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Abstract In the framework of P systems, it is known that the construction of exponential 
number of objects in polynomial time is not enough to efficiently solve NP-complete 
problems. Nonetheless, it could be sufficient to create an exponential number of mem-

branes in polynomial time. Working with P systems whose membrane structure does not 
increase in size, it is known that it is not possible to solve computationally hard problems 
(unless P = NP), basically due to the impossibility of constructing exponential number of 
membranes, in polynomial time, using only evolution, communication and dissolution 
rules. In this paper we show how a family of recognizer tissue P systems with symport/

antiport rules which solves a decision problem can be efficiently simulated by a family of 
basic recognizer P systems solving the same problem. This simulation allows us to transfer 
the result about the limitations in computational power, from the model of basic cell-like P 
systems to this kind of tissue-like P systems.

Keywords P systems � Tissue P systems � Recognizer P systems �
Symport/antiport rules � Efficient simulation of cellular systems

1 Introduction

Membrane Computing starts from the assumption that the processes taking place within the 
compartmental structure of a living cell can be interpreted as computations (Păun 2000). 
The computational devices in Membrane Computing are called P systems. Roughly 
speaking, a P system consists of a membrane structure, in the compartments of which one
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places multisets of objects which evolve according to given rules in a synchronous, non-

deterministic, maximally parallel manner.1

In recent years, many different models of P systems have been proposed. The most

studied variants are characterized by a cell-like membrane structure, where the commu-

nication happens between a membrane and the surrounding one. In this model we have a

set of nested membranes, in such a way that the graph of the neighborhood relation is a

tree.

We shall focus here on another type of P systems, the so-called (because of their

membrane structure) tissue P Systems (Martı́n-Vide et al. 2003). Instead of considering a

hierarchical arrangement, membranes are modelled as nodes of an undirected graph. This

variant has two biological inspirations: intercellular communication and cooperation

between neurons. The common mathematical model of these two mechanisms is a net of

processors dealing with symbols and communicating these symbols along channels

specified in advance. The communication between cells is based on symport/antiport

rules.2Symport rules move a number of objects across a membrane together in the same

direction, whereas antiport rules move objects across a membrane in opposite directions.

Since the seminal definition of tissue P systems several research lines have been

developed and other variants have arisen. One of the most interesting variants of tissue P

systems was presented in Păun et al. 2004 where the definition of tissue P systems is

combined with the corresponding one of P systems with active membranes, yielding the

model of tissue P systems with cell division.

This model has been studied in depth in Dı́az-Pernil (2008), where the importance of the

cell division rules in order for the model to be able to efficiently solve computationally

hard problems is shown. We present here a (fundamental) part of the proof of this result,

namely the possibility of simulating, in an efficient manner, a family of tissue P systems

without division rules (e.g. using only communication rules) solving a decision problem,

by a family of basic P system solving the same problem.

The paper is organised as follows. In Sect. 2 we recall some definitions related to tissue

P systems (further information can be found in the literature, see (P system 2003)). Sec-

tion 3 is devoted to simulations of cellular systems in general, and to simulations of

recognizer tissue P systems with symport/antiport rules by basic recognizer P systems, in

particular. Finally, in the last section some remarks and future work directions are

presented.

2 Recognizer tissue P systems

Let us recall that a decision problem, X, is a pair (IX, hX) such that IX is a language over a

finite alphabet (whose elements are called instances) and hX is a total boolean function over

IX. There exists a natural correspondence between languages and decision problems in the

following way. Each language L, over an alphabet R, has a decision problem, XL, asso-

ciated with it as follows: IXL
¼ R�; and hXL

¼ fðu; 1Þ j u 2 Lg [ fðu; 0Þ j u 2 R�nLg:
Converselly, given a decision problem X = (IX, hX), the language LX over the alphabet of

IX associated with it is defined as: LX ¼ fu 2 IX j hXðuÞ ¼ 1g:

1 An informal overview can be found in Păun and Pérez-Jiménez (2003) and further bibliography at P
system http://ppage.psystems.eu/.
2 This method of communication for P systems was introduced in Păun and Păun (2002).

http://ppage.psystems.eu/


In order to solve decision problems by membrane systems and having in mind the

relationship between the solvability of such problems and the recognition of the languages

associated with them, we consider tissue P systems as languages recognizer devices.

