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Abstract Over the last decade, the predator–prey model

(PPM) has emerged as an alternative algorithmic approach

to multi-objective evolutionary optimization, featuring a

very simple abstraction from natural species interplay

and extensive parallelization potential. While substantial

research has been done on the former, we for the first time

review the PPM in the light of parallelization: We analyze

the architecture and classify its components with respect to

a recent taxonomy for parallel multi-objective evolutionary

algorithms. Further, we theoretically examine benefits of

simultaneous predator collaboration on a spatial population

structure and give insights into solution emergence. On the

prey level, we integrate a gradient-based local search

mechanism to exploit problem independent parallelization

and hybridize the model in order to achieve faster con-

vergence and solution stability. This way, we achieve a

good approximation and unfold further parallelization

potential for the model.

Keywords Multi-objective optimization � Predator prey

model � Parallelization � Classification

1 Introduction

For most real-life problems, decision makers face the

challenge of finding good solutions in an environment of

contradicting objectives. Optimal solutions, however, are

always trade-offs: The improvement of one objective will

inevitably lead to the deterioration of another. This prob-

lem type is well-known as multi-objective optimization

problems (MOPs) and being tackled by mathematical and

computer science research for more than a century.

Formally, a MOP can be defined as a real-valued

problem with m objective functions f : Rn ! R regarding a

vector x ¼ x1; x2; . . .; xnð ÞT2 R
n in decision space. Without

loss of generality, we assume that all objectives have to be

minimized simultaneously, leading to a new definition of

dominance for contradicting objectives. In the decision

space R
n, we formulate F ¼ f1; . . .; fmð Þ : Rn ! R

m as a

mapping into the objectives space. Now, for elements

x; y 2 R
n, we say that x dominates y if fi(x) B fi(y) for all

i 2 f1; . . .;mg and denote this relation by x � y. If an i 2
f1; . . .;mg with fi(x) \ fi(y) exists, we say x truly domi-

nates y and denote it by x � y. An element of the optimal

solution set is called Pareto-optimal if no other element

truly dominates it in the decision space.

Obviously, the elements in the optimal solution set are

only partially ordered and, as such, incomparable. There-

fore, such problems are often approached using a-posteriori

optimization: First, all optimal trade-off solutions are found

in order to draw a picture of the achievable range of pos-

sibilities. Then, one out of these is selected as solution to be

applied to the original problem. That selection or decision

making step is usually done by humans who incorporate

further experiences, problem knowledge, previously

unexpressed preferences, or other aspects which are too
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fuzzy to be tackled through computation. In contrast to

that, the first step of trade-off generation is in most cases

supported by algorithms which ideally provide the whole

set of possible results. Unfortunately, for most MOPs it is

algorithmically very difficult to find such a solution set.

During the last two decades, nature-inspired methods

have therefore emerged as alternatives for the approxima-

tion of such solution sets. They are supposed to be efficient

if the problem space (fitness landscape) is very large or

even unknown so that established methods are conceptu-

ally not applicable. Multi-Objective Evolutionary Algo-

rithms (MOEAs) follow the selection and variation

paradigm from natural evolution. They represent problem

solutions as a population of individuals and foster the

survival of the fittest following a generational approach:

The best-adapted solutions are allowed to produce off-

spring by carefully incorporating random variation. In this

way, an ancestry-based search space exploration is realized

that allows for parallelization at the level of evaluating the

individuals regarding their respective fitness1.

Because of the aforementioned partially-ordered domi-

nance relation, the selection of ancestors for the next

generation’s offspring is a non-trivial problem. Modern

MOEAs introduce complex mechanisms (Deb et al. 2000;

Emmerich et al. 2005) for ranking the quality of individ-

uals. Although—for many problems—not exceeding the

effort of fitness evaluation, the computations which pave

the path for performing sensible selection are getting

increasingly expensive. This cost mainly results from

conserving the basic evolutionary loop also in MOEAs.

While the evaluation of a population and subsequent

selection is relatively easy in single-objective evolutionary

algorithms due to a single dominance criterion, computa-

tion of multiple objectives and of a substitute indicator for

dominance ranking are usually bottlenecks in the algo-

rithmic scheme. Ironically, little effort has been put into

tackling this problem on the structural level: Instead,

extensive research has been conducted on the paralleliza-

tion of selection metrics computation (Alba 2005). This is

all the more remarkable since such an approach will

somewhat ameliorate the increased computational cost, but

leave the structural problems largely untouched and thus

impair scalability.

The predator–prey model (PPM), originally proposed by

Schwefel, takes an alternative approach for handling multi-

objective optimization problems under parallelization

aspects (Laumanns et al. 1998). In contrast to established

MOEAs, this method relies on an agent-based single-

objective selection scheme. The basic idea is motivated

from predator and prey interplay in nature, where prey

individuals evolutionarily adapt to threatening predator

individuals. Within the algorithm’s abstraction, prey rep-

resent the solutions of a multi-objective problem while

predators reflect the pursued objectives. The simultaneous

influence from all predators forces the prey individuals to

resist different threats, thereby approximating optimal

trade-off solutions. Until now, various modifications

(Grimme and Schmitt 2006; Grimme and Lepping 2007;

Grimme et al. 2007) have been applied to the original PPM

towards a building block-oriented model. The original

intent of those works was to allow the flexible integration

of problem specific knowledge leading to problem-specific

algorithms. Nevertheless, both the original and the building

block-oriented approach expose inherent parallelism which

should be contemplated as well.

In this paper, we discuss the PPM with respect to

identifying components that benefit from parallelism,

evaluating emergent behavior, and proposing ways of

hybridization. To this end, we fit the PPM into accepted

taxonomies for parallelization of multi-objective evolu-

tionary algorithms. Moreover, we show how the PPM

inherently realizes different parallelization aspects within a

single framework and exemplarily demonstrate the inter-

action of the different components for mutation and a

special kind of recombination. Finally, we motivate this

model as an environment for further research in parallel

multi-objective optimization as it leverages decoupled

interaction of actors to multiple parallelization layers. We

explicitly do not compare the PPM to dominance- or

indicator-based MOEAs, but rather evaluate the model in

full depth to spotlight its ease of use with respect to

parallelism.

