.5004 0.5000 2.4998 0.7500
Bias 4.11e-04 -1.77e-05 -2.24e-04 8.00e-06 3.63e-04 -1.60e-05 -2.16e-04 7.57e-06
MSE 9.54e-05 1.22e-07 8.92e-05 1.25e-07 8.92e-05 1.17e-07 8.48e-05 1.18e-07
Avar 7.56e-05 1.13e-07 7.56e-05 1.13e-07 7.56e-05 1.13e-07 7.56e-05 1.13e-07

Table 1: Estimates of the parameters of model (13) when M = N = 25

Parameters α β γ δ α β γ δ
True values 1.5 0.5 2.5 0.75 1.5 0.5 2.5 0.75
σ Proposed estimators Usual LSEs

0.10 Avg 1.5000 0.5000 2.5000 0.7500 1.5000 0.5000 2.5000 0.7500
Bias 5.53e-06 -1.25e-07 2.33e-06 -4.65e-08 2.51e-06 -7.96e-08 -1.89e-06 2.57e-08
MSE 4.88e-08 1.83e-11 5.09e-08 1.88e-11 4.14e-08 1.54e-11 4.65e-08 1.72e-11
Avar 4.73e-08 1.77e-11 4.73e-08 1.77e-11 4.73e-08 1.77e-11 4.73e-08 1.77e-11

0.50 Avg 1.5000 0.5000 2.5000 0.7500 1.5000 0.5000 2.5000 0.7500
Bias -3.57e-05 4.91e-07 -4.47e-05 7.83e-07 2.56e-06 -2.61e-07 -4.19e-05 6.84e-07
MSE 1.35e-06 4.93e-10 1.31e-06 4.78e-10 1.16e-06 4.18e-10 1.18e-06 4.34e-10
Avar 1.18e-06 4.43e-10 1.18e-06 4.43e-10 1.18e-06 4.43e-10 1.18e-06 4.43e-10

1.00 Avg 1.5000 0.5000 2.5000 0.7500 1.5000 0.5000 2.5000 0.7500
Bias 2.11e-05 -2.41e-07 -2.42e-05 2.35e-07 5.55e-06 -1.92e-09 -2.37e-05 2.45e-07
MSE 5.36e-06 1.92e-09 5.03e-06 1.77e-09 4.38e-06 1.56e-09 4.53e-06 1.60e-09
Avar 4.73e-06 1.77e-09 4.73e-06 1.77e-09 4.73e-06 1.77e-09 4.73e-06 1.77e-09

Table 2: Estimates of the parameters of model (13) when M = N = 50

Parameters α β γ δ α β γ δ
True values 1.5 0.5 2.5 0.75 1.5 0.5 2.5 0.75
σ Proposed estimators Usual LSEs

0.10 Avg 1.5000 0.5000 2.5000 0.7500 1.5000 0.5000 2.5000 0.7500
Bias -5.61e-06 5.15e-08 9.53e-07 7.95e-10 -5.73e-06 5.26e-08 -2.45e-07 1.47e-08
MSE 9.77e-09 1.60e-12 1.02e-08 1.65e-12 9.48e-09 1.56e-12 9.10e-09 1.48e-12
Avar 9.34e-09 1.56e-12 9.34e-09 1.56e-12 9.34e-09 1.56e-12 9.34e-09 1.56e-12

0.50 Avg 1.5000 0.5000 2.5000 0.7500 1.5000 0.5000 2.5000 0.7500
Bias -3.55e-05 3.80e-07 1.73e-06 -1.05e-07 -3.45e-05 3.63e-07 4.93e-06 -1.46e-07
MSE 2.45e-07 4.00e-11 2.39e-07 3.86e-11 2.01e-07 3.29e-11 1.79e-07 2.96e-11
Avar 2.33e-07 3.89e-11 2.33e-07 3.89e-11 2.33e-07 3.89e-11 2.33e-07 3.89e-11

1.00 Avg 1.5000 0.5000 2.5000 0.7500 1.5000 0.5000 2.5000 0.7500
Bias -4.93e-06 7.23e-08 4.93e-05 -6.60e-07 -1.67e-05 2.28e-07 2.78e-05 -3.89e-07
MSE 1.01e-06 1.67e-10 1.06e-06 1.74e-10 8.29e-07 1.39e-10 7.77e-07 1.31e-10
Avar 9.34e-07 1.56e-10 9.34e-07 1.56e-10 9.34e-07 1.56e-10 9.34e-07 1.56e-10

Table 3: Estimates of the parameters of model (13) when M = N = 75
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Parameters α β γ δ α β γ δ
True values 1.5 0.5 2.5 0.75 1.5 0.5 2.5 0.75
σ Proposed estimators Usual LSEs

0.10 Avg 1.5000 0.5000 2.5000 0.7500 1.5000 0.5000 2.5000 0.7500
Bias -5.76e-07 -5.65e-10 6.02e-07 2.59e-09 -6.66e-07 -1.33e-10 4.29e-07 3.89e-09
MSE 3.23e-09 2.92e-13 3.00e-09 2.85e-13 2.47e-09 2.28e-13 2.87e-09 2.74e-13
Avar 2.95e-09 2.77e-13 2.95e-09 2.77e-13 2.95e-09 2.77e-13 2.95e-09 2.77e-13

0.50 Avg 1.5000 0.5000 2.5000 0.7500 1.5000 0.5000 2.5000 0.7500
Bias -5.41e-06 5.31e-08 1.12e-05 -1.10e-07 -1.07e-06 1.56e-08 1.38e-05 -1.34e-07
MSE 8.11e-08 7.28e-12 7.52e-08 6.83e-12 5.41e-08 5.03e-12 5.54e-08 5.18e-12
Avar 7.38e-08 6.92e-12 7.38e-08 6.92e-12 7.38e-08 6.92e-12 7.38e-08 6.92e-12