Definition 2.1 A tissue P system of degree q C 1 with symport/antiport rules is a tuple

P ¼ ðC;R;X;M1; . . .;Mq;R; iin; ioutÞ

where C is a finite alphabet (called working alphabet) whose elements are called objects; R
is a finite alphabet (called input alphabet) strictly contained in C; X � CnR is a finite

alphabet, describing the set of objects present in the environment in arbitrarily many copies

each;M1; . . .;Mq are strings over CnR, describing the multisets of objects placed in the q
cells of the system; R is a set of communication rules of the form r ¼ ði; u1=u2; jÞ; for

i; j 2 f0; 1; . . .; qg; i 6¼ j and u1; u2 2 C�; iin 2 f1; . . .; qg is the input cell, and iout 2
f0; 1; . . .; qg is the output cell.

For a rule ði; u1=u2; jÞ we say that the maximum of lengths of u1 and u2 is the weight of

the rule. When applying such a rule, the objects of the multiset represented by u1 are sent

from region i to region j and simultaneously the objects of the multiset u2 are sent from

region j to region i. In this description, the number 0 represents the environment of the

system.

The rules of a system as above are used in the non-deterministic maximally parallel

manner as customary in membrane computing. In each step, all cells which can evolve

must evolve (more precisely, in each step we apply an applicable set of rules which is

maximal, no further rule can be added to it).

A configuration of P is a tuple C ¼ ðM0;M1; . . .;MqÞ; where M0 is a multiset of objects

over CnX (the objects in the environment which are in finitely many copies), and

M1; . . .;Mq are multisets of objects over C (the objects in each cell of the system). For two

configurations C1, C2 of P we write C1 )P C2; and we say that we have a transition from

C1 to C2, if we can pass from C1 to C2 by applying the rules from R:
The initial configuration of the system is ð;;M1; . . .;MqÞ: For each multiset m over

the input alphabet, the initial configuration of the system associated with it is

ð;;M1; . . .;Miin þ m; . . .;MqÞ: Then, m is an input multiset of every computation C ¼
fCigi\r such that C0 is the initial configuration of P associated with m.

All computations start from an initial configuration and proceed as stated above; only

halting computations give a result, which is encoded by the number of objects in the output

cell iout in the last configuration. From now on, we will consider that the output is collected

in the environment (that is, iout = 0, and thus we will omit iout in the definition of tissue P

systems). This way, if P is a tissue P system and C ¼ fCigi\r is a halting computation of

P; with Ci ¼ ðMi;0;Mi;1; . . .;Mi;qÞ; then the answer of the computation C is

OutputðCÞ ¼ WCnXðMr�1;0Þ

where W is the Parikh function.

In order to use these computational devices for solving decision problems, recognizer
tissue P systems are introduced.

Definition 2.2 A tissue P system with symport/antiport rules is a recognizer system if the

following holds:

(1) The working alphabet C has two distinguished objects yes and no; present in at least

one copy in some initial multisets M1; . . .;Mq; but not present in X:



(2) All computations halt.

(3) If C ¼ fCigi\r is a computation of P; then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last step of

the computation.

Given a recognizer tissue P system with symport/antiport rules, and a computation C ¼
fCigi\r of P; we define the result of C as follows:

OutputðCÞ ¼

yes; if Wfyes;nogðMr�1;0Þ ¼ ð1; 0Þ
^ Wfyes;nogðMk;0Þ ¼ ð0; 0Þ for k ¼ 0; . . .; r � 2

no; if Wfyes;nogðMr�1;0Þ ¼ ð0; 1Þ
^ Wfyes;nogðMk;0Þ ¼ ð0; 0Þ for k ¼ 0; . . .; r � 2
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>>:

That is, C is an accepting computation (respectively, rejecting computation) if the object

yes (respectively, no) appears in the environment (only) in the halting configuration of C:

3 Simulating tissue P systems by basic P systems

The goal of this section is to establish the limitations of recognizer tissue P systems with

symport/antiport rules from the computational complexity point of view. Specifically, we

will justify that this model of tissue P systems can be simulated (in a efficient manner) by

basic recognizer P systems.

Let us recall that in P systems, evolution rules, communication rules and rules involving

dissolution are called basic rules. That is, by applying this kind of rules the size of the

structure of membranes does not increase. Hence, it is not possible to construct an

exponential working space in polynomial time using only basic rules in a P system.

Definition 3.1. A recogniser P system is a P system such that: (a) the working alphabet

contains two distinguished elements yes and no; (b) all computations halt; and (c) if C is a

computation of the system, then either object yes or object no (but not both) must have

been released into the output region of the system, and only in the last step of the

computation.