The rest of the paper is organized as follows: In Sect. 2,

we comprehensively review popular algorithms in multi-

objective optimization and give some exemplary insight on

parallelization approaches. Then, we describe three

approaches for classification of algorithmic parallelization

in multi-objective optimization and subsequently build the

basis for our perspective on parallelization paradigms. In

Sect. 3, we give a general definition of the reviewed

predator–prey model and explain its classification into a

common three-layer taxonomy for parallelization in multi-

objective optimization. Next, in Sect. 4, we analyze the

dynamics of interplay in the predator–prey model. There,

we exemplarily investigate the behavior of mutation and

recombination on the parallel cooperation level. Further,

we discuss on the independent parallelization level how

local search is to be integrated. Finally, in Sect. 5, we

conclude our work with a perspective on future research

and development.

1 Considering parallelization, this approach comes with an inherent

barrier at the moment when parents are selected for the next

generation. For example in case of time consuming evaluation of only

a single individual, the generational selection mechanism is blocked

until completion of that specific individual.
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2 Background

Over the last two decades, various heuristics have been

proposed for applying evolutionary and natural principles

to multi-objective optimization problems; see Deb (2001;

Coello et al. 2007) for a detailed review. In the following,

we introduce the most popular and review them with

respect to parallelization. Eventually, we discuss three

classification schemes for such algorithms.

2.1 Multi-objective optimization

Most successful approaches use the Pareto dominance

relation to select efficient solutions during evolution: the

Non-dominated Sorting Genetic Algorithm (NSGA-II)

applies non-dominated ranking and sorting to determine

reproduction candidates. Other approaches like SPEA2

(Zitzler et al. 2001) and PAES (Knowles and Corne 2000)

utilize an archive as a central component for efficient

solution conservation and offspring generation. Both rely

on crowding-based measures (Deb et al. 2000) as a global

component for diversity preservation: the former applies

this mechanism on the population itself, and the latter uses

it for archive reorganization.

In contrast, indicator-based methods aggregate solution

quality in a single value to enable their comparison. Simple

approaches perform this aggregation via weighting; how-

ever, choosing adequate weights is an intricate process,

often leading to non-satisfactory results. More sophisti-

cated approaches use elaborate aggregation methods, for

example the S-Metric Selection algorithm (SMS-EMOA).

Based on the hypervolume measure of Zitzler et al. (2000),

the algorithm selects solutions which contribute most to the

overall hypervolume. Although it outperforms the domi-

nance-based approaches for more than four objectives, the

indicator calculation is rather expensive (Emmerich et al.

2005).

2.2 Algorithmic parallelization

Both approaches rely on global properties of the multi-

objective domain: the calculation of dominance sets and

quality indicators include the consideration of all available

solutions; this also holds for diversity preservation and

causes an additional parallelization barrier. To address this

problem, various modifications of the algorithmic structure

have been made to enable parallel processing.

A classical parallelization strategy is applied by Powell

and Hollingsworth (2007) who assume a central NSGA-II

algorithm instance that submits expensive function evalu-

ations to Web.service-based clusters or Grid nodes for

parallel execution. Xiong and Li (2003) present a parallel

version of SPEA2 which comprises threads in order to

handle individual as well as archive-related evaluations.

They additionally introduce independently performing

subpopulations that allow individual migration for genetic

information exchange during execution. Okuda et al.

(2002) use a similar approach, but allow the integration of

arbitrary MOEAs for each subpopulation. Parsopoulos

et al. (2004) also build upon subpopulations to enable

particle swarms to start parallel searches that migrate

intermediate results on a ring topology in order to gain an

overall solution for multi-objective problems. Recently,

Zhang et al. (2010) proposed a multi-objective distributed

efficient global optimization algorithm (MOEA/D-EGO)

that divides costly problem evaluations into subproblems.

Subsequently, all subproblems are considered in parallel to

generate and evaluate test points for later consideration in

selection. In a model-based way, the search space is

explored in parallel to enhance selection and to reduce

costly evaluations.

Finally, there are many approaches that use agents or

independently acting, spatially distributed individuals:

Rowe et al. (1996) propose parallel diffusion GAs in multi-

objective optimization. This approach assumes a popula-

tion in which all individuals interact with their direct

neighbors on a lattice structure. As a main advantage of

this approach, the authors identify speedup through mere

local dominance comparison. Besides that, they presume

beneficial niching properties regarding different objectives

and a diversity preservation effect of population distribu-

tion. Sadly, little evidence for this behavior is presented.

Nebro et al. (2007) use a toroidal grid population structure

and neighborhood interaction to propose a cellular GA for

multi-objective optimization. They store non-dominated

solutions in an external archive and apply a feedback

mechanism on it to randomly seed individuals to a new

generation. Siirola et al. (2004) introduce agents to induce

external pressure on the distributed population. In this

toolbox approach, several optimizers are acting on a pop-

ulation in shared memory. Although this approach is quite

similar to the PPM, it still follows a generational paradigm

and does not unfold its full potential of distribution,

asynchronism, and parallelization. Furthermore, the influ-

ence of different agents is not investigated in detail.

2.3 Classification of parallel MOEAs

The exemplified discussion of parallelization approaches in

multi-objective optimization shows different types of par-

allelism and distribution in algorithms. As in single-

objective optimization (Crainic and Toulouse 2002; Alba

and Tomassini 2002), several classification schemes for

MOEAs have been published.

Coello et al. (2007) identify four parallelization models:

The master–slave model follows the paradigm of a
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centralized master process that distributes function evalu-

ations to slave processes for parallel computation. The

island model assumes isolated evolving subpopulations.

Most common representatives of this type either allow

individual migration between populations or mimic species

that search the same or different parts of decision space as a

kind of multi-start approach. The third type is called dif-

fusion model and is represented by a massively distributed

single population. Herein, evolution takes place on the

local level and slowly spreads through the population: Only

one or few individuals of the spatially distributed popula-

tion are managed by a single processor. A fourth class

captures hierarchical combinations of the former without

introducing an additional paradigm.

Nebro et al. (see in Chap. 16 of Alba 2005) differentiate

single-walk and multiple-walk parallelization. The former

aims to accelerate computation by parallelizing function

evaluations or search operators. For the latter, an additional

separation regarding the Pareto-set generation is done: the

centralized Pareto-set approach relies on a central data

structure allowing the direct construction of a global Pa-

reto-optimal set, while the distributed approach acts inde-

pendently and on a local level, presuming a later merging

of results. Unlike Coello’s classification, the authors con-

sider the topology of the algorithm’s distribution as mere

consequence of the chosen parallelization strategy.

