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A low computational complexity DOA estimation
using sum/difference pattern based on DNN
Saiqin Xu1, Baixiao Chen1* and Houhong Xiang2

Abstract
Tracking low-elevation targets over an uneven surface is challenging because of the complicated and volatile
multipath signals. Multipath signals cause the amplitude and phase distortion of direct signal, which degrades
the performance and generates mismatch between existing classical multipath signal and actual model.
Machine learning-based methods are data-driven, they do not rely on prior assumptions about array geometries,
and are expected to adapt better to array imperfections. The amplitude comparison Direction-of-Arrival (DOA)
algorithm performs a few calculations, has a simple system structure, and is widely used. In this paper, an
efficient DOA estimation approach based on Sum/Difference pattern is merged with deep neural network. Fully
learn the potential features of the direct signal from the echo signal. In order to integrate more phase features,
the covariance matrix is applied to the amplitude comparison algorithm, it can accommodate multiple snapshot
signals instead of a single pulse automatically. The outputs of the deep neural network (DNN) are
concatenated to reconstruct a covariance matrix for DOA estimation. Moreover, the superiority in
computational complexity and generalization of proposed method are proved by simulation experiments
compared with state-of-the-art physics-driven and data-driven methods. Field data sets acquired from a VHF
array radar are carried out to verify the proposed method satisfies practicability in the severe multipath effect.
Keywords: DOA estimation; array imperfections; deep neural network; sum/difference pattern

1 Introduction
When radar tracks a low-elevation target over a ground
or sea surface, the direct echo of the target, ac-
complished by multipath reflection signals, enters the
radar receiver. The multipath reflection signals include
the specular reflection signal and the diffuse reflec-
tion [1–4]. The multipath and direct waves of the tar-
get are within a beamwidth, which leads to distinguish
the direct signal from the space, range, and doppler do-
mains hardly. The main reason is that the multipath
signal causes the phenomenon of beam split [5], and
the ideal plane wave model evolves into a spherical
wave model.

For the near-classic problem, many attempts have
been made to reduce the multipath error in low-angle
tracking, including improved monopulse technology
[6, 7] and advanced array signal processing [8–13]. In
[6, 7], the sum and difference signals of monopulse are
no longer strictly in-phase or quadrature under multi-
path conditions. It wanders as the relative amplitudes
*Correspondence: bxchen@xidian.edu.cn
1National Laboratory of Radar Signal Processing, Xidian University, Xi’an,
Shaanxi, People’s Republic of China
Full list of author information is available at the end of the article

and phases because of the complex reflection. Hence,
complex and changeable multipath signals make the
traditional amplitude comparison technology ineffec-
tive.

For the low-angle tracking problem, there are some
super-resolution methods such as digital beamforming
(DBF), multiple signal classification (MUSIC) [8–10],
and maximum likelihood (ML) [11–13] methods which
are advanced array signal processing approaches. The
basic thought of the MUSIC is to use the orthogonality
of the signal subspace and the noise subspace to esti-
mate the target direction. ML is the most general es-
timation method for obtaining unknown non-random
parameters, which can be regarded as a fit between the
array output data and the actual array sampling data.

These physics-driven models establish a forward
mapping relationship from the signal direction to the
array output, and assume that this mapping is re-
versible. But when the radar position environment is
relatively complex, the altitude of the ground reflec-
tor is not the same, the amplitude of the multipath
signal received by each array element is not the same,
and the phase does not meet the linear change. So the
ideal far-field plane-wave model is difficult to describe
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the actual echo signal, and the mismatch of the signal
model-driven greatly reduces the performance of the
existing super-resolution algorithm.