When we try to simulate the behaviour of a recognizer tissue P system with symport/

antiport rules by a recognizer basic P system we have the following difficulties:

• On one hand, tissue P systems have a set of individual cells connected between them

through a virtual graph provided by the rules, every cell can communicate with the

environment, and only symport/antiport rules will be considered. On the other hand, P

systems work with a hierarchized set of membranes structured by a rooted tree, only the

skin membrane can send objects to the environment, and only evolution rules will be

considered.

– To address this, the P system that performs the simulation will work with pairs

encoding, simultaneously, the objects from the tissue P system and the cells where

they are placed.

• On one hand, cells in tissue P systems always contain objects with finite multiplicity,

but the environment contains arbitrarily many copies of some objects. On the other

hand, membranes and the environment in P systems always have objects with finite

multiplicity.



– To address this, in the P system that performs the simulation, the objects from the

tissue P system present in the environment with infinite multiplicity will not be

considered in an explicit manner, but will be used without problems whenever

necessary.

Next, we precise the meaning of (efficient) simulations in the framework of cellular systems.

Definition 3.2 Let P and P0 be recognizer cellular systems (cell-like and/or tissue-like).

We say that P0 efficiently simulates P if the following holds:

• P0 can be constructed from P by a deterministic Turing machine working in

polynomial time.

• There exists a bijective function, f, from the set CompðPÞ of computations of P onto

the set CompðP0Þ of computations of P0 such that:

– A computation C 2 CompðPÞ is an accepting computation if and only if f ðCÞ 2
CompðP0Þ is an accepting one.

– There exists a polynomial p(n) such that for each C 2 CompðPÞ we have

jf ðCÞj � pðjCjÞ:

Next, for every recognizer tissue P system with symport/antiport rules we design a basic

recognizer P systems efficiently simulating it, according to Definition 3.2.

Definition 3.3 Let P ¼ ðC;R;X;M1; . . .;Mq;R; iinÞ be a recognizer tissue P system of

degree q C 1 with symport/antiport rules. Let us consider the basic recognizer P system

SðPÞ ¼ ðC0;R0; l;M0
1;R0; i0inÞ defined as follows:

• C0 ¼ fða; iÞ : a 2 C ^ i 2 f1; . . .; qgg [ fða; 0Þ : a 2 CnXg [ fyes; nog: The objects

of SðPÞ are ordered pairs encoding objects of P and cells where the objects are

placed. From the environment, we only consider objects with finite multiplicity, that is,

belonging to CnX:
• R0 ¼ fða; iinÞ : a 2 Rg:
• l ¼ ½ �1:

• M0
1 ¼

Xq

i¼1

X

a2CnR
ða; iÞMiðaÞ:

For each cell i of P and for each object a 2 CnR belonging to that cell, we consider in the

membrane of SðPÞ the pair (a, i) with the same multiplicity.

• In the set R0 the following rules associated with SðPÞ are included:

– For each rule rP � ði; a1. . .am=b1. . .bn; jÞ 2 R with i, j = 0, associated with P; we

consider the following rule (denoted by r
SðPÞ Þða1; iÞ. . .ðam; iÞðb1; jÞ. . .ðbn; jÞ !

ðb1; iÞ. . .ðbn; iÞða1; jÞ. . .ðam; jÞ
– For each rule rP � ði; a1. . .am=b1. . .bn; 0Þ 2 R with i = 0, associated with P; we

consider the following rule (denoted by r
SðPÞ Þða1; iÞ. . .ðam; iÞðb1; 0Þ. . .ðbs; 0Þ !

ðb1; iÞ. . .ðbn; iÞða1; 0Þ. . .ðar; 0Þ where a1; . . .; ar; b1; . . .; bs 62 X and arþ1; . . .; am;
bsþ1; . . .; bn 2 X:

– For each rule rP � ð0; a1. . .am=b1. . .bn; iÞ 2 R with i = 0, associated with P; we

consider the following rule (denoted by r
SðPÞ Þða1; 0Þ. . .ðar; 0Þðb1; iÞ. . .ðbn; iÞ !

ðb1; 0Þ. . .ðbs; 0Þða1; iÞ. . .ðam; iÞ where a1; . . .; ar; b1; . . .; bs 62 X and arþ1; . . .; am;
bsþ1; . . .; bn 2 X:



– ðyes; 0Þ ! ðyes; outÞ; ðno; 0Þ ! ðno; outÞ: These rules translate the answer pro-

vided by the system P to an answer for the system SðPÞ:
• i0in ¼ 1;that is, the membrane of the system is the input membrane.

