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Abstract: Sparse recovery Space-time Adaptive Processing (STAP) can reduce the requirements 
of clutter samples, and suppress clutter effectively using limited training samples for airborne 
radar. The whole angle-Doppler plane is discretized into small grid points uniformly in presently 
available sparse recovery STAP methods, however, the clutter ridge is not located exactly on the 
pre-discretized grid points in non-sidelooking STAP radar. The off-grid effect degrades the 
performance of STAP significantly. In this paper, a gridless sparse recovery STAP method is 
proposed based on reweighted atomic norm minimization, in which the clutter spectrum is 
precisely estimated in continuous angle-Doppler plane without resolution limit. Numerical results 
show that the proposed method provides an improved performance to the sparse recovery STAP 
methods with discretized dictionaries and STAP method utilizing atomic norm minimization.  
Keywords: Airborne radar; Space-time adaptive processing; Off-grid; Reweighted atomic norm 
minimization; 

1. Introduction 

Space-time adaptive processing (STAP) is an effective method for clutter suppression in airborne 
phased array radar system [1][2][3]. The performance of the STAP filter is dependent on the 
estimation of the clutter-plus-noise covariance matrix (CCM). In the classical STAP method, twice 
of the system degree of freedom (DOFs) independent and identically (i.i.d.) training samples are 
need for an effective CCM estimation [4]. However, the required i.i.d. training samples are hardly 
obtained in the practical applications. The performance of STAP degrades significantly due to the 
inaccuracy of the estimated CCM, especially in non-stationary and heterogeneous environments 
[5], such as array geometric configuration, terrain variations and strong discrete scatters.  
 In order to increase the performance of STAP and reduce the number of training samples, 
several types of methods have been developed, and the classical STAP methods can be classified 
into two categories: Reduced-dimension methods and Reduce-rank methods. Reduced-dimension 
STAP algorithms utilize data-independent transformations to pre-filter the received signal, and the 
number of required training samples needed can be reduced to twice of the reduced dimension. 
e.g., Auxiliary Channel Processor (ACP) [6], Extended Factored Approach (EFA) [7], Joint 
Domain Localized (JDL) [8][9], STAP [10] and Generalized Multiple Beams (GMB) [11]. 
Reduced-rank STAP approaches utilize a data-dependent transformations, and the number of the 
samples can be reduced to twice of the rank of clutter, such as Orthogonal Projection Processor 
(OPP) [2], Minimum Power Eigen canceller (MPE) [12], Cross-Spectral Metric (CSM) [13] and 
Multistage Winer Filter (MWF) [14][15][16]. 
 In recent years, sparse recovery (SR) approach has gained widely attentions for its ability to 
provide innovative solutions to the problems of signal estimation, where the signal is sparse in 
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some basis. The sparse recovery method has been successfully applied to improve the STAP 
performance, i.e., sparse recovery-based STAP (SR-STAP). By exploiting the intrinsic sparsity of 
the clutter in the angle-Doppler domain, SR-STAP methods achieve effective performance with 
limited training samples. Maria firstly developed a sparse recovery method to estimate target and 
clutter spectrum [17]. Sun proposed a method for clutter spectrum estimation using focal 

underdetermined system solution (FOCUSS) and 1  norm minimization[18][19]. Li used a 