1.00 Avg 1.5000 0.5000 2.5000 0.7500 1.5000 0.5000 2.5000 0.7500
Bias -1.98e-05 1.63e-07 1.43e-05 -8.73e-08 -8.54e-06 6.29e-08 1.12e-05 -5.96e-08
MSE 2.83e-07 2.56e-11 2.96e-07 2.75e-11 1.91e-07 1.77e-11 2.07e-07 1.97e-11
Avar 2.95e-07 2.77e-11 2.95e-07 2.77e-11 2.95e-07 2.77e-11 2.95e-07 2.77e-11

Table 4: Estimates of the parameters of model (13) when M = N = 100

5.1.2 Two component simulation results

We present the simulation results for Case II in Table 5-Table 8. From these tables, it is evident
that the average estimates are quite close to the true values. The results also verify consistency of
the proposed sequential estimators. It is also observed that the MSEs of the parameter estimates
of the first component are mostly of the same order as the corresponding theoretical variances
while those of the second component have exactly the same order as the corresponding asymptotic
variances.

5.2 Simulated Data Analysis

We analyse a synthetic texture data using model (1) to demonstrate how the proposed parameter
estimation methods work. The synthetic data is generated using the following model structure
and parameters:

y(m,n) =
5∑

k=1
{A0

k cos(α0
km+ β0

km
2 + γ0

kn+ δ0
kn

2) +B0
k sin(α0

km+ β0
km

2 + γ0
kn+ δ0

kn
2)} (19)

The true parameter values are provided in Table 9. The errors X(m,n)s are i.i.d. random variables
with mean 0 and variance 100. Figure 1 represents the original texture without any contamination
and Figure 2 represents the noisy texture. Our purpose is to extract the original gray-scale texture
from the one which is contaminated.
We model the data using the proposed sequential procedure and the parameter estimates obtained
using the sequential estimators are presented in Table 10. From the obtained estimates, it can
be inferred that the first four components are estimated satisfactorily but the last component is
hardly detected. This makes sense as the amplitudes corresponding to the last component are very
small. The estimated texture is plotted in Figure 3 and it is evident that the estimated texture
and the original texture look extremely well matched.
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σ Proposed sequential estimates Sequential LSEs
0.10 First Component Parameters α1 β1 γ1 δ1 α1 β1 γ1 δ1

True values 2.1 0.1 1.25 0.25 2.1 0.1 1.25 0.25
Average 2.1016 0.0998 1.2614 0.2500 2.1031 0.0998 1.2565 0.2500
Bias 1.63e-03 -1.81e-04 1.14e-02 -4.71e-05 3.05e-03 -1.76e-04 6.46e-03 3.94e-05
MSE 2.92e-06 3.30e-08 1.31e-04 2.60e-09 9.59e-06 3.12e-08 4.20e-05 1.91e-09
AVar 2.40e-07 3.60e-10 2.40e-07 3.60e-10 2.40e-07 3.60e-10 2.40e-07 3.60e-10

Second Component Parameters α2 β2 γ2 δ2 α2 β2 γ2 δ2
True values 1.5 0.5 1.75 0.75 1.5 0.5 1.75 0.75
Average 1.5018 0.5000 1.7520 0.7499 1.5017 0.5000 1.7510 0.7500
Bias 1.83e-03 -1.92e-05 1.98e-03 -6.41e-05 1.68e-03 -2.19e-05 1.03e-03 -2.95e-05
MSE 4.19e-06 1.54e-09 4.96e-06 5.53e-09 3.61e-06 1.59e-09 1.97e-06 2.12e-09
AVar 7.56e-07 1.13e-09 7.56e-07 1.13e-09 7.56e-07 1.13e-09 7.56e-07 1.13e-09

0.50 First Component Parameters α1 β1 γ1 δ1 α1 β1 γ1 δ1
True values 2.1 0.1 1.25 0.25 2.1 0.1 1.25 0.25
Average 2.1017 0.0998 1.2613 0.2500 2.1031 0.0998 1.2563 0.2500
Bias 1.71e-03 -1.83e-04 1.13e-02 -4.38e-05 3.13e-03 -1.78e-04 6.32e-03 4.34e-05
MSE 8.92e-06 4.14e-08 1.35e-04 1.18e-08 1.60e-05 3.98e-08 4.61e-05 1.07e-08
AVar 5.99e-06 8.99e-09 5.99e-06 8.99e-09 5.99e-06 8.99e-09 5.99e-06 8.99e-09

Second Component Parameters α2 β2 γ2 δ2 α2 β2 γ2 δ2
True values 1.5 0.5 1.75 0.75 1.5 0.5 1.75 0.75
Average 1.5017 0.5000 1.7522 0.7499 1.5015 0.5000 1.7512 0.7500
Bias 1.69e-03 -1.05e-05 2.16e-03 -6.94e-05 1.51e-03 -1.25e-05 1.17e-03 -3.35e-05
MSE 2.54e-05 3.37e-08 3.15e-05 4.22e-08 2.35e-05 3.18e-08 2.40e-05 3.31e-08
AVar 1.89e-05 2.84e-08 1.89e-05 2.84e-08 1.89e-05 2.84e-08 1.89e-05 2.84e-08

1.00 First Component Parameters α1 β1 γ1 δ1 α1 β1 γ1 δ1
True values 2.1 0.1 1.25 0.25 2.1 0.1 1.25 0.25
Average 2.1015 0.0998 1.2616 0.2499 2.1029 0.0998 1.2567 0.2500
Bias 1.54e-03 -1.79e-04 1.16e-02 -5.63e-05 2.93e-03 -1.72e-04 6.67e-03 3.07e-05
MSE 2.98e-05 6.77e-08 1.65e-04 4.44e-08 3.72e-05 6.70e-08 6.97e-05 3.66e-08
AVar 2.40e-05 3.60e-08 2.40e-05 3.60e-08 2.40e-05 3.60e-08 2.40e-05 3.60e-08

