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Abstract

Microfluidic devices are emerging as an attractive techgylimr automatically orchestrating the
reactions needed in a biological computer. Thousands affiiedic primitives have already been in-
tegrated on a single chip, and recent trends indicate teadbdhdware complexity is increasing at rates
comparable to Moore’s Law. As in the case of silicon, it will tritical to develop abstraction layers—
such as programming languages and Instruction Set Arthites (ISAs)—that decouple software de-
velopment from changes in the underlying device technology

Towards this end, this paper presents BioStream, a potiaidgiage for describing biology proto-
cols, and the Fluidic ISA, a stable interface for microflaidhip designers. A novel algorithm translates
microfluidic mixing operations from the BioStream layerhe fluidic ISA. To demonstrate the benefits
of these abstraction layers, we build two microfluidic chifpat can both execute BioStream code de-
spite significant differences at the device level. We cosrdidis to be an important step towards building

scalable biological computers.
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Introduction

Biological computing offers the possibility of a machineattcan assemble itself, adapt to its environ-
ment, and sustain itself naturally. Numerous mechanisme haen devised for computing with biological
primitives, among them DNA computing [Adleman, 1994, Pigali®98, Ezziane, 2006], DNA self assem-
bly [Winfree et al., 1998, Winfree, 2003], DNA cellular antata [Benenson et al., 2001, Benenson et al., 2004,
Adar et al., 2004], and cellular signaling [Knight and Suas998, Elowitz and Leibler, 2000, Kitano, 2002,
Batten et al., 2004]. While none of these technologies imately threatens to displace silicon as a general-
purpose computing medium, each offers unique advantagbsoaiid have far-reaching applications in areas
such as programmable nanofabrication, biochemical sgnsmbedded therapeutics, and smart agriculture.
One of the challenges in biological computing is that theofatory protocols needed to carry out a
computation can be very time consuming. For example, a B@bhla 3-SAT problem required 96 hours to
complete [Braich et al., 2002], not counting the considieréiine needed for setup and evaluation. To auto-
mate and optimize this process, researchers have turnddrafloidic devices [Farfel and Stefanovic, 2005,
Gehani and Reif, 1999, Grover and Mathies, 2005, Livstorad. £2006, McCaskill, 2001, Somei et al., 2005,
van Noort, 2005, van Noort et al., 2002, van Noort and Zhafi§4R Microfluidics offers the promise of
a “lab on a chip” system that can individually control pitefiscale quantities of fluids, with integrated
support for operations such as mixing, storage, PCR, hggatinling, cell lysis, electrophoresis, and oth-
ers [Breslauer et al., 2006, Erickson and Li, 2004, Sia anitédides, 2003]. Apart from being amenable
to computer control, microfluidics drastically reduces Wumes of samples, thereby reducing costs and
improving capture kinetics. Using microfluidics, DNA hythization times can be reduced from 24 hours

to 4 minutes [van Noort and Zhang, 2004] and the number ofsbaseded to encode information can be



decreased from 15 bases per bit to 1 base per bit [Braich, @082, van Noort, 2005].

Thus has emerged a vision for creating a hybrid DNA compubae that uses microfluidics for the
plumbing (the control paths) and biological primitives the computations (the ALUs). On the hardware
side, this vision is becoming scalable: microfluidic chigssdn integrated up to 3,574 valves with 1,000
individually-addressable storage chambers [Thorsen,&2@02]. Moreover, recent trends indicate that mi-
crofluidics is following a path similar to Moore’s law, withé number of soft-lithography valves per unit
area doubling every 4.5 months [Hong and Quake, 2003, giidCorportaion, 2006].

On the software side, however, the microfluidic realm is lagdar behind its silicon counterpart. For
silicon computers, the complexity and scale of the undeghhardware is masked by a set of well-defined
abstraction layers. For example, transistors are orgdinite gates, which combine to form functional units,
which together can implement an Instruction Set ArchiteciiSA). The user operates at an even higher
level of abstraction (e.g., C++), which is automaticalprislated into the ISA. These abstraction layers have
proven critical for managing complexity. Without them, tt@mputing field would have stagnated as every
researcher tried to gain a transistor-level understandiiftngs machine.

Unfortunately, the current practice in experimental niicridics is to expose all of the hardware re-
sources directly to the experimentalist. Using a graplggatem such as Labview, the user orchestrates the
individual behavior of each valve in the microfluidic devic@/hile this practice is merely tedious for to-
day’s devices, it will soon become completely intractabékir to programming a modern microprocessor
by directly toggling each of a million gates.

In this paper, we present a system and methodology that @seslnstraction layers for scalable bi-
ological computing. As illustrated in Figure 1, our systeamsists of three layers. At the highest level,

the programmer indicates the abstract computation to Herpeed—for example, in the form of a SAT
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Figure 1: Abstraction layers for DNA computing.

formula. With some expertise in DNA computing and experitakhiology, the computation can be trans-
formed to the next layer: a portable biological protocol ferforming the computation. The protocol is
portable in that it does not depend on the physical impleatemt of the protocol; for example, it specifies
fluid concentrations but not fluid volumes. Finally, the baitlayer specifies the operations needed to ex-
ecute the protocol on a specific microfluidic chip. Each nflaidic chip designer provides a library that
translates an abstract protocol into the specific sequenave actuations needed to execute that protocol
on a specific chip.