weighted least-squares-based iterative adaptive approach (IAA) to form angle-Doppler images of 
both clutter and targets [20]. For improving the reconstruction accuracy of sparse recovery, 
multiple measurements are applied for SR-STAP [21]. By utilizing the prior knowledge, Yang 
proposed a knowledge-aided space-time adaptive processing (KA-STAP) algorithm using sparse 
recovery [22]. Concerning the problem of array model mismatch, Yang presented a SR-STAP 
based on the alternating direction method to overcome the performance degradation caused by 
array gain and phase errors [23]. To overcome the problem of parameter-dependent in SR-STAP, 
Duan proposed a SR-STAP method based on sparse Bayesian learning (SBL) [24]. 
 In the above mentioned SR-STAP methods (termed as on-grid SR-STAP), the whole 
angle-Doppler plane is discretized into small grid points uniformly, and the clutters are assumed to 
located exactly on the pre-discretized grid points of the angle-Doppler plane. The set of space-time 
vectors of all grid points are called space-time steering dictionary. However, the actual clutter 
components distribute on the clutter ridge continuously, some patches of the clutter components 
are not located on the girds, e.g, in non-sidelooking radar, which is called off-grid effect. The 
accuracy of sparse recovery is relied on the discredited space-time steering dictionary, and the 
off-gird effect degrades the performance of STAP significantly. To solve the off-grid problem, 
some improved sparse recovery methods for STAP are proposed (termed as off-grid SR-STAP). 
The SR-STAP with dictionary learning has been proposed in [25]. Orthogonal matching pursuit 
(OMP) with parameter-searching is also proposed to eliminate the effect of off-grid effect [26]. 
Prior knowledge of the clutter ridge is exploited to mitigate the off-grid effect for SR-STAP[27]. 
Although these methods improve the performance of STAP, the discredited dictionary is still 
needed, then the off-gird effect is not avoided. Recently, the continuous compressive sensing 

(CCS) is introduced for super-resolution sparse recovery, i.e., atomic 0  norm [28]. For the 

Low-rank property of covariance matrix, the atomic 1  norm, i.e., atomic norm, as a 

computationally feasible alternative of atomic 0  norm, is proposed to reconstruct the atoms in a 

continuous-valued frequency by utilizing Vandermonde decomposition [29]. The atomic norm 
minimization (ANM) method is extended for 2D frequency estimation [30][31] and has been 
proposed for sparse-based STAP in sidelooking radar [32][33] (termed as gridless SR-STAP). 
However, the atomic norm suffers from a resolution limit due to the relaxation, and the frequency 
(normalized) estimations have to be sufficiently separated to 4/DOF (DOF denotes the degree of 
system freedom) for successful recovery. This prohibits high resolution recovery for clutter 
spectrum, especially in non-sidelooking radar, in which the clutter ridge is a curve in the 
continuous angle-Doppler plane and some clutter patches are separated less than the resolution 

limit 4/DOF. A non-convex relaxation of atomic 0  norm is exploited to enhance the sparsity 
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and break the resolution limit of recovery, which is termed as reweighted atomic norm 
minimization (RAM) [34]. Inspired by the super-resolution of reweighted atomic norm 
minimization, in this work, we extend the reweighted atomic norm minimization to angle-Doppler 
model and a gridless super-resolution sparse recovery STAP method using reweight atomic norm 
minimization with single and multiple measurement vectors is proposed. In the proposed method, 
since the CCM is estimated in the continuous angle-Doppler domain by reweighted atomic norm 
minimization, the off-gird problem caused by discretizing dictionary is avoid. Due to the super 
resolution property of reweighted atomic norm minimization, the proposed method achieves more 
accurate estimation of CCM than atomic norm minimization-based STAP, which has a resolution 
limit. Simulations are presented to demonstrate the clutter suppression performance of the 
proposed method, which has significant improvement than the presently available sparse recovery 
STAP methods. 
 Notations used in this paper are as follows. TA  and HA  are the matrix transpose and 
conjugate transpose of A  respectively.   denotes the kronecker product.  and   denote 
the sets of real and complex numbers respectively. The Upper case and lower case boldface letters 
denote matrices and vectors respectively. ()rank   denotes the rank. ()tr   denotes the trace.
 The rest of the paper is organized as follows. Section 2 introduces the signal model of STAP 
radar. Section 3 reviews the sparse recovery STAP approaches and then states the off-grid effect in 
non-sidelooking STAP radar. Section 4 details the proposed RAM-STAP method and its SDP 
implication. Simulated data are used to evaluate the performance of the proposed method in 
Section 5. Section 6 provides the summary and conclusion. 