Talbi et al. (2008) identify three levels of hierarchical

parallelization: The self-contained parallel cooperation

includes cooperating subpopulations or multi-start variants

(as in the island model). Here, several algorithms work

together to achieve parallelization for both function eval-

uation and spatial distribution. On the second and third

level, the authors consider parallelization approaches for

speeding up algorithms while leaving their structures

untouched. They distinguish between problem independent

parallelization (level 2) and problem dependent parallel-

ization (level 3). The former mainly comprises the master–

slave approach of parallel fitness evaluation in a genera-

tion, while the latter focuses on subdividing single evalu-

ations to speed them up. According to the authors, this

leads to the application of several solvers with different

objectives, the decomposition of fitness evaluation for a

single objective, or even the parallelization of multiple

evaluation runs for the same calculation under uncertainty.

3 A parallel predator prey model

For our studies, we base upon a tailored model loosely

adopting Schwefel’s original ideas using predator–prey

interaction for multi-objective optimization (Laumanns

et al. 1998). In this section, we give a brief history of

the model’s development, a definition of the model’s

components, and a description of the algorithm’s working

principle.

Predator–prey interaction was initially considered by

Laumanns et al. (1998) as a simple approach to multi-

objective optimization. They introduced predators as

environmental influences that follow a single selection

criterion on a spatially distributed prey population.

Therein, trade-off solutions were expected to emerge from

simultaneous action of different predator species selecting

regarding different objectives. Although principally suc-

cessful, the approach was unable to ensure convergence to

the efficient solution set and adequate solution diversity at

the same time. Several modifications have been proposed

to address these problems. Deb (2001) introduces a dif-

ferent evaluation scheme by randomly aggregating objec-

tives in a single predator while Li (2003) adds more

dynamics by allowing prey movement. Schmitt et al.

(2005), in turn, split up the spatial population into so called

demes in which a (l, j, k)-ES with self-adaptation is

applied. Finally, we iteratively proposed to modularize the

whole model in order to enable a building block approach

(Grimme and Schmitt 2006; Grimme and Lepping 2007)

for (1) easily combining arbitrary actors and (2) better

exploitation of the parallel potential of the model. This

allowed us to additionally introduce a local search mech-

anism to prey individuals (Grimme et al. 2009).

3.1 General model definition

The interaction environment for our system is represented

by a graph, usually a toroidal grid, see Fig. 1, which is

populated by both predator and prey individuals. The latter

represent possible solutions of a multi-objective optimiza-

tion problem and are immobile (each individual inhabits a

single, fixed vertex). As such, there exist as many prey

individuals as graph nodes, building the population. Fur-

thermore, all prey are of equal kind and can therefore be

classified by a single species. On the contrary, predator

individuals can differ from each other regarding their

properties, such as their consumption characteristics and

reproduction model.

The first property is the selection criterion, which

defines a relationship between two prey individuals with

respect to a single objective. This is usually realized as

extinctive selection of the worst prey. The second property

describes a variation operator, which specifies the creation

model for the replacement of consumed prey individuals.

For these variation operators mutation as well as different

recombination schemes may be considered. For further

investigation we here consider Gaussian mutation and in

some cases Simplex recombination, a special case of local

intermediate recombination, as operators. Every predator is

constructed from a single selection criterion and a variation

C. Grimme et al.
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operator, which both determine the predator species. That

is, for a problem with two objectives F ¼ ðf1; f2Þ, a pred-

ator species may be defined by f1 as single selection cri-

terion and Gaussian mutation as variation operator.

Another predator species may comprise f2 as objective and

Simplex recombination as variation influence. According

to Grimme and Lepping (2007), the possibility to arbi-

trarily combine selection and variation allows to flexibly

induce specific influences on the population. In contrast to

prey, predators are allowed to move within the interaction

environment. This roaming behavior is usually imple-

mented by a random walk. Figure 1 schematically shows

the random predator’s (squared box) movement throughout

the spatial population.

As predators roam throughout the population, their

interaction with prey is locally restricted. Formally,

such an area of interaction is called neighborhood and

given by a neighborhood function. As most common

function the Von-Neumann neighborhood is applied,

comprising all nodes—and thus prey—which can be

reached by a fixed amount of steps in the grid structure.

Figure 1 depicts a Von-Neumann neighborhood of size

1. Contrary to Laumanns, we do not allow diverging

neighborhoods for selection and reproduction, to enable

reproduction from prior evaluated parents (Grimme and

Schmitt 2006).

The algorithmic transition from one state into another is

conducted by a predator movement together with the

application of an evolutionary process in the predator’s

neighborhood, see Fig. 1. In this figure, the predator moves

according to the walk scheme to a target vertex. Then, a

Von-Neumann neighborhood is spanned around that vertex

defining the set of prey which are considered for the evo-

lutionary process. The worst prey (in case of extinctive

selection) within the neighborhood is selected regarding

the predators selection criterion and consumed from the

subpopulation. Afterwards, the free place on the population

structure is taken by a new individual. This is bred by

applying the predator’s operator (e.g mutation or recom-

bination). This process is repeated for every predator in

parallel.

3.2 Layered model view

In order to structure the different levels of parallelism in

the PPM, we use the above mentioned classification of

Talbi et al. (2008) and map them onto the PPM’s parall-

elization layers, see Fig. 2.

Fig. 1 Exemplary depiction of the three major algorithmic phases

during predator action. At first, the predator performs a random walk.

Then it spans a neighborhood evaluating all contained prey regarding

its its single objective and removing the worst. Finally, the predator

triggers a reproduction from the remaining prey to fill up the vacant

place

Fig. 2 Schematic classification of components in the predator-prey

model in three levels of parallelization (fe denotes function evalu-

ations). The first level shows the parallel acting of predators which is

an inherent part of the model. Additionally, level two represents the

general batch parallelization of expensive function evaluations.