Proposition 3.1 Let P be a recognizer tissue P system with symport/antiport rules. The
system SðPÞ defined in 3.3 can be constructed from P by a deterministic Turing machine
working in polynomial time.

Proof It suffices to note that the amount of resources needed to construct SðPÞ from P is

polynomial in the size of the initial resources of P: Indeed,

• Sizes of the alphabets: jCSðPÞj ¼ jCj � qþ jCnXj þ 2 and jRSðPÞj ¼ jRj:
• Initial number of membranes: 1.

• Initial number of objects in SðPÞ : jM0
1j ¼

Xq

i¼1

X

a2CnR
MiðaÞ:

• Total number of rules: jR0j ¼ jRj þ 2:
• The maximum weight of rules in RSðPÞ is less than or equal to the maximum weight of

the rules in RP: h

In what follows, P represents a recognizer tissue P system with symport/antiport rules

and SðPÞ the basic recognizer P system associated with it, according to Definition 3.3.

Definition 3.4 Let C ¼ ðM0;M1; . . .;MqÞ be a configuration of P: Then we define the

configuration SðCÞ ¼ ðM01;M0envÞ of SðPÞ as follows:

• M01 ¼
Xq

i¼1

X

a2C
ða; iÞMiðaÞ þ

X

a2CnX
ða; 0ÞM0ðaÞ:

• M0env ¼ ;:

Let us see that S can be considered a one-to-one correspondence between the config-

urations of P and the configurations of SðPÞ where the environment is empty.

Let us note by Conf ðPÞ (respectively, Conf ðSðPÞÞ) the set of all configurations of P
(respectively, SðPÞ). We also denote by Conf :envðSðPÞÞ the set of all configurations of

SðPÞ where the environment is empty.

Proposition 3.2 The function S from Conf ðPÞ to Conf :envðSðPÞÞÞ assigning S(C), to
each configuration C 2 Conf ðPÞ according to Definition 3.4, is bijective.

Proof Let C1 ¼ ðM1;0;M1;1; . . .;M1;qÞ and C2 ¼ ðM2;0;M2;1; . . .;M2;qÞ be configu-

rations of P such that SðC1Þ ¼ ðM0
1; ;Þ and SðC2Þ ¼ ðM0

2; ;Þ are equal. Let us see that

C1 = C2

• For each a 2 C we have M1,i(a) = M2,i(a) (1 B i B q).

• For each a 2 CnX we have M1,0(a) = M2,0(a). By definition, for each a 2 X we have

M1,0(a) = M2,0(a) = ?. So, M1,0 = M2,0.

Let C0 ¼ ðM01; ;Þ be a configuration of SðPÞ without objects in the environment. Let us

consider the configuration C ¼ ðM0;M1; . . .;MqÞ of P defined as follows:

• MiðaÞ ¼ M01ða; iÞ; for each a 2 C; 1 B i B q.

• M0ðaÞ ¼
M01ða; 0Þ; if a 2 CnX
1; if a 2 X

�

From Definition 3.4 we deduce that SðCÞ ¼ C0:



Next, we will see how this function can be extended to computations in both systems.

For that, first we show that the function can be considered a morphism with respect to the

relation )P :

Proposition 3.3 Let C1 and C2 be configurations of P: Then, C1 )P C2 if and only if
SðC1Þ )SðPÞ SðC2Þ:

Proof Let C1 ¼ ðM1;0;M1;1; . . .;M1;qÞ and C2 ¼ ðM2;0;M2;1; . . .;M2;qÞ be configu-

rations of P: We have,

SðC1Þ ¼ ðM01; ;Þ; with M01 ¼
Xq

i¼1

X

a2C
ða; iÞM1;iðaÞ þ

X

a2CnX
ða; 0ÞM1;0ðaÞ

SðC2Þ ¼ ðM02; ;Þ; with M02 ¼
Xq

i¼1

X

a2C
ða; iÞM2;iðaÞ þ

X

a2CnX
ða; 0ÞM2;0ðaÞ

Let us suppose that C1 )P C2: Then, there exists a multiset of rules m applicable to C1

such that yields C2. Let S(m) be the following multiset of rules associated with the

membrane of SðPÞ :