2. Signal model 

   

 

Fig.1 Airborne radar geometry with a ULA antenna 

 We consider a non-sidelooking uniformly linear array (ULA) airborne phased array radar, 
which consists M  antenna elements spacing half of wavelength ( / 2d  ) and N  pulses are 
received during a coherent processing interval (CPI) at a constant pulse repetition frequency (PRF) 

rf . As shown in Fig.1, the platform is at altitude H  and moving with constant velocity pv  

along the x  axis.   is the angle between clutter patch P  and the array line. The angles  and 
  are elevation and azimuth angles.   denotes the crab angle between the array line and the 

flight direction, i.e., 0    denotes the sidelooking model and 90    denotes the 
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forward-looking model.  

 We ignore the range ambiguities, the received target-free training sample 1NMx 

 can be 

modeled as 

 
c x x n ,  (1) 

where x  is a NM -dimension clutter vector, and denotes as a space-time snapshot. n  is the 

thermal noise vector and cx  denotes the clutter vector.  

 The clutter in a range ring can be model as the superposition of signals from 
cN  

independent clutter patches evenly distributed in azimuth. Then we have  

 
, ,

1

( , )
cN

c i d i s i
i

a f f


 x s ,  (2) 

where cN  is the number of clutter patches, ia , ,d if  and ,s if  are the random complex 

amplitude, the Doppler frequency and the spatial frequency of the thi clutter patch. , ,( , )d i s if fs  is 

the NM -dimension space-time steering vector with Doppler frequency ,d if  and spatial 

frequency ,s if , i.e., , , , , , ,( , ) ( ) ( )d i s i d i d i s i s if f f f s s s , and can be given by 

 , , , ,( ) [1 exp( 2 ) exp( 2 ( 1) )]Td i d i d i d if j f j N f  s  ,  (3) 

 
, , , ,( ) [1 exp( 2 ) exp( 2 ( 1) ]  )T

s i s i s i s if j f j M f  s 

, (4) 

where  

 ,

2
cos cosp

d i i i
r

v
f

f
 


 ,  (5) 

 
, cos cos( )s i i

d
f   


   .  (6) 

 The CCM is defined as 

 [ ]HER xx .  (7) 

 Under the zero-mean complex Gaussian assumption of thermal noise vector, and based on the 
maximization of the signal-to-clutter-plus-noise ratio (SCNR) principle, the output of STAP with 

adaptive weight vector optw  can be given as 

 H
opty w x ,  (8) 

where the adaptive weight vector calculated using the CCM 

4 
 



 
1
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, , , ,
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( , ) ( , )

d i s iH
opt H

d i s i d i s i

f f

f f f f






R s
w

s R s
. (9) 

 In practice, the CCM R  is unknown, and can be estimated from the target-free training 
samples around the cell under test (CUT). Assume the clutter of training samples are independent 
and identically distributed with the clutter in the CUT, then the CCM R  can be estimated by  

 
1

1ˆ
L

H
l l

lL 

 R x x .  (10) 

 Where lx  denotes a target-free training sample in the lth  range cell. This is termed as 

sample matrix inversion (SMI) STAP method. However, the required number of i.i.d. training 
samples should be twice of the DOF to yield an average performance loss of roughly 3dB, i.e. 

2L NM . This is unavailable in practical environments especially for non-sidelooking radar.  

3. SR-STAP and off-grid problem 

3.1 Sparse recovery for STAP 

 Recently proposed clutter spectrum sparse recovery-based STAP methods can be summarized 
to two steps: clutter space-time profile is recovered by a certain sparse recovery algorithm, firstly. 
Then the CCM is reconstructed and the STAP weight vector is calculated from CCM, secondly.  