Recently, deep learning technology is widely used in
image, speech, emotion and other fields [14], and has
made remarkable achievements in these areas. So many
efforts devoted to apply the neural network-based algo-
rithm to attach the issues of signal processing [15–21].
In [15,16], an efficient DOA estimation approach based
on the support vector regression demonstrates that
the performance is better than the MUSIC algorithm.
In [17], a novel framework of end-to-end learning is
proposed to solve the DOA estimation problem in
Multiple-input-multiple-output (MIMO) communica-
tion systems, it can realize high-resolution DOA esti-
mation compared with conventional methods. In [18],
a multitask autoencoder (AE) and a series of paral-
lel multilayer classifiers are proposed to realize spa-
tial filtering. This classification method performs ex-
cellently in both generalization and array imperfection.
In [19,20], the accuracy of DOA estimation is more bi-
ased towards the influence of phase error, therefore,
a novel phase enhancement method is used to DOA
estimation based on supervised DNN learning in com-
plex multipath circumstance. In [21], an efficient deep
convolution network (DCN) based spatial spectra re-
covery algorithm is proposed and applied to electro-
magnetics (EM) DOA estimation.

In spite of the great achievements of data-driven al-
gorithms above, there is little study to apply Sum/Difference
method to deep neural network for DOA estimation.
It is well known that the computation complexity of
amplitude comparison algorithm is very small. Recent
advanced phased array radar systems employ digi-
tal beamforming in place of the monopulse compara-
tor network to form the analog sum and difference
beams [22–24]. DBF allows digital monopulse beam-
forming so that a flexible elevation difference beam-
forming, which is independent form the sum beam-
forming, can be achieved.

Due to the fact that disturbance caused by the mul-
tipath signal, the phase of the array element no longer
satisfies the linear distribution [25]. We propose the
Sum/Difference method merging deep neural network
which utilizes error curve to derive DOA estimation
inversely. Compared with existing DL-based DOA es-
timation schemes, this work has taken less run time
to realize the same performance and generalization
of super-resolution after training. And the covariance
matrix with ample phase features of echo signals are
used in the amplitude comparison algorithm, which is
not limited to a single pulse.

The rest of the paper is organized as follows, Section
2 describes the mathematical formulation of DOA es-
timation and derives the mathematical formulation of

Sum/Difference amplitude comparison. While Section
3 represents a baseline framework of DNN in detail.
In Section 4, the proposed method is compared with
physics-driven algorithm in terms of performance and
computational complexity. In Section 5, the perfor-
mance of the proposed method is validated by feild
data. Section 6 gives the conclusion of this paper.

Notations: (·)T denotes the transpose operation, (·)H
denotes Hermitian transpose operation, ∥·∥denotes the
norm of the vector, j =

√
−1 represents the imaginary

unit, tr[·] is the trace of the matrix.

2 Mathematical Formulation
2.1 Signal model
The classical multipath signal model is illustrated in
Fig.1. As shown above, the signal received by the array
includes direct signal and multipath reflection signals
which are specular reflection signals and diffuse reflec-
tion signals. θd represents the incident angle of direct
wave, and θi are the incident angle of a multipath re-
flected waves.

Assume that K narrowband far-field signals sk(t), k =
1, · · · ,K impinge onto an M -element uniform linear
array(ULA) from drections θ = {θ1, θ2, · · · , θK}. Then
the received data of array is given by

x(t) =

K
∑

k=1

a(θk)sk(t) + n(t) (1)

where x(t) is the M × 1 vectors

x(t) = [x1(t), x2(t), · · · , xM (t)]
T (2)

where n(t) represents the independent Gaussian white
noise with zero mean. a(θk) denotes the steering vector
corresponding to θk, which is presented as

a(θ) =
[

e−j(M−1)π

λ
dsin(θ), e−j(M−3)π

λ
dsin(θ), · · · ,

ej(M−3)π

λ
dsin(θ), ej(M−1)π

λ
dsin(θ)

]T (3)

In the matrix notation, the vector of the received sig-
nals x(t) can be expressed compactly as

x(t) = A(θ)s(t) + n(t) (4)

where

A(θ) = [a(θ1),a(θ2), · · · ,a(θK)] (5)

and s(t) is the M × 1 vectors of the signals

s(t) = [s1(t), s2(t), · · · , sK(t)] (6)
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Then the spatial correlation matrix of x(t) can be ex-
pressed as