These abstraction layers provide many benefits. Primdniywising an architecture-independent de-
scription of the biological protocol (the middle layer)ethpplication development can be decoupled from
advances in the underlying device technology. Thus, asofiddic devices come to support additional
inputs, mixers, storage cells, etc., the existing suiterofqeols can run without modification (much as C
programs run without modification on successive generatifmicroprocessors). In addition, the protocol
layer serves as a division of labor. Rather than requiringraib and brittle translation from a SAT formula

directly to a microfluidic chip, a biologist provides a mapgito the abstract protocol while a microfluidics



expert maps the protocol to the underlying device. The abisprotocol is also perfectly suited to simula-
tion, thereby allowing the logical operations to be verifigithout relying on any physical implementation.

Further, a portable protocol description could serve the ob pseudocode in technical publications, pro-
viding a precise account of the experimental methods usleidd-party protocols could be downloaded and
executed (or called as sub-routines) on one’s own micraflddvice.

In the long term, the protocol description language willon all of the operations needed for biologi-
cal computing. However, as there does not yet exist a singieoftuidic device that can encompass all the
functionality (preparation of DNA libraries, selectiomadout, etc.), this paper focuses on three fundamen-
tal primitives: fluid mixing, fluid transport, and fluid stga. We describe a programming system called
BioStream that provides an architecture-independentfate for these operations. To show that BioStream
is portable, we execute BioStream code on two fundamendéfigrent microfluidic architectures. We also
present a novel algorithm for mixing fluids to a given concatidn using the minimal number of simple on-
chip mixing steps. Our system represents a fully-funcliomad-to-end demonstration of portable software

on microfluidic hardware.

BioStream Protocol Language

We have developed a software system called BioStream foatgermicrofluidics protocols. BioStream is
a Java library that virtualizes many aspects of the undeglfiardware resources. While BioStream can be
targeted by a compiler (for example, a DNA computing conmghet converts a mathematical problem into
a biological protocol), it is also suitable for direct pragrming and experimentation by biologists. As such,

the language provides several high-level abstractionspoave readability and programmer productivity.



Protocol Code Architecture Requirements
Implemented by . . . Declares native functions such as
Protocol P ortabl§ betwehe.n mlcroﬂulqlc chips 1/0, sensors, agitators. For example:
Develo pers supporting architecture requirements. Fluid input(Integer i);
Double camera(Fluid 1);
BioStream Library Library Simulator
// mix fluids in arbitrary proportions Generator Generator
Fluid mix(Fluid[] f, double[] c);
Implemented by // set precision of mixing operations Generate a Generate a
BioStream void setPrecision(double precision); BioStream simulated
// wait for a period before proceeding Library for an backend for an
void waitFor(long seconds); architecture. architecture.
[native functions with Fluid arguments]
Fluidic Instruction
Set Architecture (ISA)
Implemented by | // mix two fluids in equal proportions
Hardware void mixAndStore(Location srcl,
Developers Location src2,
Location dst)
[native functions with Location arguments]

Microfluidic Device

Microfluidic Simulator

Figure 2: Abstraction layers in the BioStream system.

Providing Portability

As shown in Figure 2, BioStream offers two levels of abstoeactinderneath the protocol developer. The
first abstraction layer is the BioStream library, which pdes first-class Fluid objects to represent the
physical fluids on the chip. The programmer deals only withid-lariables, while the runtime system

automatically assigns and tracks the location of fluids @endévice. The library also supports a general
mix operation for combining Fluids in arbitrary proport®mand with adjustable precision. The second
abstraction layer, the Fluidic Instruction Set ArchiteetdSA), interfaces with the underlying architecture.

The fundamental operation i X AndSt or e, which mixes two fluids in equal proportions and stores the

result in a destination cell. As all storage cells on the dfape unit volume, only one unit of mixture is



stored in the destination; any leftover mixture may be dided. As detailed in Section 3, this allows for a
flexible implementation ofri X AndSt or e on diverse architectures.

In addition to the abstractions for mixing, there are sonohiggcture-specific features that need to be
made available to the programmer. These “native functionsfude 1/O devices, sensors, and agitators
that might not be supported by every chip, but are needed ¢out the program; for example, special
input lines, cameras, or heaters. As shown in Figure 2, Béa®t supports this functionality by having the
programmer declare a set of architecture requirementsStBiam uses the requirements to generate alibrary
which contains the same functionality; it also checks thatarchitecture target supports all of the required
functions. Finally, BioStream includes a generic simuldt@t inputs a set of architecture requirements
and outputs a virtual machine that emulates the architecttihis allows full protocol development and
validation even without hardware resources.