 In these methods, the angle-Doppler plane is discretised into s dN N  grid points, where

s sN N , d dN M , 1s  , 1d   and determine the smoothness of the angle-Doppler 

plane. The corresponding set of the space-time steering vectors of all grid points are formulated as 

 1 2[ , , , ]
s dN N d s  S SΨ ψ ψ ψ ,  (11) 

where s dNM N N Ψ  is termed as space-time steering dictionary, ,1 ,2, , ,[ , ] d

d

N N
d d d d N

 S s s s


 , 

,1 ,2, , ,[ , ] s

s

M N
s s s s N

 S s s s


 , ,d is  and ,s is  are the space and time steering vectors defined in 

Eq. (3)(4). 
 The received target-free training samples x  has the form of  
 Ψ x a n ,  (12) 

where 1s dN N a 

 is unknown solution matrix with each row representing a possible clutter 

patch and denotes as the clutter angle-Doppler profile, 1NMn 

 denotes a Gaussian noise 

vector. 
 For the sparse property of clutter in angle-Doppler plane, the clutter angle-Doppler profile a  
can be solved according to the theory of single measurement vector sparse recovery (SMV SR) as 

 Ψ 2
0 2min || || subject to || ||  

a
a a x .  (13) 
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where 0|| ||  denotes the 
0

 norm, 2|| ||  denotes the 
2

 norm and   is the noise error 

allowance. 
 After obtaining the a  by the sparse recovery approach, the CCM can be reconstructed by 
the angle-Doppler profile as 

 ψ ψ2 2

1

| |
s dN N

H
c n i i i n NM

i

a 


   R R R I ,  (14) 

where 2
n  is the noise power, NMI  is a NM NM identity matrix. 

 If multiple i.i.d. training samples are available, an improved convergence rate can be 
achieved by using multiple measurement vector sparse recovery (MMV SR) approach.  

 The received K  training samples 1 2[ , , , ] NM K
K

 X x x x   can be expressed by 

  X A NΨ ,  (15) 

where 
1 2[ , , , ] s dN N K

K
 A a a a 

 are correlated in each nonzero row. 

 According to the theory of joint sparse recovery, the solution matrix A  can be solved by 
following optimization problem: 

 Ψ 2
2,0min || || subject to || ||F K 

A
A A X .  (16) 

where 2,0|| ||  is the mixed norm defined as the 0  norm of the column vector calculated by the 

2  norm of the row vectors and || ||F  is the Frobenius norm ( 2  norm of a matrix). 

 The CCM of the CUT is calculate by the recovered angle-Doppler profile as 

 ψ ψ2 2
,

1 1

1
| |

s dN NK
H

c n i k i i n NM
k i

a
K


 

    R R R I   (17) 

 Since the 0  norm minimization problem is NP-hard to solve, some relaxation are exploited 

and applied to SR-STAP, e.g., convex optimization 1  norm SR-STAP[18][24] and non-convex 

optimization p  ( 0 1p   ) norm SR-STAP[19]. 

3.2 off-grid problem 

 Although SR-STAP method can obtain well performance in sidelooking radar with only a 
few training samples (usually less than 6 samples), the clutter patches cannot always locate on the 
discretised grid points of the angle-Doppler plane in non-sidelooking radar, off-grid effect 
degrades the performance significantly [27]. The clutter ridge map of sidelooking radar in the 
discretised angle-Doppler plane is shown in Fig 2(a). Fig 2(b) and Fig 2(c) present the clutter 

ridge map of non-sidelooking radar with 45    and 90   , respectively. In the situation of 
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sidelooking radar, i.e., crab angle 0   , the clutter ridge is perfectly located on the grids of the 

discretised dictionary. However, in the situation of non-sidelooking radar, a lots of clutter patches 
locate out of the grids.  

   

      (a) crab angle 0               (b) crab angle 45  

         (c) crab angle 90    

Fig 2. Clutter ridge map in the discretised space-time plane 

 In order to tackle the off-grid problem, some dictionary learning and parameter-searching  
methods have been proposed [25][26], however, the discredited dictionary is still needed. A large 
grid interval will lead to significant error of sparse recovery, and a small grid interval results in 
strong column coherence of the dictionary and huge computational load. The off-gird effect is not 
avoided in the SR-STAP methods with discretised dictionaries.  
 A theory of super-resolution for frequency estimation is recently introduced by Candes, et al. 
[28], and a gridless convex optimization method based on atomic norm is proposed [29]. In 
addition, they proved that the frequencies (normalized) have to be sufficiently separated to the 
resolution limit (4/DOF) for successful recovery. The atomic norm minimization is extended for 
2D frequency estimation [30][31] and has been exploited for sparse-based STAP in sidelooking 
radar[32][33] (termed as gridless SR-STAP). However, the resolution limit of atomic norm 
prohibits high resolution recovery for clutter spectrum and degrades the performance of clutter 
suppression, especially in non-sidelooking radar, in which the clutter ridge is a non-linear curve in 
the angle-Doppler plane and a lot of clutter patches separate less than 4/DOF.  