Finally, the third level denotes that even the function evaluations

can be parallelized depending on their specific characteristics

Parallel predator–prey interaction
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3.2.1 Layer 1: Self-contained parallel cooperation

Predator movement and interaction on a spatially distrib-

uted population is an integral part of algorithmic structure

in the PPM. This way, predators affect a subset of prey

population locally regarding a single objective. Only the

application of multiple predator species is expected to

collaboratively yield efficient solutions for MOPs.

Although independently acting and completely unaware of

each other, predators work on the same global set of dis-

tributed prey using the underlying population structure as

common environment. As such, changes to a local neigh-

borhood performed by a single predator indirectly affect

other predators’ selection and variation behavior leading to

trade-off solutions.

In terms of collaborative parallelization this emergent

behavior of predators holds two important structural bene-

fits: implicit distribution and parallelization of global dom-

inance considerations as well as flexible adjustment of the

algorithm. The distribution and parallelization due to pred-

ator action collapses dominance evaluation to single objec-

tive function computation and emergence through long-term

predator interplay. Thus, the barrier of function evaluations

from global dominance computation disappears.

The flexible adjustment of the algorithm is realized by

predator behavior parameters like random walk radius,

variation operators, or number of predators. For example, if

predators are restricted to a specific spatial niche, either

seldom or even no interaction can occur. In contrast, a

completely coupled walk scheme is likely to result in

cooperative influences on the prey.

3.2.2 Layer 2: Problem independent parallelization

On the problem independent parallelization level we cap-

ture two aspects of PPM modules in the general context of

function evaluations. Although these processes are inde-

pendent such that they can be executed in an embarrass-

ingly parallel2 fashion like it is possible for any MOEA,

the PPM provides two specific properties motivated from

the collaborative parallelization level.

First, in order to eliminate a prey within the predator’s

spanned neighborhood the whole subset of surrounded prey

must be evaluated. For this purpose, a whole batch of

evaluations is executed in parallel. A typical problem in

embarrassingly parallel executions are barriers as they

hamper the procedural progress. If one evaluation takes

much longer than all others a barrier occurs which may

lead to a low utilization of computing resources. This

problem typically limits the embarrassingly parallel eval-

uation of a whole population in panmictic evolutionary

models. The problem is also conceptually apparent in the

PPM but due to rather small selection neighborhoods

almost negligible. Further, the decomposition of MOPs to

single objective evaluations allows independent computa-

tion of function values. In case of separable MOPs, each

objective evaluation can be considered individually.

Otherwise—for non-separable MOPs—all objectives have

to be evaluated. However, additionally available informa-

tion obtained from other predators can be cached and used

later.

Second, the various prey individuals may perform an

integrated local search mechanism, see Grimme et al.

(2009) and Sect. 4.2. Any local search exclusively affects

the decision space and is therefore completely independent

of the population’s spatial structure. The same holds for

any autonomous optimization steps engaged by the prey.

As the preys’ immobility on the spatial structure is part of

the PPM concept, actually no interaction occurs at that

level. Thus, prey-triggered local search procedures can

be asynchronously parallelized regardless of both the

optimization problem and the higher level PPM configu-

rations and predator interaction. For parallel evaluation of

all objectives in the context of local search, the same

barrier considerations as for local neighborhoods can be

applied.

3.2.3 Layer 3: Problem dependent parallelization

At the lowest level, we consider the problem itself which

might be parallelized by customized evaluation procedures.

If the optimization problem has no mathematical formu-

lation the evaluation is typically based on simulations

performed by external software tools. In case of large

scale simulations, it is often recommended to decompose

the problem itself into sub-components which can be com-

puted in parallel. Most real-world simulation softwares—such

as CFD-ACE?3, ANSYS CFX4, or MATLAB5—support

automatic problem decomposition and MPI-triggered par-

allel execution in order to benefit from an expected speed-

up. However, this concept is no special feature of the PPM

and can be realized in any other optimization algorithm in

the same way. Nevertheless, we show that the PPM does

not involve any restrictions at the lowest parallelization

level such that traditional approaches are directly applica-

ble. However, in this paper we focus on levels 1 and 2

as methods for problem decompositions have been

2 This is a technical term from high performance computing. It

expresses a complete parallelization without any communication or

synchronization between concurrent processes.

3 http://www.esi-group.com/.
4 http://www.ansys.com/.
5 http://www.mathworks.com/.
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exhaustively discussed in related literature, see for example

Alba (2005).

4 Aspects of parallel cooperation

The previously described components of the model are used to

realize different levels of parallel interaction. Each compo-

nent of the model (e.g. walk, mutation, recombination) rep-

resents an atomic entity within the predator–prey optimization

framework. In general, every component is independent and

uncoupled such that they may be executed fully parallel.

In order to investigate parallel cooperation properties,

effects, and benefits of the presented PPM, we have to

understand interplay dynamics of acting entities on the

spatially distributed population and the effects of evolu-

tionary components in the algorithm. As such, we have to

consider the population structure and simultaneously focus

on very local processes that are involved. To this end, we

discuss both the implicit predator collaboration as well as a

hybridization approach with gradient-based local search

and show the influence of the model’s components on the

different levels of the parallel architecture.

4.1 The predators’ influence on the population and its

visualization

In order to allow for deeper insights into the PPM’s

dynamics, a visualization concept is desired that is able to

display the entire population in both positional mapping

and objective value. Since the development of a general

visualization technique is quite difficult for multi-objective

optimization problems with multi-modal objective func-

tions, we restrict ourselves to the easy test problem in

Eq. 1, which suffices to show important effects.

F 1ðxÞ ¼
f1ðxÞ
f2ðxÞ

� �
¼

x2
1 þ x2

2

ðx1 � 2Þ2 þ x2
2

 !
with

x 2 ½�10; 10�2
ð1Þ

The Pareto optimal set of this problem is given by a line

between (0,0) and (2,0) in decision space with the

endpoints as optimal solutions for f1(x) and f2(x)

respectively. Thus, a good solution for f1(x) is a bad

solution for f2(x) simultaneously and vice versa. This yields

the following construction rule for a two dimensional

representation of the population.

Let C ¼ ðc1; . . .; cl; clþ1Þ be a discrete color scale con-

taining l ? 1 colors. We apply the following mapping: l

intervals of objective function f1(x), x = (x1, x2)T with

0 B x1 B 2 are mapped to l colors. One color l ? 1 is

assigned to all remaining values of the objective function in

order to mark them as being outside the considered range.