Second Component Parameters α2 β2 γ2 δ2 α2 β2 γ2 δ2
True values 1.5 0.5 1.75 0.75 1.5 0.5 1.75 0.75
Average 1.5018 0.5000 1.7516 0.7499 1.5018 0.5000 1.7507 0.7500
Bias 1.79e-03 -1.57e-05 1.64e-03 -5.47e-05 1.75e-03 -2.25e-05 7.18e-04 -2.07e-05
MSE 9.84e-05 1.41e-07 1.20e-04 1.66e-07 9.40e-05 1.35e-07 1.01e-04 1.40e-07
AVar 7.56e-05 1.13e-07 7.56e-05 1.13e-07 7.56e-05 1.13e-07 7.56e-05 1.13e-07

Table 5: Estimates of the parameters of model (1) when M = N = 25
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σ Proposed sequential estimates Sequential LSEs
0.10 First Component Parameters α1 β1 γ1 δ1 α1 β1 γ1 δ1

True values 2.1 0.1 1.25 0.25 2.1 0.1 1.25 0.25
Average 2.1006 0.1000 1.2567 0.2499 2.1011 0.1000 1.2572 0.2499
Bias 6.07e-04 -8.61e-06 6.70e-03 -1.11e-04 1.07e-03 -1.11e-05 7.20e-03 -1.22e-04
MSE 3.85e-07 8.02e-11 4.49e-05 1.23e-08 1.15e-06 1.29e-10 5.18e-05 1.49e-08
AVar 1.50e-08 5.62e-12 1.50e-08 5.62e-12 1.50e-08 5.62e-12 1.50e-08 5.62e-12

Second Component Parameters α2 β2 γ2 δ2 α2 β2 γ2 δ2
True values 1.5 0.5 1.75 0.75 1.5 0.5 1.75 0.75
Average 1.5006 0.5000 1.7506 0.7500 1.5008 0.5000 1.7507 0.7500
Bias 6.09e-04 -1.05e-05 5.56e-04 -9.98e-06 7.51e-04 -1.36e-05 6.83e-04 -1.20e-05
MSE 4.23e-07 1.30e-10 3.60e-07 1.18e-10 6.13e-07 2.03e-10 5.17e-07 1.61e-10
AVar 4.73e-08 1.77e-11 4.73e-08 1.77e-11 4.73e-08 1.77e-11 4.73e-08 1.77e-11

0.50 First Component Parameters α1 β1 γ1 δ1 α1 β1 γ1 δ1
True values 2.1 0.1 1.25 0.25 2.1 0.1 1.25 0.25
Average 2.1006 0.1000 1.2567 0.2499 2.1011 0.1000 1.2572 0.2499
Bias 6.27e-04 -9.05e-06 6.72e-03 -1.11e-04 1.09e-03 -1.15e-05 7.22e-03 -1.22e-04
MSE 8.09e-07 2.36e-10 4.56e-05 1.25e-08 1.58e-06 2.78e-10 5.25e-05 1.51e-08
AVar 3.75e-07 1.40e-10 3.75e-07 1.40e-10 3.75e-07 1.40e-10 3.75e-07 1.40e-10

Second Component Parameters α2 β2 γ2 δ2 α2 β2 γ2 δ2
True values 1.5 0.5 1.75 0.75 1.5 0.5 1.75 0.75
Average 1.5006 0.5000 1.7505 0.7500 1.5008 0.5000 1.7506 0.7500
Bias 6.09e-04 -1.07e-05 5.04e-04 -8.84e-06 7.52e-04 -1.38e-05 6.26e-04 -1.07e-05
MSE 1.68e-06 5.94e-10 1.50e-06 5.49e-10 1.79e-06 6.29e-10 1.62e-06 5.72e-10
AVar 1.18e-06 4.43e-10 1.18e-06 4.43e-10 1.18e-06 4.43e-10 1.18e-06 4.43e-10

1.00 First Component Parameters α1 β1 γ1 δ1 α1 β1 γ1 δ1
True values 2.1 0.1 1.25 0.25 2.1 0.1 1.25 0.25
Average 2.1006 0.1000 1.2567 0.2499 2.1011 0.1000 1.2572 0.2499
Bias 5.98e-04 -8.36e-06 6.70e-03 -1.11e-04 1.06e-03 -1.09e-05 7.20e-03 -1.22e-04
MSE 1.92e-06 6.44e-10 4.66e-05 1.29e-08 2.64e-06 6.72e-10 5.34e-05 1.55e-08
AVar 1.50e-06 5.62e-10 1.50e-06 5.62e-10 1.50e-06 5.62e-10 1.50e-06 5.62e-10

Second Component Parameters α2 β2 γ2 δ2 α2 β2 γ2 δ2
True values 1.5 0.5 1.75 0.75 1.5 0.5 1.75 0.75
Average 1.5006 0.5000 1.7507 0.7500 1.5008 0.5000 1.7508 0.7500
Bias 6.49e-04 -1.10e-05 6.55e-04 -1.15e-05 7.70e-04 -1.36e-05 7.92e-04 -1.38e-05
MSE 5.75e-06 2.09e-09 4.50e-06 1.65e-09 5.66e-06 2.03e-09 4.68e-06 1.68e-09
AVar 4.73e-06 1.77e-09 4.73e-06 1.77e-09 4.73e-06 1.77e-09 4.73e-06 1.77e-09

Table 6: Estimates of the parameters of model (1) when M = N = 50
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σ Proposed sequential estimates Sequential LSEs
0.10 First Component Parameters α1 β1 γ1 δ1 α1 β1 γ1 δ1

True values 2.1 0.1 1.25 0.25 2.1 0.1 1.25 0.25
Average 2.1000 0.1000 1.2528 0.2500 2.1000 0.1000 1.2528 0.2500
Bias -6.14e-06 -8.37e-07 2.81e-03 -3.31e-05 -2.85e-05 9.79e-08 2.80e-03 -3.27e-05
MSE 3.06e-09 1.19e-12 7.90e-06 1.10e-09 5.96e-09 8.46e-13 7.84e-06 1.07e-09
AVar 2.96e-09 4.93e-13 2.96e-09 4.93e-13 2.96e-09 4.93e-13 2.96e-09 4.93e-13