R = E
[

x(t)x(t)H
]

= A(θ)SA(θ)H + σ2I (7)

with

R = USΣSU
H
S +UNΣNUH

N (8)

Where S = E
[

s(t)sH(t)
]

represents the signal co-
variance matrix and it must be nonnegative definite,
σ2 is the power of the noise. US and UN represent
the signal subspace and noise subspace, respectively.
When the elevation of a target is smaller than one
beamwidth, and there are unknown array imperfec-
tions, i.e., gain/pahse errors between different ele-
ments in a complicated terrain environment, the dis-
turbed received vector data can be expressed as in
[25,26]

x(t) = Γ⊙ a(θ)s(t) + n(t) (9)

where Γ = [τ1, τ2, · · · , τM ]T is the set of disturbance
coefficient. Different elements correspond to differ-
ent perturbation coefficients caused by rugged terrain.
These interferences of multipath signals cause devia-
tions to the array responding function a(θ), and the
matching mapping relation between signal directions
and array outputs does not hold any longer.

Hence, the task of DOA estimation in a multipath
environment is transformed into the task of DOA es-
timation with unknown array imperfections. When we
obtain the sampled data x(t), the DOA of the direct
signal can be estimated by following classic physics-
driven methods, which can be expressed as

θ̂DBF = arg max aH(θ)Ra(θ) (10)

θ̂MUSIC = arg min aH(θ)UNUH
N a(θ) (11)

θ̂ML = arg max tr[PA(θ)R] (12)

with

PA(θ) = A(θ)
[

AH(θ)A(θ)
]−1

AH(θ) (13)

where PA(θ), spanned by the columns of A(θ), denotes
the signal projection space.

2.2 Sum/Difference Pattern
As illustrated in Fig.2, in a classical monopulse sys-
tem, two slightly overlapping beams squinted at a cer-
tain angle φ are formed to illuminate the targets. In
the receiver, the sum and difference beams are synthe-
sized, which is shown in Fig.3. Assume that there is
a small off-axis angle θ between a target and the an-
tenna system axis 0. The beam pattern of the sum and
difference beams can be represented as

GΣ(θ) = f(θ + φ) + (f(θ − φ)) (14)

and

G∆(θ) = f(θ + φ)− (f(θ − φ)) (15)

repectively, where f(θ) is the beam pattern.
The digital weight ws for sum beamforming in a fully

digitized array radar is given as

ws =
a(φ) + a(−φ)

∥ a(φ) + a(−φ) ∥ (16)

In response to the difference beamforming with a
monopulse comparator in conventional phased array
radars, the equivalent conventional difference taper wd

for DBF can be expressed as

wd =
a(φ)− a(−φ)

∥ a(φ)− a(−φ) ∥ (17)

To realize monopulse angle estimaiton in a phased
array radar, the antenna elements should be positioned
in a symmetric fashion around the antenna center. The
element antenna positons dm in this arrangement can
be expressed as

{

d1, d2, · · · , dM

2

, dM

2
+1, · · · , dM−1, dM

}

=
{

−d1,−d2, · · · ,−dM

2

, dM

2

, · · · , d2, d1
} (18)

The array factor of such a linear symmetric array is
given in (19) and (20) for sum and difference pattern,
respectively.

FΣ(θ) =

M
∑

m=1

ws(m)e−j 2π

λ
dmsin(θ) (19)

F∆(θ) =

M
∑

m=1

wd(m)e−j 2π

λ
dmsin(θ) (20)

where ws(m) and wd(m) represented as the weights
for the Sum/Difference patterns which is characterized
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by an even (ws(m) = ws(−m)) and odd (wd(m) =
−wd(−m)). Then the classical monopulse ratio of
Sum/Difference can be presented as

∆

Σ
=

F∆(θ)

FΣ(θ)
(21)