Further, let Q ¼ qijji; j 2 f1; . . .; kg
� �

be a square divided

in k2 subsquares. Here, k is equal to the side length of the

toroidal grid. Any subsquare qij 2 Q denotes a prey’s

position on the torus. Finally, coloring subsquares from Q
with colors from C results in a depiction of the population

concerning both objectives.

The color of an optimal solution regarding objective

f1(x) is given by c1 while the optimum of objective f2(x) is

represented by cl. All other trade-off solutions are dis-

played by intermediate colors. An example of the intro-

duced visualization method is shown in Fig. 3 along with

its corresponding color scale.

Note that this method only holds for a small set of multi-

objective optimization problems which show similar

characteristics as the assessed problem. Furthermore, this

visualization does not express anything about the conver-

gence behavior to the Pareto-set and only yields a restricted

statement on diversity due to the quadratic nature of both

objectives.

4.1.1 Mutation analysis

First, we focus on predator influence with Gaussian

mutation as an exclusive operator and apply the previously

introduced simple test problem F 1ðxÞ for our analysis. We

observe the interaction of two predators and evaluate

100,000 predator walk steps each within a common toroi-

dal structured population which is set up randomly in the

beginning.

The results of optimization are shown in Fig. 4. Obvi-

ously, the whole population crowds at the extremal points

of both objectives within the Pareto-set, see Fig. 4a, while

no intermediary solutions are found. The corresponding

visualized population structure is depicted in Fig. 4b where

it comes apparent that both extreme solutions are repre-

sented by more or less large contiguous zones on the torus.

In the case of applying mutation only, this observation

leads us to the assumption that diversity is lost due to the

generation of similar offspring: on the long run only an

interchange of individuals takes place and it is not possible

Fig. 3 Schematic depiction of the population visualization. The color
of each subsquare denotes the proximity of the represented individual

to the respective objective. The mapping of each prey’s position to a

subsquare is indicated by the arrows

Parallel predator–prey interaction

123



to induce diversity. In all contiguous areas the evolutionary

process behaves similar to the single-objective case.

Moreover, we can observe squared edges between dif-

ferent extreme solution representations while no interme-

diary solutions are found at these borders. Although

contrary to the assumption of emergence, intermediate

solutions do not survive under exclusive influence of

mutation. In the following, we try to find explanations for

those observations.

Remember that in the predator–prey model, while the

predator is moving randomly, the worst prey is replaced by

a potentially better one. Thus, whenever a predator visits

the same selection neighborhood again it becomes more

likely that a prey is bred which is superior regarding the

predator’s objective. Thus, there is a strong tendency to

move all prey within the selection neighborhood toward the

predator’s objective. This, however, comes along with a

loss of diversity: once a prey has reached the near optimum

for the objective it will no longer be consumed by the

predator anymore and, respectively, the replacement of this

individual becomes very unlikely.

In order to explain this phenomenon, we use a Markov

chain that describes the transition probabilities of possible

neighborhood states, see Fig. 5. We assume a single

predator that resides at a static position within the torus

graph and is not affected by any other predator. Further-

more, we consider a neighborhood of size 1 which involves

five prey. Now, we assume a representation where one

extreme solution is displayed as black prey and the other as

white prey. For simplicity reasons we assume that the

whole torus is already occupied by white prey (state s0) and

our predator selects regarding the black objective.

If the neighborhood consists of five white prey, we can

always expect a white new mutated individual on the free

position if the mutation step size is small. In this case, the

probability of starting from state s0 and ending in s0 is

approximately equal to 1. The same holds for the opposite

configuration: a ‘‘white predator’’, black prey, and s5 as

starting state. This means that once the whole neighbor-

hood is covered with kindred individuals it is almost

impossible to leave this state anymore if the mutation step

size is small. To be more precise, there is a probability of �

that an offspring prey keeps the color of its parent prey. We

compute � as the Cumulative Distribution Function (CDF)

of a Gaussian distributed probability to perform a jump of

at most 2 within the search space, depending on the

mutation step size r. Any larger jump in direction of the

contradictory extremal solution would necessarily result in

a direct change of a black prey into a white prey and vice

versa, see Eq. 2. Consequently, the probability of the

inverse event—that is the change in color of an offspring—

is denoted by �� ¼ ð1� �Þ.

� ¼ 1

r
ffiffiffiffiffiffi
2p
p

Z1

2

exp � x2

2r2

� �
dx ð2Þ

If r is very small, � will be approximately 1 denoting a

rather stationary replication behavior. Contrary, a large r
will result in a small probability � and result in a very

transient behavior. This is also reflected in the state tran-

sitions in Fig. 5. Starting in state s0 (where all prey are

white), a stationary mutation will lead to s0 again. A

transient mutation leads to state s1 with a neighborhood

consisting of four white and one black prey. Due to the

elitist selection mechanism, a transition back to s0 is not

possible for state s1.

With the above insight and both basic probability defi-

nitions, we can compute all possible transition probabilities

between the states and formulate the transition matrix T of

the Markov chain.

T¼

� �� 0 0 0 0

0 0:75�0:5�� 0:25þ0:5�� 0 0 0

0 0 0:5 0:5 0 0

0 0 0 0:25þ0:5�� 0:75�0:5�� 0

0 0 0 0 �� �
0 0 0 0 �� �

2
6666664

3
7777775

ð3Þ

Within this matrix, the transition probabilities are

arranged in ascending order of states for rows and

Pareto-set

Population

(a)
(b)

Fig. 4 Population and Pareto-set after 100,000 evaluations of F 1

with exclusive mutation. The left-hand figure shows the Pareto-set

with the population crowding at the extremal solutions. The right-
hand figure shows the corresponding colored representation of the

search space, where the color in each subsquare denotes the quality of

the residing prey

Fig. 5 Depiction of the Markov chain describing states and transi-

tions of simple neighborhood mutation. Additionally, we denote the

configuration in each state, starting with five white and ending with

five black prey. The arrows represent state transitions
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columns respectively. Further, the transition probabilities

directly result from our initial definitions and the current

state. We exemplarily show the computation of those

transition probabilities leading from s1 to s1 and s2

respectively. In state s1, we consider a neighborhood of

size 1 which contains 3 remaining white parental prey, one

black parental prey, and an empty place to be filled.

