
Efficient 3-SAT algorithms in the tile assembly model

Yuriy Brun

Published online: 26 January 2012

� Springer Science+Business Media B.V. 2012

Abstract Self-assembly is a powerful process found in

nature that guides simple objects assembling, on their own,

into complex structures. Self-assembly is of interest to

computer scientists because self-assembling systems can

compute functions, assemble shapes, and guide distributed

robotics systems. The tile assembly model is a formal

mathematical model of self-assembly that allows the study

of time and space complexities of self-assembling systems

that lie at the heart of several molecular computer imple-

mentations and distributed computational software sys-

tems. These implementations and systems require efficient

tile systems with small tilesets and fast execution times.

The state of the art, however, requires vastly complex tile

systems with large tilesets to implement fast algorithms. In

this paper, I present SFS; a tile system that decides 3-SAT

by creating OHð1:8393nÞ nondeterministic assemblies in

parallel, improving on the previous best known solution

that requires Hð2nÞ such assemblies. This solution directly

improves the feasibility of building molecular 3-SAT

solvers and efficiency of distributed software. I formally

prove the correctness of the system, the number of required

parallel assemblies, that the size of the system’s tileset is

147 ¼ Hð1Þ; and that the assembly time is nondetermin-

istic linear in the size of the input.

Keywords Self-assembly � 3-SAT �
Efficient 3-SAT algorithms � Tile assembly model

1 Introduction

Self-assembly is a process that guides the creation of

many of nature’s systems, from nanoscale crystals to

cosmos-scale galaxies. Specifically, self-assembly is the

process of simple objects coming together and combining

to form complex structures. Computer scientists and

nanotechnologiests are interested in studying self-assem-

bly because it is capable of computing functions (Adle-

man 2000; Adleman et al. 2002b; Berger 1966; Winfree

1998b), assembling complex shapes (Adleman et al.

2002a; Rothemund and Winfree 2000; Soloveichik and

Winfree 2007), and guiding distributed robotics systems

(Abelson et al. 2000; Brun and Reishus 2009; McLurkin

et al. 2006).

1.1 Self-assembly and tiles

The tile assembly model (Winfree 1998a; Rothemund and

Winfree 2000) is a formal mathematical model of self-

assembly that allows studying the time and space com-

plexities of self-assembling systems. Winfree showed that

the tile assembly model is Turing universal (Winfree

1998b) by demonstrating that tile systems can emulate

Wang tiles (Wang 1961). Wang tile systems with a seed

can simulate Turing machines (Wang 1962). Even without

seeds, Wang tiles are still Turing universal (Berger 1966;

Robinson 1971). Adleman has identified two important

measures of tile systems: assembly time and tileset size; in

some ways, these measures are analogous to the time and

space complexities of traditional computer programs

(Adleman 2000).

Study of tile systems has led to two types of computa-

tional systems: Internet-sized distributed grids (Brun and

Medvidovic 2008) and molecular computers (Adleman 2000;

Y. Brun (&)

University of Washington,

Seattle, WA, USA

e-mail: brun@alum.mit.edu; brun@cs.washington.edu

123

Nat Comput (2012) 11:209–229

DOI 10.1007/s11047-011-9299-0

Braich et al. 2002). Both types benefit from efficient tile

systems with small tilesets: the speed of computational grids

is proportional to the number of tile types (Brun and Medvi-

dovic 2008) and the state of the art in DNA computation is

systems with no more than 20 distinct tile types (Barish et al.

2005, 2009; Rothemund et al. 2004; Yin et al. 2008).

Winfree’s universal tile systems are in some sense

inefficient and require thousands of distinct tile types

(Winfree 1998b). Lagoudakis et al. (Lagoudakis and La-

Bean 1999) presented a tile system that solves 3-SAT,

though their best solution required Hðn2Þ distinct tile types

and Hð2nÞ distinct nondeterministic assemblies to solve an

n-variable problem, resulting in over 104 distinct tile types

and 1015 distinct assemblies necessary to solve a 50-vari-

able problem. I have begun the work of reducing the

complexity by designing tile systems that solve complex

computational problems using relatively small tilesets (e.g.,

adding using 8 distinct tile types (Brun 2007), multiplying

using 28 (Brun 2007), factoring integers nondeterminis-

tically using 50 (Brun 2008a), and solving two NP-com-

plete problems nondeterministically, 3-SAT using 64 (Brun

2008c) and SubsetSum using 49 (Brun 2008b)). While there

has been some success in designing tile systems with small

tilesets, thus far, tile systems implement only the most

naı̈ve, simple, and inefficient algorithms. For example,

today’s best known NP-complete problem-solving tile

systems require H 2nð Þ distinct assemblies for an input of

size n. While we do not know of polynomial-time algo-

rithms to solve such problems, we do know of exponential-

time algorithms with a base smaller than 2 (Woeginger

2003). Here, I present a tile system that implements a

somewhat complex, known algorithm for solving 3-SAT

using only OHð1:8393nÞ distinct assemblies (where the OH

notation hides constant and polynomial factors). This sys-

tem uses 147 distinct tile types and demonstrates that

complex algorithms can be implemented using tiles in a

systematic manner, (1) directly improving the time and

space complexities of tile-inspired computational-grid

architectures (Brun and Medvidovic 2008) and (2) bridging

theory and today’s experimental limitations of DNA

computing. While the tile assembly model’s universality

implies the existence of such a system, here, I construct the

concrete system and demonstrate that it requires a small

number of distinct tiles (147).