In practical application scenario, the covariance ma-
trix can only be estimated using K snapshots, which
contains the phase information of multiple snapshots
signals. While the traditional Sum/Difference algo-
rithm only applies to a single pulse. In order to con-
struct the covariance matrix in the amplitude com-
parison ratio of the Sum/Difference algorithm. Then,
a new amplitude comparison ratio can be defined as
follows

χ(θ) = (
∆

Σ
)2 =

F∆(θ)
H
F∆(θ)

FΣ(θ)HFΣ(θ)
=

wd
HRwd

ws
HRws

(22)

The amplitude comparison ratio χ(θ) is integrated
with covariance matrix, which the received data of
array not only in monopulse but also exist in multi-
ple snapshots. Generally, the network learning model
extract features fully from covariance matrix to con-
struct nonlinear mapping. In this way, we break
the limitation of monopulse tracking with classical
Sum/Difference algorithm, so that it can be applied
to multiple snapshot signals, and can be fused to neu-
ral networks to extract more abstract features of signal
direction.

A 24-element uniform linear array with half-wavelength
element spacing and the λ = 1m. The beamwidth of
the sum pattern is θ3dB = 4.23◦. The beam pattern
are shown in Fig.4, and the sum pattern and differ-
ence pattern are presented in Fig.5. The error curves
response to amplitude comparison ratio is shown in
Fig.6. This is approximately a curved opening upward
parabola instead of the oddly symmetric classical error
curve generated by the conventional Sum/Difference
algorithm.

3 Proposed method
The neural network can fit nonlinear object with a
high accuracy, it has robust nonlinear mapping, and
it is easy to implement. It is an effective method to
optimize the traditional Sum/Difference algorithm by
using the neural network method. Fig.7 shows a rep-
resentative structure of DNN, which learns the non-
linear mapping between the input and output. I =
[I1, I2, · · · , IM(M−1)/2]

T represents the input vector,
O = [O1, O2, · · · , OM(M−1)/2]

T represents the output
vector of the output layer. The number of input and
output neurons depends on array elements M .

3.1 Array data preprocessing
In order to reduce the variability of the DNN input,
which is influenced significantly by uncertain signal
waveforms.

Therefore, we compute the array covariance matrix
R and reformulate the off-diagonal upper-right matrix
elements of real and imaginary components as an input
vector to the DNN, i.e.

z̄ = [R1,2,R1,3, · · · ,R1,M ,R2,3, · · · ,R1,M , · · · ,RM−1,M ]

(23)

where Ri,j represents the (i, j)th element of R. Then
the concatenated real/imaginary parts of z̄ is finally
obtained according to

ẑ = [Real(z̄), Imag(z̄)]T (24)

where Real(·) and Imag(·) represent the real and image
part of a complex-valued entity, repectively.

In general, data preprocessing has a huge impact on
feature engineering. Similarly, training and test data
also need to be preprocessed before being sent to the
network for training or testing, which alleviates the
problem of the vanishing gradient or the exploding
gradient. Hence, Z-score normalization is a means to
normalize the features of each dimension to the same
value interval and eliminate the correlation between
different features, that can be formulated as follows

z =
ẑ − µ

σ
(25)

where (µ,σ) represent the statistical mean and stan-
dard deviation of ẑ.

3.2 DNN-based learning
The neural network is composed of three fully con-
nected hidden layers, each with neuron numbers of
1024. The linear unit is utilized for the output layer,
while the rectified linear unit (ReLU) is employed in
the hidden layers to make sure a non-linear process.
For an input z, the output of the pth dense layer can
be described as

op =

{

ReLU(W p × o(p−1) + bp, p = 1, 2, 3

W p × o(p−1) + bp, p = 4
(26)

with

ReLU(x) =

{

x , x ≥ 0

0 , x < 0
(27)

where W p and bp represent the weight matrix and bias
vector corresponding to the pth layer.
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After the network architecture is built, all parame-
ters of the network should be adjusted and made fast
convergence. All elements of the weight matrices and
bias vectors are initialized randomly with every layer of
neurons. Training the DNN and learning hidden fea-
tures are aiming to minimize the difference between
the output and the desired value.