Second Component Parameters α2 β2 γ2 δ2 α2 β2 γ2 δ2
True values 1.5 0.5 1.75 0.75 1.5 0.5 1.75 0.75
Average 1.5001 0.5000 1.7500 0.7500 1.5001 0.5000 1.7500 0.7500
Bias 5.82e-05 -5.89e-07 5.55e-06 1.89e-07 5.64e-05 -5.67e-07 2.25e-05 -2.69e-08
MSE 1.26e-08 1.85e-12 9.86e-09 1.64e-12 1.23e-08 1.82e-12 1.02e-08 1.57e-12
AVar 9.34e-09 1.56e-12 9.34e-09 1.56e-12 9.34e-09 1.56e-12 9.34e-09 1.56e-12

0.50 First Component Parameters α1 β1 γ1 δ1 α1 β1 γ1 δ1
True values 2.1 0.1 1.25 0.25 2.1 0.1 1.25 0.25
Average 2.1000 0.1000 1.2528 0.2500 2.1000 0.1000 1.2528 0.2500
Bias 1.36e-05 -1.06e-06 2.82e-03 -3.33e-05 -1.21e-05 -9.17e-08 2.82e-03 -3.29e-05
MSE 7.02e-08 1.24e-11 8.05e-06 1.12e-09 7.03e-08 1.14e-11 8.01e-06 1.09e-09
AVar 7.40e-08 1.23e-11 7.40e-08 1.23e-11 7.40e-08 1.23e-11 7.40e-08 1.23e-11

Second Component Parameters α2 β2 γ2 δ2 α2 β2 γ2 δ2
True values 1.5 0.5 1.75 0.75 1.5 0.5 1.75 0.75
Average 1.5000 0.5000 1.7500 0.7500 1.5000 0.5000 1.7500 0.7500
Bias 4.54e-05 -3.85e-07 7.93e-06 1.36e-07 3.58e-05 -2.65e-07 2.58e-05 -9.44e-08
MSE 2.50e-07 4.08e-11 2.49e-07 4.03e-11 2.21e-07 3.65e-11 2.42e-07 3.91e-11
AVar 2.33e-07 3.89e-11 2.33e-07 3.89e-11 2.33e-07 3.89e-11 2.33e-07 3.89e-11

1.00 First Component Parameters α1 β1 γ1 δ1 α1 β1 γ1 δ1
True values 2.1 0.1 1.25 0.25 2.1 0.1 1.25 0.25
Average 2.1000 0.1000 1.2528 0.2500 2.1000 0.1000 1.2528 0.2500
Bias 1.22e-05 -1.10e-06 2.82e-03 -3.32e-05 -9.57e-06 -1.62e-07 2.81e-03 -3.27e-05
MSE 3.09e-07 5.09e-11 8.28e-06 1.15e-09 3.07e-07 4.96e-11 8.18e-06 1.12e-09
AVar 2.96e-07 4.93e-11 2.96e-07 4.93e-11 2.96e-07 4.93e-11 2.96e-07 4.93e-11

Second Component Parameters α2 β2 γ2 δ2 α2 β2 γ2 δ2
True values 1.5 0.5 1.75 0.75 1.5 0.5 1.75 0.75
Average 1.5000 0.5000 1.7501 0.7500 1.5000 0.5000 1.7501 0.7500
Bias 3.16e-05 -2.66e-07 5.78e-05 -6.26e-07 2.85e-06 7.51e-08 6.49e-05 -7.12e-07
MSE 9.43e-07 1.52e-10 9.58e-07 1.55e-10 8.36e-07 1.36e-10 9.41e-07 1.52e-10
AVar 9.34e-07 1.56e-10 9.34e-07 1.56e-10 9.34e-07 1.56e-10 9.34e-07 1.56e-10

Table 7: Estimates of the parameters of model (1) when M = N = 75
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σ Proposed sequential estimates Sequential LSEs
0.10 First Component Parameters α1 β1 γ1 δ1 α1 β1 γ1 δ1

True values 2.1 0.1 1.25 0.25 2.1 0.1 1.25 0.25
Average 2.0992 0.1000 1.2507 0.2500 2.0995 0.1000 1.2504 0.2500
Bias -7.92e-04 5.60e-06 7.40e-04 -6.20e-06 -4.67e-04 2.68e-06 4.46e-04 -3.57e-06
MSE 6.32e-07 3.19e-11 5.49e-07 3.85e-11 2.19e-07 7.27e-12 2.00e-07 1.28e-11
AVar 9.37e-10 8.78e-14 9.37e-10 8.78e-14 9.37e-10 8.78e-14 9.37e-10 8.78e-14

Second Component Parameters α2 β2 γ2 δ2 α2 β2 γ2 δ2
True values 1.5 0.5 1.75 0.75 1.5 0.5 1.75 0.75
Average 1.5000 0.5000 1.7500 0.7500 1.5000 0.5000 1.7500 0.7500
Bias 1.94e-05 -1.60e-07 -8.18e-06 1.64e-08 1.46e-05 -1.19e-07 -3.32e-06 -2.62e-08
MSE 3.17e-09 2.88e-13 3.25e-09 2.91e-13 2.99e-09 2.73e-13 3.15e-09 2.89e-13
AVar 2.95e-09 2.77e-13 2.95e-09 2.77e-13 2.95e-09 2.77e-13 2.95e-09 2.77e-13

0.50 First Component Parameters α1 β1 γ1 δ1 α1 β1 γ1 δ1
True values 2.1 0.1 1.25 0.25 2.1 0.1 1.25 0.25
Average 2.0992 0.1000 1.2507 0.2500 2.0995 0.1000 1.2504 0.2500
Bias -7.93e-04 5.61e-06 7.35e-04 -6.15e-06 -4.61e-04 2.63e-06 4.41e-04 -3.52e-06
MSE 6.55e-07 3.38e-11 5.65e-07 4.01e-11 2.37e-07 9.07e-12 2.19e-07 1.47e-11
AVar 2.34e-08 2.20e-12 2.34e-08 2.20e-12 2.34e-08 2.20e-12 2.34e-08 2.20e-12