SðmÞ ¼
X

rP2R
rmðrP Þ

SðPÞ

That is, for each rule rP of P we add the rule r
SðPÞ in S(m), with the same multiplicity. Then,

it is easy to prove that S(m) is a multiset of rules applicable to S(C1) transforming this

configuration in S(C2). Now, let us suppose that SðC1Þ )SðPÞ SðC2Þ: Let S(m) be an

applicable multiset of rules producing S(C2) from S(C1). Bearing in mind that the envi-

ronment of S(C2) is empty, we deduce that rules ðyes; 0Þ ! ðyes; outÞ; ðno; 0Þ ! ðno; outÞ
do not belong to S(m). So, the rules in S(m) are of type r

SðPÞ for some rule rP of P: Let m be

the following multiset of rules:

m ¼
X

r
SðPÞ 2R

0
r

SðmÞðr
SðPÞ Þ

P

Then, it is easy to prove that m is an applicable multiset of rules producing C2 from

C1. h

Every computation C ¼ fCigi\r of the recognizer tissue P system with symport/antiport

rules P is a halting computation, and either the object yes or the object no (buth no both)

must have been released into the environment, and only in the last step. This information is

encoded by the sequence of configurations fSðCiÞgi\r of SðPÞ by the occurrence either of

the object ðyes; 0Þ or the object ðno; 0Þ in its membrane, and only in the configuration

S(Cr-1). Hence, in order to obtain a halting computation in SðPÞ it is necessary to add an

step that releases into the environment of SðPÞ either the object yes or the object no;
applying either the rule ðyes; 0Þ ! ðyes; outÞ or the rule ðno; 0Þ ! ðno; outÞ:

Definition 3.5 Let C be a computation of P and let C be the halting configuration of C: If

S(C) = (M01, ;), then we define the configuration LastðCÞ as follows:

LastðCÞ ¼ ðM01 � ðyes; 0Þ; yesÞ; if C is an accepting computation

ðM01 � ðno; 0Þ; noÞ; if C is a rejecting computation

�



Proposition 3.4 Let C ¼ fCigi\r be a computation of P: Then, the sequence of config-
urations SðCÞ ¼ fC0igi\rþ1 given by

C0i ¼ SðCiÞ; for i\r; C0r ¼ LastðCÞ

is a halting computation of SðPÞ: Moreover, jSðCÞj ¼ jCj þ 1; and C is an accepting
computation if and only if SðCÞ is an accepting computation.

Proof From Proposition 3.3 we have C0i )P C0iþ1 , for i \ r-1. Then, there is no rule of

P applicable to Cr-1 and, either the object yes or the object no (but not both), have been

released into the environment of P at time r-1. So, either the object ðyes; 0Þ or the object

ðno; 0Þ is in the membrane of SðPÞ in the configuration SðCr�1Þ ¼ C0r�1;and it is the first

time that it appears in that membrane. So, only either the rule ðyes; 0Þ ! ðyes; outÞ or the

rule ðno; 0Þ ! ðno; outÞ is applicable to C0r�1: Hence,

• C0r�1 ¼ SðCr�1Þ )SðPÞ LastðCÞ ¼ C0r:
• C0r is a halting configuration.

• The answers of the computations C and SðCÞ are equal.

That is, C is a halting computation if and only if SðCÞ is a halting computation. Finally,

note that jSðCÞj ¼ jCj þ 1: h

Proposition 3.5 Let CompðPÞ and CompðSðPÞÞ be the sets of all computations of the
systems P and SðPÞ; respectively. Then, the function S from CompðPÞ to CompðSðPÞÞ
assigning SðCÞ 2 CompðSðPÞÞ to each computation C 2 CompðPÞ; is a computational
isomorphism in the following sense: each C 2 CompP is an accepting computation of P if
and only if SðCÞ is an accepting computation of CompðSðPÞÞ:

Proof From Proposition 3.4 we deduce that the function S is well defined. Let C1 ¼
fCigi\r and C2 ¼ fC0jgj\s be computations of P such that SðC1Þ ¼ SðC2Þ: Then,

• r = s (we have jSðC1Þj ¼ r þ 1 and jSðC2Þj ¼ sþ 1).

• SðCiÞ ¼ SðC0iÞ; for each i\r:

So, Ci ¼ C0i for each i \ r; that is, C1 ¼ C2: Hence, the function S is injective.