Considering a uniformly random parent selection, we have

a probability of pw = 0.75 to select a white parent and a

probability of pb = 0.25 to select a black parent. From that

we can easily calculate the probability Ps1
for stationary

behavior as shown in Eq. 4.

Ps1
¼ 0:75�þ 0:25��

¼ 0:75ð1� ��Þ þ 0:25��

¼ 0:75� 0:5��

ð4Þ

The probability to change to state s2 is consequently given

by the counter probability of Ps1
:

Ps2
¼ 1� Ps1

¼ 1� ð0:75� 0:5��Þ
¼ 0:25þ 0:5��

With this model we compute the final transition

probabilities after many steps of selections and mutations

by computing the resulting transition matrix T1 ¼
limt!1 Tt for a fixed mutation step size. Note that we

refer to problem F 1ðxÞ where the maximum distance of the

Pareto-set has length 2, see Eq. 1 and Fig. 4a, and assume

an immobile predator. The resulting matrices T1r for

r1 = 0.5 and r2 = 1 are shown in Eq. 5.

T1r1
¼

0 � � � 1

..

. . .
.

1

1

1

1

1

2
6666664

3
7777775
;T1r2

¼

0 � � � 0:023 0:977

..

. . .
.

0:023 0:977

0:023 0:977

0:023 0:977

0:023 0:977

0:023 0:977

2
6666664

3
7777775

ð5Þ

The convergence of T is pretty fast as for t [ 5 the matrix

T only slightly differs from the final matrix T1. After few

mutations within the same neighborhood all individuals will

probably be black regardless of the starting state. If we

exemplarily set the mutation step size to r1 = 0.5, we can

expect that—on the long run and independent of the initial

representation—the neighborhood will consist of only

similar prey. However, if the mutation is strong enough, it

becomes more likely that a white prey is created from only

black prey in states s4 and s5, see T1r2
.

If we also consider the walk of the predator, the

observed structures in the population can be explained as

follows: As the random walk steps are notably small and

mutation strength is weak in this experiment, it is likely

that the same area is considered for mutation several times.

Therefore, once the neighborhood only consists of nearly

optimal prey, the predator tends to conserve or even

expand this area. If both predators act in this fashion,

nothing but an interchange of solutions takes place at the

boundaries. As shown in the theoretical analysis of muta-

tion, an increment of mutation strength is expected to only

delay—but never prevent—the crowding of the population

at extremal points, see Eq. 5. Note that this process can

already be observed within the first steps of predator

movement where it contributes to the formation of stable

areas. Such areas do not yet represent a single objective’s

extremal solution but an agglomerate around the neigh-

borhood’s best individual. In the long run, the areas touch

and the one containing the worse individuals with respect

to the predator’s objective is made extinct. This again is

due to the aforementioned principle.

4.1.2 Recombination analysis and evaluation

This section takes a closer look at the population’s

dynamics under the influence of predators that apply a

special kind of intermediate or panmictic recombination,

so-called Simplex recombination (Grimme and Schmitt

2006): it provides a rotation-independent variation of an

offspring x0 2 R
n based on n ? 1 parent individuals xi,

with 1 B i B n ? 1. The calculation of the new individual

x0 in the solution space is done using

x0 ¼
Xnþ1

i¼1

ð1� kiÞ
Yi�1

j¼0

kj

 !
xi; with k0 :¼ 1 and knþ1 :¼ 0

ð6Þ

The vectors xi span the n-Simplex, while the kj values

determine the position of x0. In order to ensure a uniform

distribution of selections of x0, random numbers zj�Uð0; 1Þ
are generated and applied in

kj ¼
ffiffiffiffi
zj

k
p

with k ¼ ðnþ 1Þ � j ð7Þ

Further, we use the afore introduced methodology of

representing a population, see Sect. 4.1, and exclude

mutation from the evolutionary process. In previous

studies, the simplex recombination was considered to

support convergence to the Pareto-set as well as diversity

preservation. These interpretations are based on observing

global characteristics of the mechanism. In the following

both global and local properties of simplex recombination

on a spatial population will be reviewed.

Global properties: An obvious property of Simplex

recombination is to collapse an initial population in its

convex hull. If there is no selection pressure at all, the

individuals urge to the center of gravity. Otherwise, the
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center of gravity is dislocated depending on the objectives.

As a consequence, the final position of a collapsed popu-

lation strongly correlates to the area the initial population

covers and the objectives obeyed. Hence, an initial popu-

lation with a convex hull surrounding the set of Pareto-

optimal solutions will collapse near by this set while a

population initially located beyond the Pareto-set will

collapse close to the border of the initial convex hull.

Because of the lack of mutation and the resulting lack of

innovation, these bounds cannot be crossed.

Local properties: Apparently, predators with different

objectives collaborate as long as prey solutions are outside

the feasible area. For our test problem F 1 we consider this

area to be given by a subset of the decision space above

and below the Pareto-set, bound in the first objective by the

extremal points. Outside the feasible area, an advancement

toward one objective is most probably also an advancement

toward the other objective if the angle between the

respective gradients is small.

Inside the feasible area, predators that favor objective

f1(x) judge prey individuals which are good concerning

objective f2(x) as being bad. This contradictory behavior,

however, results in a significant slowdown of population

convergence into the direction of the objectives’ connec-

tion line. This effect is displayed in Fig. 6 which shows the

contraction of population regarding the coordinate direc-

tions of decision space over time. The contraction process

can obviously be divided in four phases of different

behavior. First, the global effect resulting from the col-

laboration of both predator species yields to an equal

contraction in x1 and x2 direction (phase 1). In phase 2, the

population is inside the feasible area. Here, the population

keeps on collapsing regarding x2, as both predators favor

this direction the same, while the predators’ conflicting

objectives seem to lead to a stagnation concerning the

collapse of x1. Thereafter, phase 3 is characterized by total

stagnation in both directions. However, in this phase the

objectives become less important for the selection process

as the individuals begin to collapse to the center of the

population. This effect becomes apparent with the begin-

ning of phase 4, where individuals in the barycenter of the

population are more frequently produced than those at the

boundaries of the convex hull. Thus, they increasingly

often participate in the reproduction process which leads to

more intermediary solutions in the evolving population.

Finally, this increased participation rate results in a con-

traction of equal strength for both coordinate directions.