4. SR-STAP with reweighted atomic norm minimization 

 To solve the off-grid problem and recover the clutter patches accurately, in this section, we 
propose a novel SR-STAP based on reweighted atomic norm minimization (RAM-STAP), which 
utilizes the Low-rank property of the CCM, estimates the subspace of clutter in the continuous 
domain without resolution limit. 

 For STAP radar, the clutter subspace can be spanned by RN  space-time steering vectors, 

and the clutter covariance matrix can be decomposed as  

 2

, , , ,
1

( , ) ( , )
RN

H H
c c c i d i s i d i s i

i

E a f f f f


      R x x s s ,  (18) 

where 
, ,

1

( , )
RN

c i d i s i
i

a f f


 x s  is the clutter signal, RN  is the rank of the cR . According to [30], 
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cR  is a NM NM  Positive Simi-definite (PSD) Block Toeplizte matrix. The clutter patches are 

sparse in the angle-Doppler plane, therefore, RN NM , i.e., cR  is a low rank matrix [35]. 

 The set of space-time steering vectors in the continuous angle-Doppler plane can be regarded 
as an atomic set  , which composes all the space-time steering vectors in the continuous 
angle-Doppler plane: 

  ( , ) ( ) ( ) | (-1,1), (-1,1)d s d d s s d sf f f f f f   s s s .  (19) 

 Due to the intrinsic sparsity of the clutter, the direct sparse metric of 1NM
c

x   is the 

atomic 0  norm, and it is defined as 

 
,

, ,,0
inf : ( , )
d s

c c k d k s kf f
k

a f f
       

x x s


 .  (20) 

 In order to enhance the recovery resolution of clutter profile, the clutter can be recovered by 

the non-convex relaxation of atomic 0  norm, i.e., reweighted atomic norm minimization as 

 
2

2

( ) ( )

argmin ln ( ) ,

subject  to 0,
( )

c c

u
H

c

 




    
    

 
     
  

x S T x

S T I

x
x x

x S T

M

,  (21) 

where 0   is a regularization parameter, while 0   the reweighted atomic norm gets close 

to the atomic 0  norm. 1 1    and ( ( ))S T u  is a N N block Toeplizte matrix, defined by 

 

0 1 ( 1)

1 0 ( 2)

1 2 0

( ( ))

N

N

N N

u

  

 

 

 
 
 
   
 
 
  

T T T
T T T

S T

T T T





   



,  (22) 

( )iT u  is a M M Toeplizte matrix, defined by 

 

,0 , 1 , ( 1)

,1 ,0 , ( 2)

, 1 , 2 ,0

( )

i i i M

i i i M
i

i M i M i

u u u

u u u

u u u

  

 

 

 
 
 
   
 
 
  

T u





   



.  (23) 

 The optimization function in Eq. (21) is non-convex, and can be solved by Semi-Definite 
Programming (SDP) with locally convergent approach Majorization-Maximization (MM) [36] 
algorithm. 

 Let iu  denotes the thi iterate of the optimization variable u , then at the ( 1)thi 
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iteration we have  

 

1
1 1

2

2
1

( ( )) argmin ( ( ( )) ) ( ( )) ,

subject  to 0,
( ( ))

c i i i
u

H

c
i

tr  





 



          
 
     
  

x S T u S T u I S T u

x
x x

x S T u

  (24) 

 At each iteration, Eq. (24) can be solve by a standard SDP approach. 
 After enough iterations, the output ( ( ))S T u  denotes the subspace of clutter, then the CCM 
can be obtained by 

 
2

1 2
,

1

1ˆ ( )
L

H
RAM c l n NM

l

diag
L





 R U U x U I .  (25) 

where 1( ( ))  S T u U U  denotes the Eigen-decomposition. 