Chen and Ramachandran have previously attempted to

improve the efficiency of 3-SAT-solving, molecular systems

(Chen and Ramachandran 2001). They developed a DNA

computer system that implements a randomized 3-SAT

algorithm (Paturi et al. 1997). Just as my system, their work

was purely theoretical and never implemented using DNA or

other molecules. From the practical point of view, the ran-

domized algorithm is similar to the nondeterministic

algorithm I present here. Sakamoto et al. attempted to

improve the efficiency of 3-SAT-solving, DNA computing

systems by considering DNA encodings of clauses, rather

than variables (Sakamoto et al. 2000). However, imple-

menting DNA computation presents significant challenges

(Braich et al. 2002), such as high error rates (Winfree and

Bekbolatov 2003). One of the main reasons for the com-

munity’s interest in self-assembly and tile systems is that,

unlike DNA computing, self-assembly allows use of error-

correction techniques (Adleman 2000; Winfree and Bekbo-

latov 2003). Clever tile designs can reduce or elinimate

certain types of errors (Fujibayashi et al. 2009). Further, self-

assembly systems allow for implementations that require a

small, constant number of laboratory steps to execute,

whereas DNA computing requires a larger number of steps.

While some approaches have attempted to minimize this

number of steps (Sakamoto et al. 2000), it still typically

depends on the size of the input (Winfree et al. 1998).

1.2 Efficient algorithms for 3-SAT

3-SAT is a well known NP-complete problem of deciding

whether a 3CNF Boolean formula is satisfiable. The naı̈ve

algorithms for solving 3-SAT explore the H 2nð Þ distinct

assignments, for formulae with n distinct variables, checking

if any one of the assignments satisfies the formula. While we

are unaware of subexponential-time algorithms to solve NP-

complete problems, there are algorithms that perform in

exponential time but with a base smaller than 2. Woeginger

(2003) provides a fairly complete survey of such determin-

istic algorithms, organized by the different techniques they

employ. Here, I describe such an algorithm for 3-SAT. For

my discussion, I define the OH notation, which is similar to

the O notation but ignores not only constant factors but also

polynomial factors. Thus I will say OHðmðxÞÞ for a com-

plexity of the form OðmðxÞ � polyðxÞÞ. The justification for

this notation is that the exponential growth of m(x) will

dominate all polynomial factors for large x. For example, if f

is a function such that f ðxÞ ¼ O 1:4142xx4ð Þ; then I write

f ðxÞ ¼ OHð1:4142xÞ. Note that the exponential term domi-

nates and one could say f(x) = O(1.4143x) and forgo the OH

notation altogether; however, that would not most accurately

describe the functions.

While the naı̈ve algorithms explore each of the possible 2n

truth assignments to the n variables, a more intricate algorithm

can explore a subset of those assignments by noting the fol-

lowing fact: if the Boolean formula contains the clause

x1 _ :x2 _ x3ð Þ; then the algorithm need not explore any of

the 2(n-3) assignments with x1 = x3 = FALSE and x2 =

TRUE because this clause would not be satisfied by any of

those assignments. Instead of trying each possible assignment

for each variable, an algorithm could make the assignments

210 Y. Brun

123

based on the clauses. For example, if the first clause is of the

form A _ B _ Cð Þ; where A, B, and C are literals, then the

assignments the system should explore are: 1. A = TRUE, 2.

A = FALSE and B = TRUE, and 3. A = B = FALSE and

C = TRUE.

Thus, deciding an n-variable m-clause Boolean formula

can be done by recursively deciding three Boolean formulae:

each with one fewer clause and with one, two, and three fewer

variables, respectively. Thus if T(n, m) denotes the time

necessary to decide an n-variable m-clause Boolean formula,

then T(n, m) = O(1) ? T(n-1, m-1) ? T(n-2, m-1) ?

T(n-3, m-1). This recurrence has the closed form solution

Tðn;mÞ ¼ OHð1:8393nÞ (Woeginger 2003). By examining

the branching step, it is possible to improve the algorithm

further to an OHð1:6181nÞ algorithm (Monien and Specken-

meyer 1985). Using quantitative analysis of the number of

resulting 2-clauses from such branching improves the time

complexity to OHð1:5783nÞ (Schiermeyer 1993). The cham-

pion algorithm using this technique achieves a time com-

plexity of OHð1:4963nÞ (Kullmann 1997; Kullmann 1999),

and other techniques result in even faster algorithms (Woe-

ginger 2003). It is not my goal to explore the fastest such

algorithm here, but rather to demonstrate that it is possible to

implement one such complex algorithm using a tile system

with a small tileset. I will thus concentrate on developing a tile

system that follows the OHð1:8393nÞ algorithm, and argue

that since the other algorithms are similar, it is possible to

design tile systems for those algorithms as well.

The remainder of this paper is structured as follows:

section 2 will define the tile assembly model and the

concept of computation within that model. Section 3 will

describe the tile system that implements the OHð1:8393nÞ
algorithm for 3-SAT and prove the correctness and several

other properties of that system. Finally, section 4 will

summarize the contributions of this paper.