The BioStream system is fully implemented. The reflectigmatilities of Java are utilized to automat-
ically generate the library and the simulator from the aeghiure requirements. As described in Section ,

we also execute the Fluidic ISA on two real microfluidic chips

Example Protocol

An example of a BioStream protocol appears in Figure 3. The general program that seeks to find the
ratio of two reagents that leads to the highest activity i pinesence of a given indicator. Experiments
of this sort are common in biology. For example, the prograuld be applied to investigate the roles of
cytochrome-c and caspase 8 in activating apoptosis (cathiecell lysate would serve as the indicator in
this experiment [Ellerby et al., 1997, Allan et al., 2003helprotocol uses feedback from a luminescence

detector to guide the search for the highest activity. As@mnpling some concentrations in the given range,



import biostream.library.*;
public class RecursiveDescent {

public static void main(String[] args) {
String backend = args[0];

SimpleLibrary lib =
(SimpleLibrary)LibraryFactory.
buildLibrary("SimpleLibrary", args[0]);

run(lib);

}

private static void run(SimpleLibrary lib) {
int ROUNDS = 10; int SAMPLES = 5;

Fluid A = lib.input(new Integer(0));
Fluid B = lib.input(new Integer(1));
Fluid indicator = lib.input(new Integer(2));

double center = 0.5, radius = 0.5;

for (int i=0; i<ROUNDS; i++) {

lib.setPrecision(0.1*(2*radius)/ SAMPLES);

double bestActivity = -1; int best] = -1;
for (int j=1; j<SAMPLES; j++) {

double target = center+radius*

(1-2*(double)j/SAMPLES);
Fluid sample = lib.mix(A, target, B, 1-target);

Fluid test = lib.mix(indicator, 0.9, sample, 0.1);

lib.wait(30);

double act = lib.luminescence(test).doubleValue();

if (act > bestActivity)
bestActivity = act; best] =j;

}

center = center+radius*(1-2*(double)best]/SAMPLES);

radius = radius / 2;

if (center < radius) center = radius;
if (center > 1-radius) center = 1-radius;
}
}
System.out.println("Best activity: “ + center);

}

interface SimpleLibrary extends FluidLibrary {
Fluid input(Integer i);
Double luminescence(Fluid f);

}

// The Recursive Descent protocol recursively
// zooms in on the ratio of fluids A and B that
// has the highest activity. It requires the

// following setup in the laboratory:

// - input(0) -- fluid A

// - input(1) -- fluid B

// - input(2) -- luminescent activity indicator

// Initialize the backend to use (for example,
// an actual chip or a microfluidic simulator)

// based on command-line input.

// Create an interface to the backend using the
// native functions declared in SimpleLibrary.

// Perform the protocol:
// Set number of rounds and samples per round.

// Assign names to the input fluids.

// Initialize center, radius of concentration range.
// Repeat for a number of rounds:

// Set absolute mixing precision to 10X

// more than the granularity of sampling.

// Repeat across concentrations in range:

/ Obtain sample of the

V4 target concentration.

V4 Mix sample with indicator,
/ wait, and measure activity.
V4 Remember highest activity.

/! Zoom in by factor of 2 around best activity.

// If needed, move center away from boundary.

// Print concentration yielding highest activity.

// Declare devices needed by RecursiveDescent:
// Require array of fluid inputs.
// Require luminescence camera.

Figure 3: Recursive descent search in BioStream.



it descends recursively and narrows the range for the nexicrof sampling. Using self-directed mixing, a
high precision can be obtained after only a few rounds.

The recursive descent program declareSi apl eLi br ary interface (see bottom of Figure 3) de-
scribing the functionality required on the target arctitee. In this case, a camera is needed to detect
luminescence. While we have not mounted a camera on oumtwuterice, it would be straightforward to

do so.

Improving Programmer Productivity

A key abstraction provided by BioStream is the use of Fluigldilst-class objects in the programming
language. The challenge in implementing this functiopafitthat physical fluids can be used only once, as
they are consumed in mixtures and reactions. However, thgrgmmer might reference a Fluid variable
multiple times (e.g., variables A and B in the recursive dasexample). BioStream supports this behavior
by keeping track of how each Fluid was generated and regamgfuids that are reused.

The regeneration mechanism works by associating each &hjatt with the name and arguments of
the function that created it. The creating function must beixa operation or a native function, both of
which are visible to BioStream (the Fluid constructor is exposed). BioStream maintains a valid bit for
each Fluid, which indicates whether or not the Fluid is stonea storage chamber on the chip. By default,
the bit is true when the Fluid is first created, and it is idaled when the Fluid is used as an argument
to a BioStream function. If a BioStream function is calledhnan invalid Fluid, that Fluid is regenerated
using its history. Note that this regeneration mechanisfulli dynamic (no analysis of the source code is
needed) and is accurate even in the presence of pointerdiasidg

The computation history created for Fluids can be viewed dspendence tree with several interesting



Driving Wash Mixing Sample Inputs Storage | Valves | Control

fluid fluid size cells lines
Chip 1 oil N/A rotary mixer half of mixer 2 8 46 26
Chip 2 air water | during transport full mixer 4 32 140 21

Table 1. Key properties of the microfluidic chips develop€thip 1 provides better isolation and retention
of samples, while Chip 2 offers faster and simpler operation

applications. For example, the library can execute a prognea demand-driven fashion by initializing each
Fluid to an invalid state and only generating it when it isdubg a native function. This lazy evaluation
affords the library more flexibility in scheduling the migjroperations when the Fluids are needed. For
example, operations could be reordered to minimize storageirements or to issue parallel operations
with vector control. Just-in-time optimizations such assehare especially promising for microfluidic chips,
as silicon computers operate much faster than their middiflcounterparts and have cycles to spare at
runtime.