Let C0 ¼ fC0igi be a computation of SðPÞ: Let us show that there is a computation C of

P such that SðCÞ ¼ C0
First, let us notice that there exists a configuration C0 of C0 such that C0 62 Conf:env

SðPÞ:
Indeed, otherwise fS�1ðC0iÞgi\r is a computation of P; so either the object yes or the

object no must have appeared in the environment of P in the configuration S�1ðC0r�1Þ:
Hence, either the rule ðyes; 0Þ ! ðyes; outÞ or the rule ðno; 0Þ ! ðno; outÞ could be

applied to the configuration C0r�1 and then it would not be a halting configuration. Let

j0 ¼ minfi\r : C0i 62 Conf:env
SðPÞg: Then, j0 [ 0, because the environment is empty in the

initial configuration.

Let us consider the sequence of configurations C ¼ fCigi\j0 
of P; given by Ci ¼ 

S�1ðCi
0Þ; for each i \ j0. From Proposition 3.3 we have Ci )P Ciþ1; for each i \ j0-1. 

From the construction of SðPÞ we deduce that only in the case that either the rule 
ðyes; 0Þ ! ðyes; outÞ or the rule ðno; 0Þ !  ðno; outÞ would have been applied to the 
configuration Cj

0
0�1, the environment would be nonempty in the configuration C0j0. But this 

case only is possible if in the configuration Cj0�1 of P the environment would contain 
either the object yes or the object no: Hence,



• Cj0�1 is a halting configuration of P; since P is a recognizer P system.

• C is a computation of P:
• C0j0 ¼ LastðCÞ:
• j0 = r-1.

• SðCÞ ¼ C0:
Thus, the function S is suprajective. From Proposition 3.4 we deduce that each compu-

tation C of P is an accepting computation if and only if SðCÞ is an accepting computation

of SðPÞ: h

Corollary 3.1 Let P be a recognizer tissue P system with symport/antiport rules. Then,
the system SðPÞ given in Definition 3.3 is a basic recognizer P system.

Proof By construction, SðPÞ is a basic P system whose working alphabet contains the

distinguished objects yes and no:

Let C0 be a computation of SðPÞ: By Proposition 3.5 there exists a computation C of P
such that C0 ¼ SðCÞ: From Proposition 3.4 we have C0 is a halting computation. Moreover,

C0 is an accepting computation if and only if C is an accepting one. h

Corollary 3.2 For each multiset m over the input alphabet of P we define the multiset
SðmÞ ¼

P
a2Rða; iinÞmðaÞ: Then, m is an input multiset of a computation C of P if and only if

S(m) is an input multiset of the computation SðCÞ of SðPÞ:

Proof Let us suppose that C ¼ fCigi\r is a computation of P and let C0 ¼
ðM0;M1; . . .;MqÞ be its initial configuration. If m is the input multiset of C; then Miin ¼
Miin þ m: By the definition of SðCÞ ¼ fC0igi\rþ1 we deduce that C00 = (M0, ;) with

M0 ¼
X

a2CnR
ða; iinÞMiin

ðaÞ þ
X

a2R
ða; iinÞmðaÞ

Hence, m is the input multiset of the computation C of P if and only if S(m) is the input

multiset of the computation SðCÞ of SðPÞ:h
We have shown that any family of recognizer tissue P systems with symport/antiport

rules can be efficiently simulated by a family of basic recognizer P systems. This leads to

the conclusion that the classes of decision problems that can be efficiently solved (see

Pérez-Jiménez et al. 2003 for a precise definition of this concept) by both models, are the

same.

Let us recall that only tractable problems can be efficiently solved by basic recognizer P

systems (Gutiérrez-Naranjo et al. 2006). Thus recognizer tissue P systems with symport/

antiport rules cannot efficiently solve computationally hard problems (unless P = NP).

4 Final remarks and future work

In this paper, we have shown that one model of tissue-like P systems can be efficiently

simulated by basic cell-like P systems. It would be interesting to extend the simulation to

another kind of tissue P systems and to analyse the converse: simulation of P systems by

tissue-like devices.

As a consequence, some limitations of recognizer tissue P systems with symport/anti-

port rules from the computational efficiency point of view can be derived. It is well known



that by adding division rules we can solve the SAT problem in linear time by using

communication rules with weight at most two (Păun et al. 2004). In order to obtain new

borderlines between tractability and intractability of problems we propose to study the

possibility to restrict the use of communication rules to only weight one, or substituting

division rules for rules capturing in tissue P systems the underlying ideas of membrane

creation rules of P systems.

Further interesting topics would be assigning a new role to the environment of tissue P

systems. Specifically considering that only objects with finite multiplicity can be included

in the environment in any moment. It seems that this new scenario would be equivalent to

tissue P systems without environment. Is it possible to solve NP-complete problems in

polynomial time in this new framework, permitting division rules?
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