Regarding phases 2 and 3, we focus on different pro-

cesses inside the population when predators work against

each other with respect to objective f1(x). Generally, there

are two cases of neighborhood constellations in which the

predators may reside. This is shown in Fig. 7, where the

black colored prey is preserved by predator r1 while r2

spares white prey. Following, these cases are detailed:

1. All prey in the spanned neighborhood are black for r1

or all white for r2 (Fig. 7, cases 1 and 4). In this case

the recombination has rather no effect as the predator

can only create an offspring in the convex hull of quite

similar prey. This effect is for some time similar to the

replacement during mutation, see Sect. 4.1.1.

2. The predator resides on the border between areas with

white and black prey individuals (Fig. 7, cases 2 and

3). If more than one prey is bad concerning the

predators’ objective, the recombination mixes the

parental prey to an intermediary solution. This leads

to an increasing number of intermediary solutions over

time, while two boundary regions emerge (Fig. 7,

cases 5 and 6). In one region black prey exist next to

gray ones and in the analogue region white prey border

gray ones. If the gray population has an appropriate

size, it becomes more stable against both predators

than the remaining black and white prey. This finally

leads to a faster contraction to the barycenter of the

population.

The earlier described behavior results in the slowdown

of contraction in the feasible area. This is rooted in the fact

Fig. 6 Maximum expansion of

the population’s convex hull

considering decision space

components for simplex

recombination. The figure

shows that the recombinations

influence can be divided into

four phases of convergence
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that individuals being a mixture of extremal solutions

regarding both objectives are generated only on the border

of two conflicting regions. As a consequence, possible

trade-offs arise just in a fraction of the reproduction pro-

cesses. Nevertheless, as Fig. 8 shows, even this initially

slow process leads to contraction after many steps. The

pictures of the population development where taken after

100,000 function evaluations (phase 2), 500,000 function

evaluation (phase 3), and 2� 106 function evaluations

(phase 4).

4.1.3 Combined application of reviewed operators

By analyzing predator interplay with respect to associated

variation operators independently, we were able to identify

specific effects on the spatial population. For predators that

bring in Gaussian mutation, we identified a tendency for

spatial populations to develop contiguous areas of similar

prey with respect to a single objective. Accompanying to

this, there is a strong convergence towards extremal solu-

tions, while no intermediary solutions are being created.

Thus, the mutation operator’s behavior degenerates to a

plain replacement strategy. This holds independently from

the variation of mutation step size, since an increase of this

parameter only delays the crowding at extremal solutions

as the final status. However, the random walk step size

directly influences the aforementioned behavior, as this

parameter softens the spatial structure. With longer random

walks, this degenerates to an aggregated selection mecha-

nism on a panmictic population.

Inclusion of predators bound to Simplex recombination

supports global convergence and has a strong notion

towards an emergence of intermediary solutions on the

long run. The former, however, highly depends on the

initial solution distribution in decision space as the col-

lapsing behavior is only convergent to the true Pareto-set if

it is enclosed by the convex hull of the population.

With these results at hand, we can demonstrate the

potential of parallelity in the PPM by combining influences

of both predator species in order to achieve better results

for our simple test problem F 1. Here, we set random walk

step size to 1, mutation step size to 0.1, and perform 107

function evaluations.

As depicted in Fig. 9, the simultaneous application of

predator species reveals several characteristics that have been

already identified for the non-combined case. At the beginning

of the evolutionary process, the collapsing of the initial pop-

ulation towards the Pareto-set visualizes the strong influence

of the recombination. Thereafter, the mutation operator

dominates further development by preserving the extent of the

population at both extremal solutions: apparently, the popu-

lation keeps maximum expansion for the x1 component while

simultaneously oscillating on the x2 component within the

scale of the constant mutation step size.

Figure 10 shows the solution sets in decision space for

both predator species individually as well as for the

cooperating variant. This impressively demonstrates that

the proposed use of collaborative parallelism yields better

overall results.

4.2 Hybridization via prey individuals

Apart from collaboratively acting predator individuals

on the cooperative parallelization level, we integrate

Fig. 7 Simplified neighborhood constellation on the spatial structure

and its development under recombination. The left-hand side shows

the situation with only mutation, where only solution interchange

occurs. The right-hand side shows the same for activated recombi-

nation. In that case, trade-off solutions emerge on the boundaries

between two contradictory areas

Fig. 8 Population development

under simplex recombination,

taken after 100,000, 500,000,

and 2� 106 function

evaluations (from the left to the

right). The figure shows the

intermixing development during

application of only

recombination
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independently executing local search procedures into the prey

individuals. This contributes to stabilizing the search for

solutions and also accelerates convergence of search towards

required solutions. Since this hybridization works on a single

decision variable without direct algorithmic cooperation, it

happens on the problem independent layer of parallelization.

Nevertheless, we will show on the basis of Grimme et al.’s

work that the integration of local search indirectly contributes

to the predator–prey model’s approximation performance

(Grimme et al. 2009).

4.2.1 Gradient-based local search

The inclusion of gradient-based, deterministic local search

mechanisms into multi-objective optimization tasks has a

long tradition which is rooted in an important inherent

property of multi-objective problems: near the Pareto-set

the gradients of a solution are almost contradictory.

Ester (1987) and colleagues (e.g. Peschel 1980) used this

property for their early approaches in multi-objective opti-

mization, while Brown and Smith (2005) review the basic

theoretical principles of gradient-directed multi-objective

search in EMO research. Harada et al. (2006) propose a

Pareto-descent method, and Shukla (2007) focuses on the

efficiency of such methods for unconstrained test problems

and their effect on the computational complexity of the host

algorithm. Recently, Schuetze et al. (2008) proposed and

applied a ’hill-climber with sidestep’ that also relies on

gradient information and successfully integrated it into

NSGA-II.

We integrate gradient information via the prey individ-

uals into the predator–prey model. That is, we strive for

finding the local descent direction for all objectives

simultaneously and move a prey’s solution along this

direction.

Determining the Pareto-descent direction: Assuming

that we are provided with gradient information for each

objective, three cone types can be constructed:

1. Descent cones, which promise a benefit for all objectives

and thus are preferable in order to reach the Pareto set,

2. Contradictory cones, which favor some objectives

over others, and

3. Ascent cones, which lead to a deterioration of all

objectives.