2 Tile assembly model

The tile assembly model (Winfree 1998a; Winfree 1998b;

Rothemund and Winfree 2000) is a formal model of crystal

growth. It was designed to model self-assembly of molecules

such as DNA. It is an extension of a model proposed by Wang

(Wang 1961). The model was fully defined by Rothemund

and Winfree (Rothemund and Winfree 2000), and the defi-

nitions here are similar to those, and identical to the ones in

(Brun 2007; Brun 2008a, b), but I restate them here for

completeness and to assist the reader. Some of the ideas used

in the definitions of nondeterministic computation originate

from Winfree et al. (Winfree et al. 1998). I will first define

the basics of the tile assembly model in section 2.1 and then

the concept of computation within the model in section 2.2

While there exist a number of variations of the tile

assembly model (Aggarwal et al. 2005; Demaine et al.

2008; Doty et al. 2010; Kao and Schweller 2006), some of

which are more biologically accurate, I do not focus on

them in this paper.

2.1 Tile assembly model definitions

Intuitively, the model has tiles or squares that stick or do

not stick together based on various binding domains on

their four sides. Each tile has a binding domain on its north,

east, south, and west side, and may stick to another tile

when the binding domains on the abutting sides of those

tiles match and the total strength of all the binding domains

on that tile exceeds the current temperature. The four

binding domains define the type of the tile.

Formally, let R be a finite alphabet of binding domains such

that null 2 R: I will always assume null 2 R even when I do not

specify so explicitly. A tile over a set of binding domains R is a

4-tuple hrN ; rE; rS; rWi 2 R4. A position is an element of

Z
2. The set of directions D = {N, E, S, W} is a set of 4 func-

tions from positions to positions, i.e., Z2 to Z
2; such that for all

positions (x, y), N(x, y) = (x, y ? 1), E(x, y) = (x ? 1, y),

S(x, y) = (x, y-1), W(x, y) = (x-1, y). (Note that N = S-1,

S = N-1, E = W-1, and W = E-1.) The positions (x, y) and

(x0, y0) are neighbors iff 9d 2 D such that d(x, y) = (x0, y0).
For a tile t, for d 2 D; I will refer to bdd(t) as the binding

domain of tile t on d’s side. A special tile empty ¼
hnull; null; null; nulli represents the absence of all other tiles.

A strength function g: R� R! N; where g is com-

mutative and 8r 2 Rgðnull; rÞ ¼ 0; denotes the strength of

the binding domains. It is common to assume that

gðr; r0Þ ¼ 0() either r 6¼ r0 or r ¼ r0 ¼ null. This

simplification of the model implies that the abutting

binding domains of two tiles have to match to bind. For the

remainder of this paper, I will use g = 1 to mean 8r 6¼
null; gðr; rÞ ¼ 1 and 8r0 6¼ r; gðr; r0Þ ¼ 0.

Let T be a set of tiles containing the empty tile. A

configuration of T is a function A:Z� Z! T . I write

ðx; yÞ 2 A iff Aðx; yÞ 6¼ empty. A is finite iff there is only a

finite number of distinct positions ðx; yÞ 2 A.

Finally, a tile system S is a triple hT; g; si; where T is a

finite set of tiles containing empty, g is a strength function,

and s 2 N is the temperature.

If S ¼ hT ; g; si is a tile system and A is a configuration

of some set of tiles T 0 � R4 then a tile t 2 T can attach to

A at position (x, y) and produce a new configuration A0 iff:

– ðx; yÞ 62 A; and

–
P

d2D gðbddðtÞ; bdd�1ðAðdðx; yÞÞÞÞ� s; and

– 8ðu; vÞ 2 Z
2; ðu; vÞ 6¼ ðx; yÞ) A0ðu; vÞ ¼ Aðu; vÞ; and

– A0(x, y) = t.

Efficient 3-SAT Algorithms in the Tile Assembly Model 211

123

That is, a tile can attach to a configuration only in empty

positions and only if the total strength of the appropriate

binding domains on the tiles in neighboring positions meets

or exceeds the temperature s. For example, if for all

r, g(r, r) = 1 and s = 2 then a tile t can attach only at

positions with matching binding domains on the tiles in at

least two adjacent positions.

Given a tile system S ¼ hT ; g; si; a set of tiles C; and a

seed configuration S0:Z2 ! C; if the above conditions are

satisfied, one may attach tiles of T to S0. Note that I allow

the codomain of S0 to be C; a set of tiles which may be

different from T but should include the empty tile. Let

W0 � Z
2 be the set of all positions where at least one tile

from T can attach to S0. For all w 2 W0 let Uw be the set of

all tiles that can attach to S0 at w. Let Ŝ1 be the set of all

configurations S1 such that for all positions p 2 S0; S1ðpÞ ¼
S0ðpÞ and for all positions w 2 W0; S1ðwÞ 2 Uw and for all

positions p 62 S0 [W0; S1(p) = empty. For all S1 2 Ŝ1; I

say that S produces S1 on S0 in one step. If A0;A1; . . .;An

are configurations such that for all i 2 f1; 2; . . .; ng; S
produces Ai on Ai-1 in one step, then I say that S produces

An on A0 in n steps. When the number of steps taken to

produce a configuration is not important, I will simply say

S produces a configuration A on a configuration A0 if there

exists k 2 N such that S produces A on A0 in k steps. If the

only configuration produced by S on A is A itself, then A is

said to be a final configuration. If there is only one final

configuration A produced by S on S0, then S is said to

produce a unique final configuration on S0. Finally, if A is

a final configuration produced by S on S0 and n is the least

integer such that A is produced by S on S0 in n steps, then

n is the assembly time of S on S0 to produce A.