Second Component Parameters α2 β2 γ2 δ2 α2 β2 γ2 δ2
True values 1.5 0.5 1.75 0.75 1.5 0.5 1.75 0.75
Average 1.5000 0.5000 1.7500 0.7500 1.5000 0.5000 1.7500 0.7500
Bias 1.84e-05 -1.28e-07 -1.52e-05 1.01e-07 1.36e-05 -8.67e-08 -1.06e-05 6.10e-08
MSE 8.03e-08 7.24e-12 7.48e-08 6.90e-12 7.96e-08 7.16e-12 7.42e-08 6.86e-12
AVar 7.38e-08 6.92e-12 7.38e-08 6.92e-12 7.38e-08 6.92e-12 7.38e-08 6.92e-12

1.00 First Component Parameters α1 β1 γ1 δ1 α1 β1 γ1 δ1
True values 2.1 0.1 1.25 0.25 2.1 0.1 1.25 0.25
Average 2.0992 0.1000 1.2507 0.2500 2.0995 0.1000 1.2505 0.2500
Bias -7.86e-04 5.52e-06 7.46e-04 -6.24e-06 -4.53e-04 2.53e-06 4.52e-04 -3.61e-06
MSE 7.16e-07 3.95e-11 6.55e-07 4.79e-11 2.99e-07 1.49e-11 3.00e-07 2.17e-11
AVar 9.37e-08 8.78e-12 9.37e-08 8.78e-12 9.37e-08 8.78e-12 9.37e-08 8.78e-12

Second Component Parameters α2 β2 γ2 δ2 α2 β2 γ2 δ2
True values 1.5 0.5 1.75 0.75 1.5 0.5 1.75 0.75
Average 1.5000 0.5000 1.7500 0.7500 1.5000 0.5000 1.7500 0.7500
Bias -1.78e-05 1.53e-07 1.71e-05 -2.75e-07 -2.13e-05 1.78e-07 1.87e-05 -2.92e-07
MSE 3.05e-07 2.86e-11 3.02e-07 2.78e-11 3.03e-07 2.83e-11 2.98e-07 2.76e-11
AVar 2.95e-07 2.77e-11 2.95e-07 2.77e-11 2.95e-07 2.77e-11 2.95e-07 2.77e-11

Table 8: Estimates of the parameters of model (1) when M = N = 100

Table 9: True parameters values of the synthetic data.
A0

1 6 B0
1 6 α0

1 2.75 β0
1 0.05 γ0

1 2.5 δ0
1 0.075

A0
2 2 B0

2 2 α0
2 1.75 β0

2 0.01 γ0
2 1.5 δ0

2 0.025
A0

3 1 B0
3 1 α0

3 1.5 β0
3 0.15 γ0

3 2 δ0
3 0. 25

A0
4 0.5 B0

4 0.5 α0
4 1.75 β0

4 0.75 γ0
4 2.75 δ0

4 0.275
A0

5 0.1 B0
5 0.1 α0

5 1.95 β0
5 0.95 γ0

5 2.95 δ0
5 0.295
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Table 10: Estimates obtained using the sequential procedure for the synthetic data.
Â1 5.8773 B̂1 6.1384 α̂1 2.7499 β̂1 0.0500 γ̂1 2.5004 δ̂1 0.0749
Â2 2.2789 B̂2 1.7718 α̂2 1.7492 β̂2 0.0100 γ̂2 1.4988 δ̂2 0.0250
Â3 1.0856 B̂3 0.9090 α̂3 1.4999 β̂3 0.1499 γ̂3 1.9979 δ̂3 0.2500
Â4 0.4828 B̂4 0.5418 α̂4 1.7482 β̂4 0.7500 γ̂4 2.7547 δ̂4 0.2749
Â5 0.0251 B̂5 -0.0106 α̂5 2.2254 β̂5 1.1450 γ̂5 3.2173 δ̂5 0.5945

Figure 3: Estimated texture for the synthetic data.

6 Concluding Remarks

In this paper, we have considered the estimation of unknown parameters of a 2-D chirp model
under the assumption of i.i.d. additive errors. The main idea is to reduce the computational
complexity involved in finding the LSEs of these parameters. The proposed estimators minimise
the computations to a great extent and are observed to be strongly consistent and asymptotically
equivalent to the LSEs. For a 2-D chirp model with p number of components, we have proposed a
sequential procedure which reduces the problem of estimation of the parameters to solving p num-
ber of 2-D optimisation problems. Moreover, the propounded sequential estimators are observed
to be strongly consistent and asymptotically equivalent to the usual LSEs.

An alternative method to estimate the non-linear parameters of a one-component 2-D chirp
model is to maximize the following periodogram-type functions:

I
(1)
MN(α, β) = 2

MN

N∑
n0=1

Y>n0ZM(α, β)ZM(α, β)>Yn0 (20)
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I
(2)
MN(γ, δ) = 2

MN

M∑
m0=1

Y>m0ZN(γ, δ)ZN(γ, δ)>Ym0 (21)

with respect to α, β and γ, δ respectively. These periodogram-type functions are constructed in
the same way as the reduced error sum of squares functions defined in (15) and (16) with the
same idea to reduce 2-D chirp model to a number of 1-D chirp models with same frequency and
frequency rate parameters as the original 2-D model but with different amplitudes.