Depending on the position of the point x in decision

space relative to the Pareto set, the cones are of different

size, see Fig. 11: if x is far from the Pareto set, the descent

cone is large. Otherwise, the descent cone is rather small

while the contradictory cone is large. Altogether with the

Fig. 9 Maximum expansion of

the population’s convex hull

considering decision space

components for both predator

species. For comparison, the

development under predators

with only Simplex

recombination is also depicted

Fig. 10 Approximated Pareto-

sets for the two-dimensional test

problem F 1, see Eq. 1. From

left to right we applied predators

only featuring mutation,

simplex recombination and both

predator species
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gradient information, these properties are used to perform a

local search step.

Formally, the search step length and direction is deter-

mined by combining the normalized gradient vectors as

shown in Eq. 8.

x0 ¼ xþ z; where z ¼ 1ffiffiffiffiffi
M
p

XM

i¼1

xi � ~gi

with z; ~gi 2 R
n and xi ¼ Uð1;MÞ;

XM

i¼1

xi ¼ M

ð8Þ

After combining the gradient vectors, the resulting step

is normalized with respect to the dimensions to avoid large

steps for M [ 2 objectives. Simultaneously, each gradient

vector is weighted with a uniformly distributed value to

increase or reduce its influence in the heading direction. If

point x is far from the Pareto set, the resulting direction z

will not leave the descent cone. Close to the Pareto set,

however, the weights will more frequently result in a step

direction towards the contradictory cone. This is beneficial

in order to favor diversity for solutions close to the Pareto

set. Obviously, a parameter for switching between descent

and diversity steps is not necessary: The local search

mechanism automatically adjusts to the situation using

gradient information inherent to the population.

Approximation of gradients: Usually, the finite differ-

ence method yields approximate information on the slope

directions for a given point x within its nearest environment.

However, this approach is computationally costly, as the

number of function evaluations per objective grows with the

dimension of decision space. Spall (1998), however, proposes

a simultaneous perturbation method that works with two

function evaluations per objective independent of decision

space dimension. Although this approach is less exact in

determining a gradient approximation, it determines an exact

descent direction in the long run.

~giðxÞ ¼
fiðxþ reiÞ � fiðx� reiÞ

2r
ð9Þ

Equation 9 gives the very basic method to determine an

approximated gradient ~gi for the i-th objective. The scalar

value of r denotes the perturbation strength, while ei is a

normalized random direction. In Spall’s work, this

direction is assumed to be Bernoulli ± 1 distributed.

4.2.2 Evaluation of the hybridization approach

We exemplarily focused on a more complex test problem

than F 1, which was used for visualization of predator

dynamics. We consider Kursawe’s test problem given in

Eq. 10 which has non-convex parts in the Pareto-front and

is disconnected in its Pareto-set (Kursawe 1991).

F 2ðxÞ ¼
f1ðxÞ
f2ðxÞ

� �

¼
Pn�1

i¼1 �10 � expð�0:2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ x2
iþ1

q
Þ

Pn
i¼1 jxij0:8 þ 5 � sin3ðxiÞ

0
@

1
A

with x 2 ½2; 4�2

ð10Þ

The main difficulty for previous predator–prey

approaches and configurations was to conserve all parts

of the Pareto-set. Because of the non-convex Pareto-set and

the convexity properties of Simplex recombination (as

shown in Sect. 4.1.2), we omit recombination from this

analysis. Creating a point inside the convex hull of two

solutions from different subsets of the disconnected Pareto-

set will often lead to an infeasible trade-off

The combination of predators with only Gaussian

mutation operators and the allowance of gradient-based

local search in each individual yields a stable approxima-

tion of all Pareto-set parts, see Fig. 12.

In contrast to exclusively acting predators, this

approach obviously comprises additional and simulta-

neous optimization of all available prey: Since the pred-

ator-induced evaluations are reduced and the number of

function evaluations stay the same6, the integration of

local search into prey not only improves approximation

Fig. 11 Depiction of the applied local search based on approximated

gradient directions for all objectives (here with two dimensions): if

descent gradients point approximately to the same direction, the

solution is far from the (local) Pareto set and the area of overall

beneficial descent is large. Otherwise, the solution is close to the

(local) Pareto-set and the beneficial area is small

6 With a maximum number of 200,000, which is a standard value for

the predator–prey model.
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results but also increases parallelization and speed-up

potential.

5 Conclusion

In the presented work, we theoretically as well as con-

ceptually examined the predator–prey model as an alter-

native concept for multi-objective optimization. In contrast

to established MOEAs, this approach applies species

interaction from nature to produce a Pareto-optimal solu-

tion set. Predators represent single objectives collectively

threatening spatially distributed prey individuals, which

denote solutions to the MOP. Prey are expected to adapt to

all predators producing feasible trade-off solutions.

Due to the decoupled architecture, the model supports

parallelism in multiple ways, which we (1) classified

according to a recent taxonomy in multi-objective evolu-

tionary research and (2) discussed for the top two levels in

detail. For the level of collaborative parallelization, we

focused on investigating predator interaction on the dis-

tributed population. In detail, we considered the effects of

Gaussian mutation and Simplex recombination on the prey

population theoretically and showed the algorithmic benefit

of simultaneous action and collaboration for convergence

as well as for diversity preservation.

Additionally, we addressed the level of problem inde-

pendent parallelization via hybridization and outsourcing

of function evaluations. While the latter is a standard

application of parallelism in evolutionary computation,

hybridization enables the activation of additional potential

in the PPM. By allowing local search in prey individuals,

convergence is supported. Simultaneously and especially

important for approximating complex problems, this

enables a stabilization of solutions in disconnected parts of

the Pareto-set.

The exploration and exploitation of inherent parallelism

in the PPM can offer a perspective for further research:

Instead of optimizing selection mechanisms and operators

to speed-up MOEAs, we gave an example for a simple and

successful approach to multi-objective optimization.

Although the PPM needs significantly more function

evaluations than standard MOEAs like NSGA-II or SPEA,

we have demonstrated that this drawback can be compen-

sated by its enormous parallelization potential on multiple

levels of the PPM models architecture. Certainly, further

research in specific aspects of model architecture as well as

integration of sophisticated local search methods can con-

tribute to the model’s applicability.
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