A final abstraction offered by the BioStream interface isrttie operation, which combines a set of fluids
in arbitrary proportions. This offers significant gains faogrammer productivity, as otherwise mixtures
need to be synthesized one step at a time using low-leveltprs In a later section, we describe how this

abstraction can be supported efficiently by the runtimeesyst

Microfluidic Implementation

To demonstrate an end-to-end system, we have designed lnchtad two microfluidic chips using a

standard multi-layer soft lithography process [Sia andté#nles, 2003]. While there are fundamental dif-
ferences between the chips (see Table 1), both provide dufgoprogrammable mixing, storage, and
transport of fluid samples. More specifically, both chips lenpent theni x AndSt or e operation in the

Fluidic ISA: they can load two samples from storage, mix thegether, and store the result. Thus, despite
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Figure 4: Layout and photo of Chip 1 (driven by oil).
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Figure 5: Layout and photo of Chip 2 (driven by air).

their differences, code written in BioStream will be pofeabetween the chips.

The first chip (see Figure 4) isolates fluid samples by suspgrilem in oil [Urbanski et al., 2006]. To
implementm xAndSt or e, each input sample is transported from a storage bin to ateedithe mixer.
The mixer uses rotary flow, driven by peristaltic pumps, t& the samples to uniformity [Chou et al., 2001].
Following mixing, one half of the mixer is drained and stonedhe target location. While the second half
could also be stored, it is currently discarded, as the besicAndSt or e abstraction produces only one
unit of output.

The second chip (see Figure 5) isolates fluid samples usirigsé¢ad of oil. Because fluid transport is

very rapid in the absence of oil, a dedicated mixing elememiot needed. Instead, the input samples are
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loaded from storage and aligned in a metering element; wieerlement is drained, the samples are mixed
during transport to storage. Because the samples are itt doatact with the walls of the flow channels, a
small fraction of the sample is lost during transport. Thisaduces the need for a wash phase, to clean the
channel walls between operations. Also, to maintain sawglemes, the entire result of mixing is stored.
Any excess volume is discarded in future mixing operatiassghe metering element has fixed capacity.

To demonstrate BioStream’s portability between these thips; consider the following code, which

generates a gradient of concentrations:

Fluid blue = input(1);
Fluid yell ow = input(2);
Fluid[] gradient = new Fluid[5];
for (int i=0; i<=4; i++) {
gradient[i] = mix(blue, yellow, i/4.0, 1-i/4.0);
}

This code was used to generate the gradient pictured in é&ijand produces an identical result on both

microfluidic devices. (The gradient shown in Figure 5 isetéint and was generated by a different program.)

Mixing Algorithms

The mixing and dilution of fluids plays a fundamental role limast all bioanalytical procedures. Mixing is
used to prepare input samples for analysis, to dilute cdretex substances, and to control reagent volumes.
In DNA computing, mixing is needed for reagent preparatiem).( DNA libraries, PCR buffers, detection
assays) and, in some techniques, for restriction digestsifEmmer et al., 2000, Ouyang et al., 1997] or
fine-grained concentration control [Yamamoto et al., 2002]s critical to provide integrated support for
mixing on microfluidic devices, as otherwise the samplesldidave to leave the system every time a
mixture is needed.

As described in the previous sections, our microfluidic stsppport then x AndSt or e instruction

12



from the Fluidic ISA. This operation simply mixes two fluids equal proportions. However, the mix
command in BioStream allows the programmer to specify cemplixtures involving multiple fluids in
various concentrations. To bridge the gap between theseaatians, this section describes how to obtain a
complex mixture using a series of simple steps. We descritabstract model for mixing, an algorithm for

minimizing the number of steps required, how to deal witlbetolerances, and directions for future work.

A Model of Mixing

The following definition gives our notation for mixtures.

Definition 1. A mixture M is a set of substance$ at given concentrations;:
M ={(51,c1)...(Sk,ck)}
Zf:l ci=1

For example, a mixture of/4 buffer andl/4 reagent is denoted dgbuffer, 3/4), (reagent1/4)}. We
further define aample to be a mixture with only one substan¢@(| = 1). For example, a sample of buffer
is denoted{ (buffer, 1) }, or just(buffer).

To obtain a given mixture on a microfluidic chip, one perforrseries of mixes using an on-chip mixing
primitive. While the capabilities of this mixer might varyom one chip to another, a simpleto-1 mix-
ing model can be implemented on both continuous flow and droplet-basgdtectures [Chou et al., 2001,
Paik et al., 2003]. In this model, all fluids are stored in anifi chambers of unit volume. The mix operation
combines two fluids in equal proportions, producing two sioftthe mixture. However, since there may be
some amount of fluid loss with every operation, the resulbefrhixture might not be able to completely fill
the contents of two storage cells. Thus, the result is storedly one storage cell, and the extra mixture is

discarded.
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{(}Al,x1>...<Ak,xk> {(}Bl,y,>...<Bk,yk>
VRN

(buffer) | |(reagent) Figure 7. Calculation of a parent mixture
from child mixtures using a 1-to-1 mixer.
Figure 6: Mixing tree yield-  For each substance, the resulting concentra-
ing 3/4 buffer and 1/4 reagent. tion is the average of the concentrations in
the children.