Using some number theoretic results established by Lahiri [13], it is easy to show that the
following relationship exists between the reduced error sum of squares and the periodogram-type
functions:

1
N
R

(1)
MN(α, β) = 1

N

N∑
n0=1

Y>n0Yn0 − I
(1)
MN(α, β) + o(1) (22)

Here, a function f is o(1), if f → 0 almost surely as M → ∞. A similar relation can be seen
between R

(2)
MN(γ, δ) and I

(2)
MN(γ, δ). Thus, replacing the functions R(1)

MN(α, β) and R
(2)
MN(γ, δ) by

I
(1)
MN(α, β) and I

(2)
MN(γ, δ) respectively is plausible as its effect on the estimators will be incon-

sequential. However, this replacement simplifies the estimation process to a great extent as the
evaluation of periodogram-type functions does not involve matrix inversion.

This relationship is analogous to the one that was first proposed by Walker [2] for the sinu-
soidal model and later Grover et al. [17, 18] extended the same for 1-D and 2-D chirp models.
The estimators obtained by maximising a periodogram function [2] or a periodogram-type function
[17, 18] are called the approximate least squares estimators (ALSEs). In fact, Grover et al. [17, 18]
showed that the ALSEs are strongly consistent and asymptotically equivalent to the corresponding
LSEs. Furthermore, they showed that the ALSEs have two distinctive and noteworthy aspects−
(a) their consistency is obtained under slightly less restrictive assumptions on the linear param-
eters than those required for the LSEs and (b) their computation is faster as compared to the
LSEs due to absence of a matrix inversion in the former case. Therefore, it will be interesting to
investigate the behaviour of the estimators obtained by maximising functions (20) and (21) and
to assess their computational performance as compared to the estimators we proposed in this paper.

The numerical experiments− the simulations and the data analysis, show that the proposed
estimation technique provides as accurate results as the least squares estimation method with the
additional advantage of being computationally more efficient. Thus to summarise, the proposed
estimators seem to be the method of choice as their performance is satisfactory and as efficient as
the LSEs, both numerically and analytically.
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Appendix A

Henceforth, we will denote θ(n0) = (A(n0), B(n0), α, β) as the parameter vector and θ0(n0) =
(A0(n0), B0(n0), α0, β0) as the true parameter vector of the 1-D chirp model (14).
To prove Theorem 1, we need the following lemma:

Lemma 1. Consider the set Sc = {(α, β) : |α− α0|> c or |β − β0|> c}. If for any c > 0,

lim inf inf
(α,β)∈Sc

1
MN

[
R

(1)
MN(α, β)−R(1)

MN(α0, β0)
]
> 0 a.s. (23)

then, α̂ → α0 and β̂ → β0 almost surely as M →∞.

Proof. This proof follows along the same lines as that of Lemma 1 of Wu [3].
�

Proof of Theorem 1: Let us consider the following:

lim inf inf
(α,β)∈Sc

1
MN

[
R

(1)
MN(α, β)−R(1)

MN(α0, β0)
]

= lim inf inf
(α,β)∈Sc

1
MN

[ N∑
n0=1

RM(α, β, n0)−
N∑

n0=1
RM(α0, β0, n0)

]

= lim inf inf
(α,β)∈Sc

1
MN

[ N∑
n0=1

QM(Â(n0), B̂(n0), α, β)−
N∑

n0=1
QM(Â(n0), B̂(n0), α0, β0)

]

> lim inf inf
(α,β)∈Sc

1
MN

[ N∑
n0=1

QM(Â(n0), B̂(n0), α, β)−
N∑

n0=1
QM(A0(n0), B0(n0), α0, β0)

]

> lim inf inf
θ(n0)∈Mn0

c

1
MN

[ N∑
n0=1

QM(A(n0), B(n0), α, β)−
N∑

n0=1
QM(A0(n0), B0(n0), α0, β0)

]

>
1
N

N∑
n0=1

lim inf inf
θ(n0)∈Mn0

c

1
M

[
QM(θ(n0))−QM(θ0(n0))

]
> 0.

This follows from the proof of Theorem 1 of Kundu and Nandi [8]. Here, QM(A(n0), B(n0), α, β) =
Y>n0(I − ZM(α, β)(ZM(α, β)>ZM(α, β))−1ZM(α, β)>)Yn0 . Also note that the set Mn0

c = {θ(n0) :
|A(n0)−A0(n0)|> c or |B(n0)−B0(n0)|> c or |α−α0|> c or |β−β0|> c} which implies Sc ⊂Mn0

c ,
for all n0 ∈ {1, . . . , N}. Thus, using Lemma 1, α̂ a.s.−−→ α0 and β̂ a.s.−−→ β0.

�

Proof of Theorem 3: Let us denote ξ = (α, β) and ξ̂ = (α̂, β̂), the estimator of ξ0 = (α0, β0)
obtained by minimising the function R(1)

MN(ξ) = R
(1)
MN(α, β) defined in (15).

Using multivariate Taylor series, we expand the 1×2 first derivative vector R(1)′
MN(ξ̂) of the function

R
(1)
MN(ξ), around the point ξ0 as follows:

R(1)′
MN(ξ̂)−R(1)′

MN(ξ0) = (ξ̂ − ξ0)R(1)′′
MN(ξ̄),
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where ξ̄ is a point between ξ̂ and ξ0 and R(1)′′
MN(ξ̄) is the 2 × 2 second derivative matrix of the

function R(1)
MN(ξ) at the point ξ̄. Since ξ̂ minimises the function R(1)

MN(ξ), R(1)′
MN(ξ̂) = 0. Thus, we

have
(ξ̂ − ξ0) = −R(1)′

MN(ξ0)[R(1)′′
MN(ξ̄)]−1.

Multiplying both sides by the diagonal matrix D−1
1 = diag(M −3

2 N
−1
2 ,M

−5
2 N

−1
2 ), we get:

(ξ̂ − ξ0)D−1
1 = −R(1)′

MN(ξ0)D1[D1R
(1)′′
MN(ξ̄)D1]−1. (24)

Consider the vector,

R(1)′
MN(ξ0)D1 =

[
1

M3/2N1/2
∂R

(1)
MN (ξ0)
∂α

1
M3/2N1/2

∂R
(1)
MN (ξ0)
∂β

]
.