The purpose of the training phase info contained in
R is to find the corresponding parameters which min-
imize the sum of the difference between the output
and the desired value. The weights of network adjusted
by using the least mean square error(MSE) made fast
convergence of the algorithm to obtain better network
parameters, i.e.

(W , b) = arg min loss (28)

where

loss =
1

B

B
∑

b=1

∥z − z′∥2 (29)

where B represents batch size. z′denotes the expected
values of z. After we define the loss function, the adap-
tive Moment Estimate (Adam) strategy is adopted to
calculate network parameters that affect training pro-
cess and the output.

Back-propagation is imposed in the training phase
to minimize loss and tune the parameters of the DNN.
And it is commonly adopted via gradient descent op-
timization algorithm to adjust the weight of neurons
by calculating the gradient of the loss function

αnew = αold − η
∂loss

∂α
(30)

where α represents a specific tunable parameter and η

is a self-defined positive learning rate smaller than 1.

3.3 DOA estimation
In this subsection, the scheme of proposed method is
shown in Fig.8. The whole learning framework is di-
vided into training stage and testing stage, in which
the training part completes the extraction of direct
signal phase features and eliminates the phase features
of multipath signals. The testing stage decodes the ex-
tracted features, and finally reconstructs the covari-
ance matrix to achieve DOA estimation by amplitude
comparison ratio method. The steps are summarised
as follows
Step 1) The covariance matrix R and the amplitude

comparison ratio χ are designed by radar pa-
rameters according to mathematical formula-
tion in Section 2.

Step 2) The off-diagonal upper-right real and imag-
inary components of covariance matrix R of
training and testing data are transformed into
a vector ẑ, and after Z-score normalization is
z.

Step 3) The z of training are fed to the DNN to learn
the potential features, the network parame-
ters are adjusted inversely by minimizing the
loss function. Finally, the optimal network pa-
rameters (W , b) are obtained.

Step 4) The z of testing are fed to the DNN with op-
timal parameters to extract the features.

Step 5) The outputs of DNN are concatenated to re-
construct the covariance matrix, combined
with χ for DOA estimation.

4 Results and Discussion
In this section, we describe the implementation of the
proposed Sum/Difference algorithm for DOA estima-
tion based on DNN learning. All the experiments were
conducted on a computer with Intel i7-10700 CPU
2.90 GHz. The generation and preprocessing of train-
ing data and testing data are run in Matlab2020a, and
construct the DNN network and complete the training
by Python3.7.

4.1 DOA estimation results
In this subsection, we compare the performance and
computation complexity of proposed method with
DBF, ML, MUSIC and physics-driven Sum/Difference
algorithm.

We consider a 24-element uniform linear array
(ULA) with half-wavelength inter-element spacing, the
λ = 1m. The 3dB beamwidth is about 4.2◦. As is well-
known, low-angle measurement is the tricky problem,
considering the directions of signals impinging from
the spatial scope [0.1◦ : 0.1◦ : 3◦], which the range
of angle is small than 3dB beamwidth. The SNR of
the training data and test data is both 0dB. And the
number of snapshots is 20. The amplitude error and
phase error are ±25%. Computer simulation generates
90000 batches which are fed to the neural network
for training. At the same time, we randomly gener-
ate 3000 samples for test verification. We randomly
sampled from 0◦ to 3◦. Owing to the existence of in-
terference from amplitude-phase error, the instability
of the traditional algorithm is visible.

As shown in Fig.9 and Fig.10, we give 100 results
of DOA estimation. Fig.9 shows the estimated results
of DBF, ML, MUSIC and Sum/Difference algorithm
based on physics-driven model, respectively. Fig.10
gives the corresponding the DOA estimation error.