Note that a system may produce a unique final config-

uration, even though there exist non-unique sequences of

attachments that continue growing at infinitum. Theoreti-

cally, such constructions pose no problem, though they

may present problems to certain implementations of tile

systems. In particular, the infinite configurations might

consume all the tiles available for construction. It is pos-

sible to limit the definition of a unique final configuration

to exclude systems that produce infinite configurations;

however, such a restriction seems somewhat arbitrary and

would only be helpful for some implementations of the tile

assembly model. I choose not to restrict my definitions

here, though I note that the systems presented in this

paper do not suffer from this problem and produce no

infinite configurations, and thus would satisfy the stricter

definitions.

Winfree showed that the tile assembly model with s = 2

is Turing-universal (Winfree 1998b) by showing that a tile

system can simulate Wang tiles (Wang 1961), which

Berger showed to be universal (Berger 1966). Adleman

et al. (Adleman et al. 2002b) showed that the tile assembly

model with s = 1 is Turing-universal.

2.2 Computation in the tile assembly model

In (Brun 2007), I defined what it means to deterministically

compute functions in the tile assembly model. In some

implementations of tile assembly, many assemblies happen

in parallel. In fact, it is often almost impossible to create

only a single assembly. In (Brun 2008a), I extend the

notion of computation in the tile assembly model to non-

deterministic assemblies to leverage this inherent paral-

lelism. For deterministic computation, I have defined a tile

system to produce a unique final configuration on a seed if

for all sequences of tile attachments, all possible final

configurations are identical. In nondeterministic computa-

tion, different sequences of tile attachments attach different

tiles in the same position. Intuitively, a system nondeter-

ministically computes a function iff at least one of the

possible sequences of tile attachments produces a final

configuration which codes for the solution. Finally, in

(Brun 2008b), I defined the notion of a tile system non-

deterministically deciding a set.

Since a nondeterministic computation may have

unsuccessful sequences of attachments, it is important to

distinguish the successful ones. Further, in many imple-

mentations of the tile assembly model that would simulate

all the nondeterministic executions at once, it is useful to

be able to identify which executions succeeded and which

failed in a way that allows selecting only the successful

ones. For some problems, only an exponentially small

fraction of the assemblies would represent a solution, and

finding such an assembly would be difficult. For example, a

DNA based crystal growing system would create millions

of crystals, and only a few of them may represent the

correct answer, while all others represent failed computa-

tions. Finding a successful computation by sampling the

crystals at random would require time exponential in the

input. Thus it would be useful to attach a special identifier

tile to the crystals that succeed so that the crystals may be

filtered to find the solution quickly. It may also be possible

to attach the special identifier tile to solid support so that

the crystals representing successful computations may be

extracted from the solution. I thus specify one of the tiles of

a system as an identifier tile that only attaches to a con-

figuration that represents a successful sequence of

attachments.

Often, computer scientists talk about deciding subsets of

the natural numbers instead of computing functions.

Deciding a subset of the natural numbers is synonymous

with computing a function that has value 1 on arguments

that are in the set, and value 0 on arguments that are not in

the set. I adapt the definition of nondeterministically

212 Y. Brun

123

computing functions to nondeterministically deciding

subsets of natural numbers. (There is also a direct analog of

deciding sets deterministically, which I do not bother to

formally specify here.) Let N ¼ Z� 0: Since for all con-

stants n 2 N; the cardinalities of N
n and N are the same,

one can encode an element of Nn as an element of N: Thus

it makes sense to talk about deciding subsets of N
n: The

below defined functions osm
can depend on the mapping of

N
n ! N:

Let v: C [T ! f0; 1g code each tile as a 1- or a 0-tile.

Let m̂ 2 N and let X � N
m̂: For all 0�m\m̂; let osm

:N!
Z

2 be injections. Let D be a set of (seed) configurations

over C. Let the seed encoding functions esm
: D! N map a

seed S to m̂ numbers such that esm
ðSÞ ¼

P1
i¼0 2ivðSðosm

ðiÞÞÞ
iff for no more than a constant number of (x, y) not in the

union of the images of all osm
; ðx; yÞ 2 S. Let S be a tile

system with T as its set of tiles, and let r 2 T: Then I say

that S nondeterministically decides a set X with identifier

tile r iff for all a~¼ ha0; a1; . . .; am̂�1i 2 N
m̂ there exists a

seed configuration S such that for all final configurations

F that S produces on S; r 2 FðZ2Þ iff 80�m\m̂; esm
ðSÞ ¼

am and a~2 X.

If for all m̂ 2 N; for all 0�m\m̂; the osm
functions are

allowed to be arbitrarily complex, the definition of com-

putation in the tile assembly model is not very interesting

because the computational intelligence of the system could

simply be encoded in the osm
functions. For example,

suppose h is the halting characteristic function (for all a 2
N; hðaÞ ¼ 1 if the ath Turing machine halts on input a, and

0 otherwise) and os0
is such that the input a is encoded in

some straight line if h(a) = 1 and in some jagged line

otherwise. Then it would be trivial to design a tile system

to solve the halting problem. Thus the complexities of the

osm
functions need to be limited.