On computing the elements of this vector and using preliminary result (4) (see Section 2.1) and
the definition of the function:

R
(1)
MN(α, β) =

N∑
n0=1

RM(α, β, n0)

we obtain the following result:

−R(1)′
MN(ξ0)D1

d−→ N2(0, 2σ2Σ) as M →∞. (25)

Since ξ̂
a.s.−−→ ξ0, and as each element of the matrix R(1)′′

MN(ξ) is a continuous function of ξ, we have

lim
M→∞

D1R(1)′′
MN(ξ̄)D1 = lim

M→∞
D1R(1)′′

MN(ξ0)D1.

Now using preliminary result (5) (see Section 2.1), it can be seen that:

lim
M→∞

D1R(1)′′
MN(ξ0)D1 → Σ−1. (26)

On combining (24), (25) and (26), we have the desired result.

Appendix B

To prove Theorem 5, we need the following lemmas:

Lemma 2. Consider the set S1
c = {(α, β) : |α− α0

1|> c or |β − β0
1 |> c}.If for any c > 0,

lim inf inf
(α,β)∈S1

c

1
MN

[R(1)
1,MN(α, β)−R(1)

1,MN(α0
1, β

0
1)] > 0 a.s. (27)

then, α̂1 → α0
1 and β̂1 → β0

1 almost surely as M →∞.
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Proof. This proof follows along the same lines as proof of Lemma 1.
�

Lemma 3. If assumptions 1, 3 and P4 are satisfied then:

M(α̂1 − α0
1) a.s.−−→ 0,

M2(β̂1 − β0
1) a.s.−−→ 0.

Proof. Let us denote R(1)′
1,MN(ξ) as the 1 × 2 first derivative vector and R(1)′′

1,MN(ξ) as the 2 × 2
second derivative matrix of the function R(1)

1,MN(ξ). Using multivariate Taylor series expansion, we
expand the function R(1)′

1,MN(ξ̂1) around the point ξ0
1 as follows:

R(1)′
1,MN(ξ̂1)−R(1)′

1,MN(ξ0
1) = (ξ̂1 − ξ0

1)R(1)′′
1,MN(ξ̄1)

where ξ̄1 is a point between ξ̂1 and ξ0
1. Note that R(1)′

1,MN(ξ̂1) = 0. Thus, we have:

(ξ̂1 − ξ0
1) = −R(1)′

1,MN(ξ0
1)[R(1)′′

1,MN(ξ̄1)]−1. (28)

Multiplying both sides by 1√
MN

D−1
1 , we get:

(ξ̂1 − ξ0
1)(
√
MND1)−1 = − 1√

MN
R(1)′

1,MN(ξ0
1)D1[D1R(1)′′

1,MN(ξ̄1)D1]−1. (29)

Since each of the elements of the matrix R(1)′′
1,MN(ξ) is a continuous function of ξ,

lim
M→∞

D1R(1)′′
1,MN(ξ̄1)D1 = lim

M→∞
D1R(1)′′

1,MN(ξ0
1)D1.

By definition,

R
(1)
1,MN(ξ) =

N∑
n0=1

R1,M(ξ, n0). (30)

Using this and the preliminary result (8) and (10) (see Section 2.2), it can be seen that:

− 1√
MN

R(1)′
1,MN(ξ0

1)D1
a.s.−−→ 0 as M →∞. (31)

D1R(1)′′
1,MN(ξ0

1)D1
a.s.−−→ Σ−1

1 as M →∞. (32)

On combining (29), (31) and (32), we have the desired result.
�

Proof of Theorem 5: Consider the left hand side of (27), that is,

lim inf inf
(α,β)∈S1

c

1
MN

[
R

(1)
1,MN(α, β)−R(1)

1,MN(α0
1, β

0
1)
]
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= lim inf inf
(α,β)∈S1

c

1
MN

[ N∑
n0=1

Q1,M(Â1(n0), B̂1(n0), α, β)−
N∑

n0=1
Q1,M(Â1(n0), B̂1(n0), α0

1, β
0
1)
]

> lim inf inf
(α,β)∈S1

c

1
MN

[ N∑
n0=1

Q1,M(Â1(n0), B̂1(n0), α, β)−
N∑

n0=1
Q1,M(A0

1(n0), B0
1(n0), α0

1, β
0
1)
]

> lim inf inf
θ1(n0)∈M1,n0

c

1
MN

[ N∑
n0=1

Q1,M(A1(n0), B1(n0), α, β)−
N∑

n0=1
Q1,M(A0

1(n0), B0
1(n0), α0

1, β
0
1)
]

>
1
N

N∑
n0=1

lim inf inf
θ1(n0)∈M1,n0

c

1
M

[
Q1,M(θ1(n0))−Q1,M(θ0

1(n0))
]
> 0.

Here, Q1,M(A(n0), B(n0), α, β) = Y>n0(I − ZM(α, β)(ZM(α, β)>ZM(α, β))−1ZM(α, β)>)Yn0 and
M1,n0

c can be obtained by replacing α0 and β0 by α0
1 and β0

1 respectively, in the set Mn0
c defined

in Lemma 1. The last step follows from the proof of Theorem 2.4.1 of Lahiri [13]. Thus, using
Lemma 2, α̂1

a.s.−−→ α0
1 and β̂1

a.s.−−→ β0
1 as M →∞.

Following similar arguments, one can obtain the consistency of γ̂1 and δ̂1 as N →∞. Also,

N(γ̂1 − γ0
1) a.s.−−→ 0,

N2(δ̂1 − δ0
1) a.s.−−→ 0.

The proof of the above equations follows along the same lines as the proof of Lemma 3. From
Theorem 7, it follows that as min{M,N} → ∞:

(Â1 − A0
1) a.s.−−→ 0,

(B̂1 −B0
1) a.s.−−→ 0.