The 1-to-1 mixing process can be visualized using a “mixnegt As depicted in Figure 6, each leaf
node of a mixing tree represents a sample, while each intaate represents the mixture resulting from
the combination of its children. Figure 7 illustrates tha tixture at an internal node can be calculated as
the arithmetic mean of the components in child mixtureshink-to-1 model, mixing trees are binary trees
because each mix operation has two inputs. Evaluation af¢leeproceeds from the leaf nodes upwards;
the mixture for a given node can be produced once the chiltumgg are available. The overall result of the
operation is the mixture specified at the root node.

The following theorem is useful for reasoning about mixinges. It describes the concentration of a
substance in the overall mixture based on the depths of tasicontaining samples of the substance. The

depthof a noden in a binary tree is the length of the path from the root node.to

Theorem 1. Consider a mixing tree and a substangelLetm denote the number of leaf nodes with sample

(S) appearing at deptld of the tree. Then the concentration $fcontained in the root mixture is given by

S gmax 274,

Proof. A sample at deptld is dilutedd times in the mixing process, each time by a factor of two. Tihus
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contributes2~¢ to the root mixture. Since each mix operation sums the cdraténs from child nodes, the

overall contribution is the sum across the leaf nodes ategitits:> ", mg + 277 O

The following theorem describes the set of mixtures thathmobtained using a 1-to-1 mixer. Infor-
mally, it states that a mixture is reachable if and only if do@centration of each substance can be written

as an integral fractiof /2¢.

Theorem 2. (1-to-1 Mixing Reachability) Consider a finite set of subs&s{.S; ... S} with an unlimited
supply of samplesS;). LetR denote the set of mixtures that can be obtained via any sequefnl-to-1

mixes. Then:

{{S1,¢1) .. (Sk,ck)} st. Ipi,qi,d € Z

_bi

R=ALCM@r...qu) =24 A Vie[Lk]:c; =

qi

Proof. The equality in the theorem can be shown via bi-directionelusion of R and the right hand side
(RHS).

R C RHS: Given a mixing tree for the mixture, constrygt ¢;, andd as follows to satisfy the RHS.
Selectd as the maximum depth of the tree (i.e., the maximum pathlkeingin the root node to a leaf node)
and set al; = 2¢, thereby satisfying the LCM condition. Then, for leaf nodéea depth less thaf replace
the node with an internal node whose children are leavestidthame sample as the original. This preserves
the identity of the mixture but increases the depth of sonteaolterate until all leaf nodes are at degth
By Theorem 1, if a substance has concentratiain the mixture then it must have = 2¢ leaf nodes in this
tree. Thus, setting; to the number of leaf nodes with samgl;), we have thap; /q¢; = ¢; * 27/2% = ¢; as
required.

R 2 RHS: Given a mixture satisfying the RHS and valueg,0f;;, andd satisfying the conjuncts, con-

15



struct a mixing tree that can be used to obtain the given méxfTihe tree hag levels and2? leaves. Assign
sample(S;) to anyp; * 2¢/¢; of the leaves (this is an integral quantity beca2%és a common multiple of
the ¢;). By the definition of mixture) ,(p;/q;) = >, ¢; = 1 and there is a one-to-one mapping between
leaves and samples. By Theorem 1, the resulting mixture kas@entration of:/2¢ for a substance with

k samples at the leaves. Thus the concentratiorsfan the assignment ig; * 2¢/¢;)/2¢ = p;/q; = ¢; as

desired. O

It is natural to suggest a number of optimization problenrsnfiixing. Of particular interest are the
number of mixes and the number of samples consumed, as tiresdydimpact the running time and
resource requirements of a laboratory experiment. Theviitlg theorem shows that (under the 1-to-1

model) these two optimization problems are equivalent.

Theorem 3. In any 1-to-1 mixing sequence, the number of samples comkisexactly one greater than

the number of mixes.

Proof. By induction on the number of nodes, there is always exacté/raore leaf node than internal node
in a binary tree. The mixing tree is a binary tree in which eiadbrnal node represents a mix and each leaf

node represents a sample. Thus there is always exactly aresarople consumed than there are mixds.

Note that this theorem only holds under the 1-to-1 mixing etpdh which two units of volume are
mixed but only one unit of the mixture is retained. For miarafic chips that attempt to retain both units
of mixture (such as droplet-based architectures or oudrdilen chip), it might be possible to decrease the

number of samples consumed by increasing the number of neibatipns.
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Algorithm for Optimal Mixing

In this section, we give an efficient algorithm for finding axing tree that requires the minimal number of

mixes to obtain a given concentration. For clarity, we frahmeproblem as follows:

Problem 1. (Minimal Mixing) Consider a finite set of substancg$; ... Sx} with an unlimited supply
of samplesS;). Given a reachable mixturé(Si, pi/n) ... (Sk,pr/n)}, what is the mixing tree with the

minimal number of leaves?

Our algorithm runs irD(k 1g n) time' and produces an optimal mixing tree (with respect to thigic)et
The tree produced has no more thalg »n internal nodes.

The idea behind the algorithm, which we refer to asiMM X, is to place a leaf node with samp(&)
at depthd in the mixing tree if and only if the target concentration fohas a 1 in bilgn — d of its binary
representation. Theorem 1 then ensures that all substhaeeshe desired concentrations, while fewer than
lg n samples are used for each one.