The problem of limiting the complexities is not a new

one. When designing Turing machines, the input must be

encoded on the tape and the theoreticians are faced with the

exact same problem: an encoding that is too powerful could

render the Turing machine capable of computing uncom-

putable functions. The common solution is to come up with

a single straightforward encoding, e.g., for all m 2 N;

converting the input element of N
m into an element of N

via a mapping N
m ! N and using the intuitive direct bin-

ary encoding of that element of N on the Turning machine

tape for all computations (Sipser 1997). A similar approach

is possible in the tile assembly model, requiring all systems

to start with the input encoded the same way. In fact, it has

been shown that such a definition conserves Turing uni-

versality of the tile systems (Winfree 1998b). However, the

assembly time complexity of such systems may be

adversely affected. In my definitions, I wish to give the

system architect freedom in encoding the inputs for the

sake of efficiency of computation; however, I restrict the

osm
functions to be computable in linear time on a Turing

machine. Thus these functions cannot add too much com-

plexity-reducing power to the systems (the functions

themselves cannot compute anything more complex than

what linear-time algorithms can) while allowing the

architects the freedom to place the inputs where they wish.

3 Solving 3-SAT efficiently with tiles

Implementing algorithms in the tile assembly model is not

unlike implementing algorithms using Turing machines, or

programming using a low-level language, such as assem-

bly. The complexity of that process has led to only simple

algorithms implemented into tile systems. Here, I propose

the tile system SFS (FS stands for ‘‘fast satisfiability’’) that

implements the OHð1:8393nÞ algorithm for solving 3-SAT.

The algorithm’s running time implies that SFS will create

OHð1:8393nÞ distinct assemblies to decide an n-variable

formula.

SFS is a combination of several subsystems, each with a

distinct job. Figure 1 shows the general placement of the

distinct subsystems on a 2-D grid. The overall system will

construct a right triangle, starting from region I, which

encodes a Boolean formula /. Region II will examine the

eastmost clause of / and determine which literals have not

been assigned a value (at the start of the computation, there

will always be 3 unassigned literals in each clause of a

3-SAT formula, but as the algorithm makes assignment

decisions, clauses may have fewer such literals). Region III

will make the nondeterministic decision on what assign-

ments to make regarding the unassigned literals in the

eastmost clause. Region IV will prepare the literals of the

eastmost clause to be assigned by the decision made in

region III, and region V will make those assignments.

Region VI will simplify the rest of / based on those

assignments. At the top of region VI, the simplified /, with

one fewer clause, will emerge to serve as the input

I

1 clause

III

VI

VII

II

IV
V

Fig. 1 A schematic of seven regions SFS will use to decide 3-SAT

Efficient 3-SAT Algorithms in the Tile Assembly Model 213

123

(like region I) for the remainder of the computation in

region VII. That is, SFS will operate recursively in Region

VII on the simplified /.

3.1 Notations and definitions

Let / be a Boolean formula in conjunctive normal form.

Let n be the number of distinct variables and m be the

number of clauses in /. For all 0� m̂\m; I refer to the m̂th

clause as cm̂. For all 0� n̂\n; I refer to the n̂th variable as

xn̂. A literal over a variable xn̂ is an element of fxn̂;:xn̂g.
As is common, I assume that no clause of / contains more

than one literal over the same variable.

To assist the readability of this paper, I define the quantity

m and a helper function c:N! N. Let m ¼ dlg ne þ 1. The

intuition behind m is that each literal will require m tiles to

encode it, dlg ne tiles to encode the index of the variable

in binary, and 1 tile to encode whether or not the literal is

the negation of that variable. For all 0� m̂\m; let

cðm̂Þ ¼ m̂ð3mþ 1Þ þ 1. Since each clause encoding includes

the encodings of three literals and one extra clause-ending

tile, the intuition behind c is that the m̂th clause is encoded in

columns �cðm̂Þ through �ðcðm̂þ 1Þ � 1Þ. Note that for all

k̂ 2 f0; 1; 2g; the k̂th literal of the m̂th clause is encoded in

columns �ðcðm̂Þ þ k̂mÞ through �ðcðm̂Þ þ ððk̂ þ 1Þm� 1ÞÞ.

Definition 1 (General 3 CNF Boolean Formula) For all

m, for all n, for all n-variable, m-clause 3CNF Boolean

formulae /, / is a general 3CNF Boolean formula iff each

of the three literals of each clause either is identically a

variable, is the negation of a variable, or is represented by

TRUE or FALSE and no pair of literals within each clause

are over the same variable.

Definition 2 (General 3 CNF Boolean Formula Encod-

ing) For all general 3CNF Boolean formulae /, an ordered

sequence s ¼ hs0; s1; . . .; szi of elements of fx;:x; 0; 0t; 0f;

1; 1t; 1f ; T ;F; cg is a general encoding of / iff for all

0� m̂\m:

– For all 0� k̂\3; either

– the k̂th literal of the m̂th clause of / is FALSE, and

• scðm̂Þþkm 2 fx;:xg; and

• for all 1� i\m� 1; scðm̂Þþkmþi 2 f0; 1g; and

• scðm̂Þþkmþðm�1Þ 2 f0f; 1f;Fg; or

– the k̂th literal of the m̂th clause of / is TRUE, and

• scðm̂Þþkm 2 fx;:xg; and

• for all 1� i\m� 1; scðm̂Þþkmþi 2 f0; 1g; and

• scðm̂Þþkmþðm�1Þ 2 f0t; 1t;Tg; or

– the k̂th literal of the m̂th clause of / is over some

variable xj, and

• scðm̂Þþkm ¼
x if the literal is xj

:x if the literal is :xj, and

�

• for all 1� i\m; scðm̂Þþkmþi is the ith bit of j, and

– scðm̂Þþ3m ¼ c:

The tile system SFS will operate at temperature 2, and

will use a fairly straightforward strength function gFS over

the set of binding domains RFS ¼ fnull; t; bt; bbt; ft; fft;

fbt; bft; T ;F;@; @H; 0; 1; 0t; 1t; 0f ; 1f ; x;:x; xH;:xH; c;#;

0#; 1#;#f ;#t; : : ; 0: ; 1: ; 2: ; 3: ; 0:H ; 1:H ; 2:H ; 1: 1; 1:

1H; 2: 1; 2: 1H; 3: 1; 2: 2; 2: 2H; 3: 2; 2: 12; 2: 12H; 3: 12;HH;
H; jg. For the most part, gFS will match two identical

binding domains to 1, and two different binding domains to

0, with a few special wildcard binding domains that will

map to 1 even with some unmatching domains. In other

words, all attachments are either strength 0 or 1, and:

Intuitively, gFS is such that: Formally, gFS: RFS � RFS ! f0; 1g such that:

null does not attach to anything, For all r 2 RFS; gFSðnull;rÞ ¼ gFSðr; nullÞ ¼ 0;

every binding domain attaches to itself, For all r 2 RFS n fnullg; gFSðr;rÞ ¼ 1;

attaches to 0;1; x;:x;1f; 1t; 0f;0t;T;F;H; and @; For all r 2 f0; 1; x;:x; 1f; 1t; 0f;0t;T;F;@Hg; gFSð#; rÞ ¼ gFSðr;#Þ ¼ 1;

: : attaches to 0 :;1 :; 2 :;1 : 1;2 : 1; 2 : 2;and 2 : 12; and 2:12; For all

r 2 f0 :;1 :; 2 :;1 : 1;2 : 1; 2 : 2;2 : 12g; gFSð: :;rÞ ¼ gFSðr; : :Þ ¼ 1;

#f attaches to 0f;1f; and F; For all r 2 f0f; 1f;Fg; gFSð#f;rÞ ¼ gFSðr; #fÞ ¼ 1;

#t attaches to 0t;1t; and T; For all r 2 f0t; 1t;Tg; gFSð#t;rÞ ¼ gFSðr; #tÞ ¼ 1;

0# attaches to 0;0f; and 0t; For all r 2 f0; 0f; 0tg; gFSð0#;rÞ ¼ gFSðr; 0#Þ ¼ 1;

1# attaches to 1;1f; and 1t; For all r 2 f1; 1f; 1tg; gFSð1#;rÞ ¼ gFSðr; 1#Þ ¼ 1;

@H attaches to @ and H; For all r 2 f@;Hg; gFSð@H; rÞ ¼ gFSðr;@HÞ ¼ 1;

and no other pairs of binding domains attach. and for all other pairs r; r0 2 RFS; gFSðr;r0Þ ¼ gFSðr0;rÞ ¼ 0:

214 Y. Brun

123

3.2 Clause examination (region II)

In this section, I define the tile system SEXAM; which will

become the part of SFS that will operate in region II, as

denoted in Fig. 1. Since SFS will operate on the first clause

to fill in regions II through VI, and then recurse on the

remaining simplified formula in region VII, for each clause

there is a distinct copy of each region. Formally, for the

m̂th clause, Region II is part of a row, between positions

ð�cðm̂Þ; cðm̂ÞÞ and ð�ðcðm̂Þ þ 3m� 1Þ; cðm̂ÞÞ:
The goal of SEXAM is to examine the first (eastmost)

clause in the formula for the number of unassigned lit-

erals. Figure 2 shows the 37 tiles of TEXAM that perform

this examination. The binding domains on these tiles

have some meaning. For example, the binding domain

2:1 means that out of the first two literals in a clause

(indicated by the 2 before the :), only the 1st (indicated

by the 1 after the :) is unassigned; the other literal must

be FALSE, for reasons described below. I define the

function p that maps clauses of general 3CNF Boolean

formulae to binding domains. Let c be a clause of a

general 3CNF Boolean formula. Then, if c contains the

literal TRUE, then pðcÞ ¼ T; otherwise, the value of

p(c) is defined by Fig. 3.

SEXAM will attach tiles just to the north of an encoding of

clause c and will propagate that encoding one row north

and make the west binding domain of the westmost tile be

the value of p(c). The clause examination lemma formally

describes what SEXAM does. Figure 4 shows an example

execution of SEXAM on the clause :x2 _ x1 _ x0ð Þ. Note that

for this c, p(c) = 2:12, so the westmost tile’s west binding

domain is 2:12.

Lemma 1 (Clause Examination Lemma) For every

clause c of a general 3CNF Boolean formula, for all

a; b 2 Z; let some seed S be such that bdWðSða; bþ 1ÞÞ ¼
HH and the sequence s ¼ hs0; s1; . . .; s3m; ci ¼ hbdNðSða�
1; bÞÞ; bdNðSða� 2; bÞÞ; . . .; bdNðSða� 3m; bÞÞ; ci is a

general Boolean encoding of c and Sða� 1; bþ 1Þ ¼
Sða� 2; bþ 1Þ ¼ � � � ¼ Sða� 3m; bþ 1Þ ¼ empty: Let

TEXAM be the set of tiles described in Fig. 2. Then

SEXAM ¼ hTEXAM ; gFS; 2i produces F on S such that:

– for all 0 B i \ 3m, bdN(F(a - 1 - i, b ? 1)) =

@ if 9 j� i such that sj2f0t;1t;Tg
0 if 9= j� i such that sj2f0t;1t;Tg and si2f0;0f;1fg
1 if 9= j� i such that sj2f0t;1t;Tg and si¼1

xH if 9= j� i such that sj2f0t;1t;Tgandsi¼x

:xH if 9= j� i such that sj2f0t;1t;Tg and si¼:x; and

8
>>>>>><

>>>>>>:

– bdW(F(a-3m, b ? 1)) = p(c).