The DOA estimation and estimation error after DNN
training is shown in Fig.11 and Fig.12. It is ob-
served that fluctuations of DOA estimation are un-
avoidable based physics-driven model. The proposed
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method is compared with classical amplitude compar-
ison method, improving accuracy of measurement to a
large extent, especially in unpredictable scenarios. And
Sum/Difference algorithm based deep neural networks
can achieve the same effect as the super-resolution
algorithm. Moreover, after DNN training, the perfor-
mance of DBF, ML, MUSIC and proposed model are
about the same, the error is only about 0.119◦.

To assess the computation complexity of the pro-
posed Sum/Difference with DNN, we count the rum
time of different methods in Table 1. But the table de-
notes the proposed model has tiny run time than oth-
ers, executing 3000 samples only takes 0.116s is nearly
a hundredfold faster. These results verified the classical
algorithms fail to obtain valid DOA estimation when
there are perturbations in echo signals, the proposed
method shows superiority in computation complexity
and satisfactory recovery performance to defects.

4.2 RMSE versus SNR
In order to verify the performance of the proposed
method. we investigate the DOA estimation accuracy
with SNR. The SNR of signals fed to DNN is varied
from -5dB to 5dB with a step of 1dB. To demonstrate
the outstanding performance generalization of the pro-
posed method to SNR.

we consider two scenarios about SNR, in scenario
1, the SNR of test data and training data is kept
in sync. The amplitude and phase error are ±25%.
Due to the amount of data, the angle range we con-
sider is between 1◦ and 2◦. As shown in Fig.13, when
the SNR is 0dB, the angular measurement accuracy
of Sum/Difference decreases from 0.14◦ to 0.04◦ com-
pared with after DNN. Hence, we can observe that the
proposed method show more superior DOA estima-
tion accuaracy over conventional Sum/Difference al-
gorithm, and our proposed methed repeat the same
precision of DBF, ML, and MUSIC algorithm after
training. But the crucial advantage is that the compu-
tation complexity is greatly improved.

In actual situations, the SNR parameters of the test
data samples do not completely match the samples
of the training data. That is why in scenario 2, we
adjust the SNR range of the test data to make the
SNR mismatched between the training data and test
data. The simulations are the same as scenario 1, only
the SNR range of test data is changed from -6.5dB to
6.5dB with a step of 1dB. Fully ensure that the SNR of
the training sample and the test sample are completely
mismatched, which brings about the SNR parameters
always maintain a difference of 0.5dB.

As is shown in Fig.14, the root mean square er-
ror (RMSE) of the DOA estimation of the proposed
method compared with the physics-driven DBF, ML

and MUSIC algorithm. It can be seen that com-
pared to the existing physics-drive algorithm, the pro-
posed method improves the classic Sum/Difference al-
gorithm, which can achieve the best DOA estima-
tion effect, and reach the performance of the trained
super-resolution algorithm. And the time is greatly
discounted, which can benefit the computer’s comput-
ing speed.

4.3 Complexity Analysis
In this subsection, the complexity of the proposed
method is investigated. We compute the complex-
ity in steps as show in Table 2. Specifically, for the
comparison, we evaluate the complexity for each ap-
proach as shown in Table 3. The DBF algorithm
needs about O

{

QM2 +QM
}

. For MUSIC algo-
rithm, it involves covariance matrix, eigenvalue de-
composition (EVD) operator, and the orthogonal-
ity function [8, 9] between the signal subspace and
the noise subspace (OFSN), the complexity of MU-
SIC is about O

{

M3 + 2QM2 −QM
}

, where Q is
the number of interested interval of airspace. The
traditional ML applies the covariance matrix and
projection matrix, so the ML method needs about
O
{

QM3 + 2QM2 + 8QM
}

. The proposed method
employs the weight vectors of sum/difference pattern,
hence, it has lower complexity i.e., O {2LM}. Hence,
the proposed method achieves DOA estimation per-
formance at the lower computational efficiency.