Psuedocode for Mi-Mix appears in Figure 8. We illustrate its operation for the gxammixture of
{(A,5/16), (B,4/16), (C,7/16)}. As shown in Figure 9, the algorithm begins with a pre-pretesstage
that allocates substances to bins according to the bingargsentation of the target concentrations. It then
builds the mixing tree via calls to M-Mix-HELPER, which descends through the bins. When a bin is
empty, an internal node is created in the graph and the puogedcurses into the next bin. When a bin has
a substance identifier in it, the substance is removed frenbithand a corresponding sample is added as a
leaf node to the graph. Figure 9 labels the order in which thaes in the final mixing tree are created by
the algorithm.

The following lemma is key to proving the correctness afiMMix. We denote theth least significant

17



node Min-Mix
(mixture { (Sy, p1/1n), ...,{Sk, px/n) } ) {
depth = Ig(n)
bins = new stack[depth+1]
// pre-processing: build a stack of the
// bitwise components of each concentration
fori=1tok
mask =1
for j = 0 to depth-1
if (mask & p; # 0) then
bins[j].push(S;)
endif
mask = mask <<'1
endfor
endfor
return buildMixingHelper(bins, depth)
}

node Min-Mix-Helper (stack[] bins, int pow) {
if bins[pow].empty() then
node childl = Min-Mix-Helper(bins,
pow-1)
node child2 = Min-Mix-Helper(bins,
pow-1)
return {childl, child2) as internal node

else
return bins[pow].pop() as leaf node

endif
}

Figure 8: MN-Mx algorithm.

bin 2% 5A 4B 7C

4 16

3 8

2 4 A B C

1 2 C

0 1 A C
(@)

4-C

6-A 5-C
(b)

Figure 9: Example operation
of MIN-MIx for the mix-
ture {(A,5/16), (B,4/16),
(C,7/16)}. Part (a) illustrates
the algorithm’s allocation of
substances to bins. The bin layout
directly translates to a valid
mixing tree, which appears in (b)
with numbers indicating the order
in which nodes are added to the
tree. The mixing tree is redrawn
in (c) for clarity.

bit of = by LSB(x,n). Thatis, LSBz,n) = (x < n) & 1.

Lemma 1. Consider the mixing treé produced byMIN-MIX ({(S1,p1/n) ..

. (Sk,px/m)}). A substance

S; appears at a deptt in ¢ if and only if LSBp;,lgn — d) = 1.

Proof. If: It suffices to show that there is a substance added to the gnixe for each LSB of 1 drawn

from thep; (that the substance appears at depik given by the only if direction.) Further, since bins|j] is

constructed to contain all substanédsr which LSB(p;, j) = 1, it suffices to show that a) all bins are empty

at the end of the procedure, and b) the procedure does notpigptfrom an empty bin. To show (a), use the



invariant that each call to M-Mix-HELPER adds a total o2~ to the mixing tree, wheré is the current
depth; either a leaf node is added (which contribite$ by Theorem 1) or two child nodes are added,
contributing2 % 2-(¢+1) = 2-4_ But since the initial depth is 0, the external call resuit&4 = 1 unit of
mixture being generated. Since the bins represent exaodyunit of mixture (i.e.Zj bins[j] * 277 = 1),

all bins will be used. To show (b), observe thatNAMIx references the bins in order, testing if each is
empty before proceeding. Thus no empty bin will ever be deesiced.

Only if: When a substance is added to the tree from bins][j], it appeadepthlgn — j in the tree.
This is evident from the recursive call in IM-MIX-HELPER it initially draws from bins[gn] and then
works down when the upper bins are empty. By constructions[ficontains only substances with
LSB(pi,j) = 1. Thus, ifS; appears at deptt in the mixing tree, it was added from bits — d] which

has LSBp;,1gn —d) = 1. O
The following theorem asserts the correctness ofi N ix.

Theorem 4. The mixing tree given bW IN-MIx gives the correct concentration for each substance in the

target mixture.

Proof. Consider a componerS, p/n) of the mixture passed to M-Mix. Letm, denote the number of
leaf nodes with sampl§ at depthd of the resulting mixing tree. By Lemma ty; = LSB(p, lg(n) — d).

Using Theorem 1, this implies that the concentration§an the root mixture is given by:
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c = Y ,LSB(p,lg(n) —d)«27¢
= Y, LSB(p,z) x2-Ug(m)—2)
= > . LSB(p,x) 2% /n

= p/n

Thus the concentration in the root node of the mixing trebéssame as that passed toNVIM IX. O
The following theorem asserts the optimality of the mixinggs produced by Mi-Mix.

Theorem 5. Consider the mixing treeproduced byMIN-MiX ({(S1,p1/n) ... (Sk,pr/n)}). The number

of leaf node<C(¢) is given by:
k lgn
L(t) =Y LSB(pij)

i=1 j=0

There does not exist a mixing tree that yields the given meixtith fewer leaf nodes thafi(¢).

Proof. That MIN-MIx produces a tree with £(¢) leaf nodes follows directly from Lemma 1, as there
is a one-to-one correspondence between leaf nodes andsapytles. To prove optimality, Theorem 1
gives thatp;/n = > mg x 279 Thusp, = Y mg x 28774 = S S glen—d  That is, p; is a
sum of powers of two, and the number of leaf nodes determmesiimber of summands. The minimal
number of summands is the number of non-zero bits in the pirepresentation fop;; this quantity is
Z;.g:% LSB(p;,j). Thus it is impossible to obtain a concentratiorppfor all k£ substances in the tree with

fewer thany_¥, =% LSB(p;, j) leaf nodes. O
The following theorem describes the running time oiNvVM 1X.