Proof (Lemma 1) I will examine the operation of SEXAM

on the first, then second, and finally third clause of c.

1. I initially examine the first literal whose description is in

columns a-1 through a-m. Examine the tile that

attaches in position (a-1, b ? 1). Because

bdWðSða; bþ 1ÞÞ ¼ HH; that tile must have the east

binding domain HH. There are 2 such tiles. Note that (1)

the north binding domains of these tiles are exactly the

south binding domains with a H appended at the end, so

the lemma holds for position (a-1, b ? 1), and (2) the

west binding domain of both these tiles is 0:. (The

binding domains that contain a number (v), followed by

:; and then followed by a list of numbers (W) can be

interpreted to mean that of the first v literals in this

clause, the ones in W are unassigned. For example, 0:
can be interpreted as the trivially true statement ‘‘of the

first 0 variables, none are unassigned,’’ and 2:12 can be

interpreted as ‘‘of the first 2 variables, both the first and

the second are unassigned.’’)

Fig. 3 For every clause c of a general 3CNF Boolean formula,

pðcÞ ¼ T and acðcÞ ¼ f@g if c contains the literal TRUE, and

otherwise, the values of p(c) and ac(c) are defined by this table.

Sections 3.2 and 3.3 explain the meaning of the function p(c) and

ac(c), respectively

@

#t

T ::

@

#

T T

x*

x

0: **

¬x*

¬x

0: **

0

0

0: 0:

1

1

0: 0:

0

#f

0:*

0:

x*

x

1:1 0:

¬x*

¬x

1:1 0:

x*

x

1:

0:*

¬x*

¬x

1:

0:*

0

0

1: 1:

1

1

1: 1:

0

0

1:1

1:1

1

1

1:1

1:1

0

#f

1:*

1:

0

#f

1:1*

1:1

x*

x

2:2 1:

¬x*

¬x

2:2 1:

x*

x

2:12

1:1

¬x*

¬x

2:12

1:1

x*

x

2:

1:*

¬x*

¬x

2:

1:*

¬x*

¬x

2:1

1:1*

x*

x

2:1

1:1*

0

0

2: 2:

1

1

2: 2:

0

0

2:1

2:1

1

1

2:1

2:1

0

0

2:2

2:2

1

1

2:2

2:2

0

0

2:12

2:12

1

1

2:12

2:12

0

#f

3: 2:

0

#f

3:1

2:1

0

#f

3:2

2:2

0

#f

3:12

2:12

Fig. 2 The 37 tiles of TEXAM

Efficient 3-SAT Algorithms in the Tile Assembly Model 215

123

Let i = 1. Because bdNðSða� 1� i; bÞÞ 2 f0; 1g; one

of the tiles with the east binding domain 0: and the south

binding domains 0 or 1 can attach there. Note that because

the north binding domains are the same as the south

binding domain on all these tiles, the lemma holds for

position (a-1-i, b ? 1). Further note that since the west

binding domain of these tiles is 0:; the same argument

holds for i ¼ 2; 3; . . .; as long as bdNðSða� 1� i;

bÞÞ 2 f0; 1g. By the conditions on the lemma, if the first

literal is unassigned, the argument holds through i = m-1.

Otherwise, the argument holds through i = m-2.

If the first literal is TRUE, then bdNðSða� m; bÞÞ
2 fT; 0t; 1tg. Then the pink tile with the east binding

domain : : must attach in position (a-m, b ? 1). That tile’s

north binding domain is @; so the lemma holds for

position (a-m, b ? 1). Further, since the west binding

domain of that tile is T; the other pink tile (the one with east

and west binding domains T) will attach in positions (a-

m-1, b ? 1) through (a-3m, b ? 1). Those tiles have the

north binding domain @; so the lemma holds in all

positions if the first literal is TRUE.

If the first literal is FALSE, then bdNðSða� m; bÞÞ
2 fF; 0f; 1fg. Then the tile with the #f south binding

domain must attach in position (a-m, b ? 1). That tile’s

north binding domain is 0; so the lemma holds for position

(a-m, b ? 1). Note that this tile’s west binding domain is

0:H:
Thus far, I have shown that the lemma holds in all cases up

to position (a-m, b ? 1).

2. Next, I examine the second literal whose description is

in columns a-m-1 through a-2m. There are two

possible cases:

(a) If the first literal is FALSE, then the west binding

domain of the tile that attached in position (a-m,

b ? 1) is 0:H: Therefore one of the two tiles with

that binding domain on their east sides and either the

x or :x on their south sides must attach in position

(a-m-1, b ? 1). Note that (1) the north binding

domains of these tiles are exactly the south binding

domains with a H appended at the end, so the lemma

holds for position (a-m-1, b ? 1), and (2) the

west binding domain of both these tiles is 1:. Let

i = 1. Because bdNðSða� m� 1� i; bÞÞ 2 f0; 1g;
one of the tiles with the east binding domain 1: and

the south binding domains 0 or 1 can attach there.