5 Real data validation
In this section, the performance of the proposed
method is verified by the feild data under the back-
ground of complex terrain position, which located hills,
rivers and trees. In practice, the data received by the
radar is processed offline, all tracks are correlated in
azimuth, distance, time, and altitude, then parse the
track corrected heading data for DOA estimation. The
geographical environment of climate, terrain undula-
tions and different azimuth are the key factors that
affect the excellent characteristics of neural network
learning.

As depicted in Fig.15 and Fig.17, we selected
(60◦-90◦) data from the same sector for training,
and tried to avoid the environment and other non-
negligible factors that seriously affect the training pro-
cess. There are a total of 161 routes in this sector, we
randomly have selected 2 routes as test data, and all
the rest are used for training. The red traces are train-
ing data, the blue traces are test data.

The first test track flew radially from east to west,
the distance slowly changed from 161km to 72km, and
the elevation angle gradually increased from 2.2◦ to
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5.9◦. Figure 16 gives the DOA estimation errors, com-
paring the results of the proposed method with classi-
cal Sum/Difference, DBF, ML and MUSIC, the clas-
sical algorithm is more sensitive to the complexity of
terrain. In Table 4, the results of Track 1 DOA esti-
mation in terms of RMSE are calculated, The angle
measurement accuracy of the Sum/Difference method
decreases from 0.637◦ to 0.151◦.

The second track has a total of 80 traces, the tar-
get flew from 161km to 62km, and the elevation angle
ranges from 1.32◦ to 6.9◦. Fig,18 depicts the estima-
tion error of Track 2. You can come out the uncer-
tainty of classical algorithms for fluctuations, while the
proposed algorithm is more stable. The RMSE of the
proposed algorithm decreases from 1.370◦ to 0.238◦ in
Table 4.

The experimental results proved that the proposed
algorithm not only improves the measurement accu-
racy of the traditional Sum/Difference algorithms, but
also the angle measurement can reach the performance
of the super-resolution algorithm after training, but
the computational complexity is far less than that of
the super-resolution algorithm. Therefore, in the ac-
tual position, we can consider the Sum/Difference al-
gorithm after DNN training to improve the computa-
tional complexity.

6 Conclusion
In this paper, a novel Sum/Difference model for
DOA estimation using supervised DNN is proposed
to address DOA estimation problem of amplitude
phase imperfections on radar. The proposed method
is free from ineluctable imperfections of traditional
Sum/Difference algorithm, and obtains DOA estima-
tion with higher precisions than the most widely stud-
ied parametric method of DBF, ML and MUSIC. Be-
sides, through DNN learning network, Sum/Difference
algorithm reduces the time complexity compared to
the super-resolution algorithm. The results of com-
puter simulation and comparative analysis of field data
show the validity of the proposed method, which is su-
perior to classic physics-driven methods in estimation
accuracy and state-of-the art data-driven methods of
computational complexity.
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Table 1 Computation Complexity
Approach Run Time(s)
DBF 5.187
ML 22.547

SSMUSIC 8.936
Sum/Difference 0.113
Trained DBF 5.260
Trained ML 22.569

Trained SSMUSIC 9.012
Trained Sum/Difference 0.116
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Table 2 Computation Complexity
Steps Complexity

Perform EVD O
{

M3
}

Execute OFSN O
{

2M2 −M
}

Construct P O
{

2M2 + 8M
}

Calculate PR O
{

M3
}

Table 3 Computation Complexity
Approach Complexity
DBF O

{

2QM2
}

ML O
{

QM3 + 2QM2 + 8QM
}

MUSIC O
{

M3 + 2QM2 −QM
}

Sum/Difference O {2LM}

Table 4 RMSE of DOA estimation

Approach Track 1 Track 2
RMSE(◦) RMSE(◦)

DBF 0.451 0.522
ML 0.276 0.429

MUSIC 0.312 0.460
Sum/Difference 0.637 1.370
Trained DBF 0.146 0.241
Trained ML 0.152 0.238

Trained MUSIC 0.152 0.237
Trained Sum/Difference 0.151 0.238
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