Theorem 6. MIN-MIX ({(S1,p1/n) ... (Sk,pr/n)}) runsinO(klgn) time.
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Pi P Region Must be present? twoWayMix(mixture { (S, pi/n), (Sz, p2/n) } ) {
ag by —» ag+by=0 ves // start with S
fluid = S,
Bits } b= e // ignore where both are zero

. —» a+b=2 yes int start =0

) while (LSB(p, start) = 0)
- } a+by=0 no start = start + 1
ap bo endwhile

Figure 10: Arrangement of bits for amy + py = 24,/ keep running mixture, based on bits of pi:
// bitis 0 - mix with S,

pi=14 p,=18 Mixing Sequence // bitis 1 - mix with S;
2° 0 0 for i = start to 1g(n)-1
ot 0 1 4. Add Sy, mix 4 fluid = mix (fluid, Sz-LSB(pl, i))
23 1 0 ‘ 3. Add Sy, mix endfor
Bits 22 1 0 2. Add S;, mix return fluid
2! 1 1 1. Add S,, mix }
0 0 0 i . . s
2 (ignore) Figure 12: Algorithm for mixing two substances.

0. Start with Sy

Figure 11: Example of mixing4,/32 and18/32 using
t woVayM x.

Proof. The pre-processing stage inlvtM1x executesk 1g n iterations with constant cost per iteration. By
Theorem 5, the recursive procedure returns a tree Ef’gl 259:@ LSB(p;,j) = O(klgn) leaf nodes,
and by Theorem 3 this implies that there &rg: Ig n) total nodes in the tree. Since there is constant cost at

each node, the overall complexity(§klgn). O

Special Case: Mixing Two Substances

The minimal mixing tree admits a particularly compact repreation when only two substandgs, p; /n)
and(sy, p2/n) are being mixed. Because the two target concentrationssunsto a power of two (in order
to be reachable with a 1-to-1 mixer), there is a special pattethe bitwise representation pf andp, (see
Figure 10). The least significant bits might be zero in bothcemtrations, but then some bit must be one
in each of them. The higher-order bits must be one in exactty af the concentrations (to carry a value

upwards) and the most significant bit is zero (as we asgyme < n).
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Algorithm t woWayM x, shown in Figure 12, exploits this pattern to directly exedhe mix sequence
without building a mixing tree. The sequence of mixes is clataly encoded in the binary representation
of either concentration. As illustrated by the example iguré 11, the algorithm starts with a unit 6§
and then skips over all the low-order zero bits (these résarit a fractionp; /n that is not in lowest terms).
When it gets to a high bit, it maintains a running mixture-tigag no temporary storage—in which either
S1 or Sy is added to the mix depending on the next most significantfbjt; o It can be shown that this
procedure is equivalent to building a mixing tree. Howeiteas attractive from hardware design standpoint
due to its simplicity and the fact that it directly performmiture based on the binary representation of the

desired concentration.

Supporting Error Tolerances

Thus far the presentation has been in terms of mixtures #mabe obtained exactly with a 1-to-1 mixer, i.e.,
those with target concentrations in the formigR¢. However, the programmer should not be concerned
with the reachability of a given mixture. In the BioStreanstgyn, the programmer specifies a concentration
range(cmin, cmaz) @nd the system ensures that the mixture produced will falinihe given range Such
error tolerances are already a natural aspect of scientffieraments, as all measuring equipment has a finite
precision that is carefully noted as part of the procedure.

Given a concentration range, the system increases thaeahtprecisiond until some concentration
k /27 (which can be obtained exactly) falls within the range. Wherforming a mixture with concentration
ranges( (S1, [C1,min; Cl,maz)) - - - (Sk, [Ck,min> Ck,maz)) } the System needs to choose concrete concentrations

¢; and a precision that satisfies the following conditions:
1. Vi E”{IZ s.t. C; = ki/Qd
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2. Vi: Cimin <¢ < Ci max

3. Zicz-zl

The first condition guarantees that the mixture can be obdairsing a 1-to-1 mixer. The second condi-
tion states that the concrete concentrationare within the range specified by the programmer. The third
condition ensures that the form a valid mixture, i.e., that they sum to one.

The BioStream system uses a simple greedy algorithm to ehgamdd satisfying these conditions. It
increasesl until there exists a; satisfying (1) and (2) for all. If multiple candidates for a gives} exist, it
selects the smallest possible. Then it checks conditianl{#e sum exceeds one, it increagkand starts
over. If the sum is less than one, it increaseslbgﬂ somec; for which ¢; < ¢;mar — 1/2d. If no suchg;
exists, it increases and starts over. Otherwise the algorithm continues urgilctbnditions are satisfied.

One can imagine other selection schemes that selextd d to optimize some criterion, such as the
number of mixes required by the resulting mixture. This wlobé straightforward to implement via an
exhaustive search at a given precision level, but it coulddsly depending on the size of the error margins.
It will be a fruitful area of future research to optimize thadection of target concentrations while respecting

the error bounds.