 If multiple i.i.d. training samples are available, a significant improved performance can be 
obtained by MMV joint sparse recovery approach. We extend the reweighted atomic norm 
minimization to the case in presence of MMV, and a MMV-based RAM-STAP can be expressed in 
the following. 

 LetK clutter signal matrix ,1 ,2 ,[ , , , ] NM K
c c c c K

 X x x x  , and it can be decomposed as 

 
, , , ,

1 1

( , ) ( , )
R RN N

c d i s i i i d i s i i
i i

f f c f f
 

  X s a s v   (26) 

where 1
1, , K

i Ka a     a   , 
2i ic  a  and 1

i i icv a  with 
2

1i v . Let 

 2 1 1

2
: 1K K   v v   and the set of atoms is defined as 

  2 1( , , ) ( , ) | (-1,1), (-1,1), K
d s d s d sf f f f f f    s v s v v    (27) 

 The atomic 0  norm of cX  can be expressed as 

 
,

, , , ,,0
inf : ( , , ), ( , , ) , 0
d s

c c k d k s k d k s k kf f
k

c f f f f c
         

X X s v s v


    (28) 

 The reweighted atomic norm minimization of cX  can be solved by following rank 

minimization problem: 

 
Φ

Φ
Φ Φ

2

2

( ) ( )

argmin ln ( ) ( ) ,

subject  to 0, ,
( )

c c

u
H

H
c F

tr



    
    

 
      
  

X S T X

S T I

X
X X

X S T

M

  (29) 

where Φ  is L L  Hermitian matrix, and Eq.(24) can be rewritten as 
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Φ

Φ
Φ Φ

1
1 1

2

2
1
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  (30) 

Then, with the same operation in Eq. (25), the CCM with MMV can be estimated. 

5.Numerical examples 

 In this section, we verify the advantage of the proposed RAM-STAP algorithm using 
simulated data. The simulated data is generated by the STAP airborne radar, which has 8M 

elements ULA antennas, and inter-element spacing is half wavelength ( / 2d  ). The parameters 
in our simulations are set as follows: 300PRF Hz , 8N   pulses in each CPI, wavelength 

0.667m  , platform height 9000H m . The platform velocity 50 /pv m s . There are 

360cN   clutter patches uniformly distributed from azimuth / 2  to / 2  on a flat ground 

in each range cell, the amplitudes of clutter patch follows a complex Gaussian distribution. The 
power of thermal noise 2 1  . The clutter to noise ratio (CNR) is fixed at 40dB  as denoted in 

[1]. Three target-free training samples are simulated from range cell 0 20R km  and the 

resolution of range is 37.5m . The proposed method is compared with the existing SR-STAP 
algorithms, such as FOCUSS-based STAP (FOCUSS-STAP) [19], SBL-based STAP (SBL-STAP)  
[24] and ANM-based STAP (ANM-STAP) [32]. In FOCUSS-STAP and SBL-STAP the resolution 

scales of space-time dictionary s  and d  are both set to 6. The regularization parameter 

41 10    in FOCUSS-STAP method. The initial regularization parameter 2
0 1 10    in 

SBL-STAP method. 
 We measure the performance of clutter suppression by the signal-to-clutter-plus-noise ratio 
(SCNR) loss, which is defined by the ratio of output SCNR to output signal-to-noise ratio (SNR). 