Thus, we have the following relationship between the first component of model (1) and its estimate:

Â1 cos(α̂1m+ β̂1m
2 + γ̂1n+ δ̂1n

2) + B̂1 sin(α̂1m+ β̂1m
2 + γ̂1n+ δ̂1n

2) =
A0

1 cos(α0
1m+ β0

1m
2 + γ0

1n+ δ0
1n

2) +B0
1 sin(α0

1m+ β0
1m

2 + γ0
1n+ δ0

1n
2) + o(1).

(33)

Here a function g is o(1), if g → 0 almost surely as min{M,N} → ∞.

Using (33) and following the same arguments as above for the consistency of α̂1, β̂1, γ̂1 and δ̂1, we
can show that, α̂2, β̂2, γ̂2 and δ̂2 are strongly consistent estimators of α0

2, β0
2 , γ0

2 and δ0
2 respectively.

And the same can be extended for k 6 p. Hence, the result.
�

Proof of Theorem 7: We will consider the following two cases that will cover both the scenarios−
underestimation as well as overestimation of the number of components:
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• Case 1: When k = 1:Â1

B̂1

 = [W(α̂1, β̂1, γ̂1, δ̂1)>W(α̂1, β̂1, γ̂1, δ̂1)]−1W(α̂1, β̂1, γ̂1, δ̂1)>Y (34)

Using Lemma 1 of Lahiri et al. [13], it can be seen that:

1
MN

[W(α̂1, β̂1, γ̂1, δ̂1)>W(α̂1, β̂1, γ̂1, δ̂1)]→ 1
2I2×2 as min{M,N} → ∞.

Substituting this result in (34), we get:
Â1

B̂1

 = 2
MN

W(α̂1, β̂1, γ̂1, δ̂1)>Y + o(1)

=


2

MN

N∑
n=1

M∑
m=1

y(m,n) cos(α̂1m+ β̂1m
2 + γ̂1n+ δ̂1n

2) + o(1)

2
MN

N∑
n=1

M∑
m=1

y(m,n) sin(α̂1m+ β̂1m
2 + γ̂1n+ δ̂1n

2) + o(1)

 .

Now consider the estimate Â1. Using multivariate Taylor series, we expand the function
cos(α̂1m+ β̂1m

2 + γ̂1n+ δ̂1n
2) around the point (α0

1, β
0
1 , γ

0
1 , δ

0
1) and we obtain:

Â1 = 2
MN

y(m,n)
{

cos(α0
1m+ β0

1m
2 + γ0

1n+ δ0
1n

2)−m(α̂1 − α0
1) sin(α0

1m+ β0
1m

2 + γ0
1n+ δ0

1n
2)

−m2(β̂1 − β0
1) sin(α0

1m+ β0
1m

2 + γ0
1n+ δ0

1n
2)− n(γ̂1 − γ0

1) sin(α0
1m+ β0

1m
2 + γ0

1n+ δ0
1n

2)

− n2(δ̂1 − δ0
1) sin(α0

1m+ β0
1m

2 + γ0
1n+ δ0

1n
2)
}

→ 2× A0
1

2 = A0
1 almost surely as min{M,N} → ∞,

using (1) and Lemma 1 and Lemma 2 of Lahiri et al. [13]. Similarly, it can be shown that
B̂1 → B0

1 almost surely as min{M,N} → ∞.

For the second component linear parameter estimates, consider:

Â2

B̂2

 =


2

MN

N∑
n=1

M∑
m=1

y1(m,n) cos(α̂2m+ β̂2m
2 + γ̂2n+ δ̂2n

2) + o(1)

2
MN

N∑
n=1

M∑
m=1

y1(m,n) sin(α̂2m+ β̂2m
2 + γ̂2n+ δ̂2n

2) + o(1)

 .

Here, y1(m,n) is the data obtained at the second stage after eliminating the effect of the
first component from the original data as defined in (18). Using the relationship (33) and
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following the same procedure as for the consistency of Â1, it can be seen that:

Â2
a.s.−−→ A0

2 and B̂2
a.s.−−→ B0

2 as min{M,N} → ∞. (35)

It is evident that the result can be easily extended for any 2 6 k 6 p.

• Case 2: When k = p+ 1:

Âp+1

B̂p+1

 =


2

MN

N∑
n=1

M∑
m=1

yp(m,n) cos(α̂p+1m+ β̂p+1m
2 + γ̂p+1n+ δ̂p+1n

2) + o(1)

2
MN

N∑
n=1

M∑
m=1

yp(m,n) sin(α̂p+1m+ β̂p+1m
2 + γ̂p+1n+ δ̂p+1n

2) + o(1)

 , (36)

where

yp(m,n) = y(m,n)−
p∑
j=1

{
Âj cos(α̂jm+ β̂jm

2 + γ̂jn+ δ̂jn
2) + B̂j sin(α̂jm+ β̂jm

2 + γ̂jn+ δ̂jn
2)
}

= X(m,n) + o(1), using (33) and case 1 results.

From here, it is not difficult to see that (36) implies the following result:

Âp+1
a.s.−−→ 0 and B̂p+1

a.s.−−→ 0.

This is obtained using Lemma 2 of Lahiri et al. [13]. It is apparent that the result holds true
for any k > p.

�

Proof of Theorem 8: Consider (28) and multiply both sides of the equation with the diagonal
matrix, D−1

1 :
(ξ̂1 − ξ0

1)D−1
1 = −R(1)′

1,MN(ξ0
1)D1[D1R(1)′′

1,MN(ξ̄1)D1]−1. (37)

Computing the elements of the first derivative vector −R(1)′
1,MN(ξ0

1)D1 and using definition (30) and
the preliminary result (9) (Section 2.2), we obtain the following result:

−R(1)′
1,MN(ξ0

1)D1
d−→ N2(0, 2σ2Σ−1

1 ) as M →∞. (38)

On combining (37), (38) and (32), we have:

(ξ̂1 − ξ0
1)D−1

1
d−→ N2(0, 2σ2Σ1)

This result can be extended for k = 2 using the relation (33) and following the same argument as
above. Similarly, we can continue to extend the result for any k 6 p.
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