Open Problems

We suggest three avenues for future research in mixingitigus.
N-to-M mixing. It is simple to build a rotary mixer that combines fluids ire#ie other than 1-to-1; for
example, 1-to-2, 1-to-3, or even a ternary mixer such asZ-ttw3. Judging by exhaustive experiments, it

appears that a 1-to-2 mixer can obtain any concentratjaft. However, we are unaware of a closed form
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for the mixtures that can be obtained with a general N-to-MemiLikewise, we consider it to be an open
problem to formulate an efficient algorithm for determinitig minimal mix sequence using an N-to-M
mixer (i.e., one that does not resort to an exhaustive lod&hje.) A solution to this problem could reduce
mixing time and reagent consumption while increasing gieni

Minimizing storage requirements. Given a mixing tree, it is straightforward to find an evaioat
order that minimizes the number of temporaries; one carnyabpl classical node labeling algorithm that
minimizes register usage for trees [Alfred V. Aho and Ulim&888, p. 561]. However, we are unaware of
an efficient algorithm for finding the mixing tree that minzas the number of temporaries needed to obtain
a given mixture. This could be an important optimizationgaperiments often demand as many parallel
samples as can be supported by the architecture. Alsogstolembers on microfluidic chips are relatively
limited and expensive compared to storage on today’s coenput

Heterogeneous inputsOur presentation treats each input sample as a black baxevéws, in practice,
the user is able to prepare large quantities of reagentpassito the chip. For an application that produces
an array of concentrations, what inputs should the usempegp minimize the number of mixes required?
And if some inputs are related (e.g., a sample of 10% acid 8f6l&id) how can that be incorporated into
the mixing algorithm? Like the previous items, these arerggting algorithmic questions that can have a

practical impact.

Related Work

Several researchers have pursued the goal of automatingptite| systems for microfluidic chips. Gas-

coyne et al. describe a graphical user interface for cdimgothips that manipulate droplets over a two-
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dimensional grid [Gascoyne et al., 2004]. By varying par@nsein the interface, the software can target
grids with varying dimensions, speeds, etc. However, pdityis limited to grid-based droplet processors.
While the BioStream protocol language could target theipghtheir software is not suitable for targeting
ours.

Su et al. represent protocols as acyclic sequence graphmapdhem to droplet-based processors
using automatic scheduling [Su and Chakrabarty, 2004] asdliie placement [Su and Chakrabarty, 2005].
While the sequence graph is portable, it lacks the expressss of a programming language and cannot
represent feedback loops (as in our recursive descent éxarking et al. demonstrate a “robot scientist”
that directs laboratory experiments using a high-levegmmming language [King et al., 2004], but lacks
the abstraction layers needed to target other devices. @lU étave controlled microfluidic chips using
programmable Braille displays [Gu et al., 2004], but prots@re mapped to the chip by hand.

Johnson demonstrates a special-purpose robotic systemrdided by Labview) that automatically
solves 3-SAT problems using DNA computing [Johnson, 200&hiaturizing his benchtop devices could
result in a fully-automatic microfluidic biocomputer. Ltesie et al. compile an abstract SAT problem into
a sequence of DNA-computing steps [Livstone et al., 2006]e dutput of their system would be a good
match for BioStream and the abstraction layers proposdusrpaper.

There are other microfluidic chips that support flexible gatien of gradients[Dertinger et al., 2001,
Neils et al., 2004, Lin et al., 2004] and programmable mixang droplet array[Pollack et al., 2000]. To the
best of our knowledge, our chips are the only ones that pecsititrary mixing of discrete samples in a soft
lithography medium. A more detailed comparison of the devis published elsewhere [Urbanski et al., 2006].

Ren et al. also suggest a mixing algorithm for diluting a Emgagent by a given factor [Ren et al., 2003].

It seems that their algorithm performs a binary search ferténget concentration, progressively approxi-
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mating the target by a factor of two. However, since intenatedreagents must be regenerated in the search,
this algorithm require$)(n) mixes to obtain a concentratidr/n. In contrast, our algorithm need¥1g n)

to mix two fluids.

Conclusions

Microfluidic devices are an exciting substrate for biol@gicomputing because they allow precise and auto-
matic control of the underlying biological protocols. Hoxee as the complexity of microfluidic hardware
comes to rival that of silicon-based computers, it will bitical to develop effective abstraction layers that
decouple application development from low-level hardwdetails.

This paper presents two new abstraction layers for micahifiubiocomputers: the BioStream proto-
col language and the Fluidic ISA. Protocols expressed irbBaam are portable across all devices im-
plementing a given Fluidic ISA. We demonstrate this poligbby building two fundamentally different
microfluidic devices that support execution of the same Bexn code. We also present a new and optimal
algorithm for obtaining a given concentration of fluids @snsimple on-chip mixing device. This algorithm
is essential for efficiently supporting the mix abstractiothe BioStream language.

It remains an interesting area of future work to leverage Déddnputing technology to target the
BioStream language from a high-level description of the poration. This will create an end-to-end plat-

form for biological computing that is seamlessly portaliteoas future generations of microfluidic chips.
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Notes

g n denotes logn.
2Alternately, BioStream supports a global error tolerantieat applies to all concentrations.
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