 
2

2 H

Loss H H
SCNR




w s

s sw Rw
.  (31) 

where R  is the exact CCM and adaptive weight vector is calculated by 

 1ˆ w R s ,  (32) 

  is a nonzero constant, R̂  is the estimated CCM and s  is the space-time steering vector of 

the detection range cell. 
5.1 Comparison of clutter spectrum recovery without off-grid effect 
 In order to demonstrate the off-grid effect and the improvement of the proposed method in 
off-grid situation, we compare the performance of sidelooking model (no off-grid effect) clutter 
spectrums estimated by FOCUSS-STAP, SBL-STAP, ANM-STAP and proposed RAM-STAP.  
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(a) FOCUSS-STAP                       (b) SBL-STAP 

 

    (c) ANM-STAP                           (d) RAM-STAP 
Fig. 3 Recovered clutter spectrum in sidelooking array 

 In sidelooking array situation, the clutter patches locate on the grids points of the 
angle-Doppler plane, and there is no off-grid effect. Fig.3 shows the results of the recovered 
clutter power spectrum. Although the RAM-STAP obtain the most refined clutter spectrum, the 
continuous clutter spectrums without spreading are estimated by all of the above four methods. 
This fact reveals that the off-grid effect is the important issue for the recovery accuracy of clutter 
spectrum.  

 
        Fig.4. SINR Loss in sidelooking radar            Fig.5 Eigenspectrum of estimated CCM  

                                                   in sidelooking radar 

 Fig.4 depicts the SINR Loss against the target Doppler frequency of the proposed method 
and FOCUSS-STAP, SBL-STAP, ANM-STAP methods. It is observed clearly that the SCNR loss 
of the proposed method and conventional SR-STAP methods are all less than 5dB except in 
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mainlobe clutter region. Fig.5 shows the Eigenspectrum of estimated CCM, it can be seen that 
there are sharp cutoffs at the index 15 in the curves of all four SR-STAP methods. The results 
depicts that four SR-STAP methods can obtain desirable clutter spectrums while there is no 
off-grid effect, and the performance of SR-STAP method is mostly related to the off-grid effect.  
5.2 Comparison of clutter spectrum recovery with off-grid effect 
 In this experiment, the impact of off-grid effect in non-sidelooking array is investigated. We 

consider two cases: (i) 45   . (ii) 90   . In the non-sidelooking array, the range 

dependency of the clutter should be considered and only limited clutter training samples can be 
used for CCM estimation. Fig.6 provides the clutter spectrums calculated by the CCM matrix in 

the case of 45   . In Fig.6(a) and (b), the clutter spectrums are calculated by the CCM 

estimated by the FOCUSS-STAP with 1 and 3 training samples, respectively. Obviously, 
FOCUSS-STAP method cannot obtain desirable clutter spectrum. This is because the dictionary in 
FOCUSS-STAP is discristed into grid points. In the non-sidelooking configuration the clutter 
patches are not located on the girds and the method is sensitive to the case in the presence of 
off-grid effect. The clutter spectrums in Fig.6(c) and (d) are recovered by the SBL-STAP. As 
expected, the SBL-STAP method also cannot obtain desirable clutter spectrum with off-grid effect. 
The clutter spectrums of ANM-STAP are depicted in Fig.6(e) and (f). Since the problem of 
off-grid is mostly related to the discristed dictionary, the continuous sparse recovery method 
atomic norm minimization is utilized for STAP. The clutter spectrums estimated by ANM-STAP 
are continuous, and much better than that of FOCUSS-STAP and SBL-STAP, but the clutter ridge 
is significant spreading in normalized Doppler frequency between 0.4 and 1.0, where the clutter 
patches separated not enough in Doppler frequency domain. The reason is that some clutter 
patches separated less than 4/DOF and the atomic norm suffers from the resolution limit for the 

convex relaxation of atomic 0  norm. In Fig.6(g) and (h), it is observed clearly that the proposed 

method RAM-STAP derives accurate estimation of the clutter spectrum while existing off-grid 
effect. In the normalized Doppler frequency between 0.4 and 1.0, in which the clutter spectrum 
estimated by ANM-STAP presents a significant spreading, on the contrary, the clutter spectrum 
estimated by RAM-STAP can provide a more refined clutter spectrum and a high resolution and 
continuous clutter ridge is recovered. This can be explained by the fact that the RAM-STAP 
method can recover more exact clutter patches without resolution limit. 

 

(a) FOCUSS-STAP with 1 snapshot                (b) FOCUSS-STAP with 3 snapshots 
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(c) SBL-STAP with 1 snapshot                (d) SBL-STAP with 3 snapshots 

 

(e) ANM-STAP with 1 snapshot                (f) ANM-STAP with 3 snapshots 

 

(g) RAM-STAP with 1 snapshot                (h) RAM-STAP with 3 snapshots 

Fig.6 Recovered clutter spectrums in the case of 45    
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(a) FOCUSS-STAP with 1 snapshot                (b) FOCUSS-STAP with 3 snapshots 

 

(c) SBL-STAP with 1 snapshot                (d) SBL-STAP with 3 snapshots 

 

(e) ANM-STAP with 1 snapshot                (f) ANM-STAP with 3 snapshots 

 

(g) RAM-STAP with 1 snapshot                (h) RAM-STAP with 3 snapshots 

Fig.7 Recovered clutter spectrums in the case of 90    

 Fig.7 presents the recovered clutter spectrum in the case of 90   , i.e., forwardlooking 

radar. In this situation, the clutter ridge is a half circle, and more clutter patches are not located on 
the grids. The clutter spectrums obtained via FOCUSS-STAP and SBL-STAP are depicted in 
Fig.7(a)-(d), where severely degradation occurs because of the off-grid effect. Although the 
ANM-STAP can obtain batter clutter spectrum than FOCUSS-STAP and SBL-STAP, the 
performance of clutter spectrum estimated by ANM-STAP degrades significantly in normalized 

Doppler frequency between -0.4 and 0.4. The reason is the same as in the case of 45   , the 
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atomic norm minimization is the 1  norm relaxation of atomic 0  norm, and it tends to express 

the data with fewer space-time steering vectors, some actual clutter patches in the continuous 
clutter ridge may be lost. On the contrary, shown in Fig.7(g) and (h), the performance of proposed 
method has not been affected by off-grid, and the resolution of recovered clutter spectrum is still 
inferior to ANM-STAP method. This verifies the correctness of the results given in the case of 

45   . 

 
(a) in the case of 45    

 
(b) in the case of 90    

Fig.8. SINR Loss against the target Doppler frequency in presence of off-grid 

 Fig.8 shows the SINR Loss of proposed method and conventional SR-STAP methods, which 
are averaged over 100 Monte Carlo runs. From the figures, we can see that the proposed method 
and ANM-STAP are robust to the cases that in presence of off-grid, but the performance of 
FOCUSS-STAP and SBL-STAP are significantly degraded in this case. The average SCNR loss of 
the proposed method is about 3dB less than the ANM-STAP and close to the OPTIMAL. In the 
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mainlobe clutter region, RAM-STAP provides a narrower clutter notch than the ANM-STAP. 
When the target is away from the clutter notch, it possible to distinguish the slow-moving targets 
from clutter. 

 
(a) in the case of 45                    (b) in the case of 90    

Fig.9. Eigenspectrum of estimated CCM 

 In Fig.9, we compare the eigenspectrums of the CCM estimated by different methods. Fig.9(a) 

and Fig.9(b) show the eigenspectrums in the case of 45    and 90   , respectively, It is 

seen that the eigenvalues cutoff at the index of 22 in the eigenspectrum of the known CCM 
(OPTIMAL). It also can be seen that the eigenspectrum computed by the CCM estimated by the 
proposed RAM-STAP method closely matches the optimal eigenspectrum. In contrast, the 
eigenspectrums of the CCM estimated by ANM-STAP, FOCUSS-STAP and SBL-STAP methods 
fall off gradually and gives more significant eigenvalues than the OPTIMAL. The eigenspectrum 
proves that the proposed method can provide a very accurate estimation of the CCM in the case of 
non-sidelooking radar with off-grid effect.  
6 Conclusion  
 A novel RAM-STAP method is proposed in this paper to suppress clutter for non-sidelooking 
airborne radar. The proposed method obtains accurate estimation of clutter spectrum by 
reweighted atomic norm minimization, in which the CCM is estimated in the continuous 
angle-Doppler domain without resolution limit. According to the simulation results, the proposed 
method outperforms ANM-STAP, FOCUSS-STAP and SBL-STAP methods. 
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