Note that because the north binding domains are the

same as the south binding domain on all these tiles,

the lemma holds for position (a-m-1-i, b ? 1).

Further note that since the west binding domain of

these tiles is 1:; the same argument holds for i ¼
2; 3; . . .; as long as bdNðSða� m� 1� i; bÞÞ 2
f0; 1g: By the conditions on the lemma, if the

second literal is unassigned, the argument holds

through i = m-1. Otherwise, the argument holds

through i = m-2.

If the second literal is TRUE, then bdNðSða�
2m;bÞÞ 2 fT; 0t; 1tg: Then the pink tile with the

east binding domain : : must attach in position (a-

2m, b ? 1). That tile’s north binding domain is @;

so the lemma holds for position (a-2m, b ? 1).

Further, since the west binding domain of that tile is

T; the other pink tile (the one with east and west

binding domains T) will attach in positions (a-2m-

1, b ? 1) through (a-3m, b ? 1). Those tiles have

the north binding domain @; so the lemma holds in

all positions if the second literal is TRUE.

If the second literal is FALSE, then bdNðSða�
2m;bÞÞ 2 fF; 0f; 1fg: Then the tile with the #f south

binding domain must attach in position (a-2m,

b ? 1). That tile’s binding domain is 0; so the

lemma holds for position (a-2m, b ? 1). Note that

this tile’s west binding domain is 1:H:

(b) If the first literal is unassigned, an argument

holds that is very similar to the argument (2a).

The only thing that has to change are some

binding domains: Instead of 0:H substitute 0:;

instead of 1: substitute 1:1; and instead of 1:H

substitute 1:1H:

h

Thus far, I have shown that the lemma holds in all cases

up to position (a-2m, b ? 1).

3. Finally, I examine the third literal whose description is

in columns a-2m-1 through a-3m. There are four

possible cases:

(a) If the first and second literals are FALSE, then the

west binding domain of the tile that attached in

* *

0101 00 x x¬x

(a)

**

0

0

0: 0:

x*

x

1:1 0:

1

1

1:1

1:1

0

0

1:1

1:1

0

0

2:12

2:12

0101 00 x x¬x

x*

x

0: **

¬x*

¬x

2:12

1:1

1

1

2:12

2:1 2

0

0

0: 0:

(b)

Fig. 4 An example execution of SEXAM . The seed (a) encodes the clause :x2 _ x1 _ x0ð Þ and tiles from TEXAM attach to examine the clause and

find three unassigned literals (b)

216 Y. Brun

123

position (a-2m, b ? 1) is 1:H: Therefore one of

the two tiles with that binding domain on their

east sides and either the x or :x on their south

sides must attach in position (a-2m-1, b ? 1).

Note that (1) the north binding domains of these

tiles are exactly the south binding domains with a
H appended at the end, so the lemma holds for

position (a-2m-1, b ? 1), and (2) the west

binding domain of both these tiles is 2::

Let i = 1. Because bdNðSða� 2m� 1� i; bÞÞ 2
f0; 1g; one of the tiles with the east binding

domain 2: and the south binding domains 0 or 1

can attach there. Note that because the north

binding domains are the same as the south

binding domain on all these tiles, the lemma

holds for position (a-2m-1-i, b ? 1). Further

note that since the west binding domain of these

tiles is 2:; the same argument holds for i ¼
2; 3; . . .; as long as bdNðSða� 2m� 1� i; bÞÞ 2
f0; 1g: By the conditions on the lemma, if the

third literal is unassigned, the argument holds

through i = m-1 and the west binding domain of

the tile in position (a-3m, b ? 1) is 2: so the

lemma holds. Otherwise, the argument holds

through i = m-2.

If the third literal is TRUE, then bdNðSða�
3m;bÞÞ 2 fT; 0t;1tg: Then the pink tile with the

east binding domain :: must attach in position

(a-3m, b ? 1). That tile’s binding domain is @

and west binding domain is T; so the lemma holds.

If the third literal is FALSE, then bdNðSða�
3m;bÞÞ 2 fF; 0f;1fg: Then the tile with the #f

south binding domain must attach in position (a-

3m, b ? 1). That tile’s binding domain is 0 and

west binding domain is 3:; so the lemma holds.

(b) If the first literal is unassigned, but the second is

FALSE, an argument holds that is very similar to

the argument (1). The only thing that has to

change are some binding domains: Instead of 1:H

substitute 1: 1H; instead of 2: substitute 2: 1; and

instead of 3: substitute 3: 1:

(c) If the first literal is FALSE, but the second is

unassigned, the substitutions are as follows:

Instead of 1:H substitute 1:; instead of 2: substitute

2: 2; and instead of 3: substitute 3:2:

(d) Finally, if both of the first two literals are

unassigned, the substitutions are as follows:

Instead of 1:H substitute 1:1; instead of 2:

substitute 2:12; and instead of 3:substitute 3:12:

3.3 Assignment selection (region III)

In this section, I define the tile system SSELECT ; which will

become the part of SFS that will operate in region III, as

denoted in Fig. 1. Formally, for the m̂th clause, Region III

is the position ð�ðcðm̂Þ þ 3mÞ; cðm̂ÞÞ:
The goal of SSELECT is to nondeterministically select an

assignment over the variables of the eastmost clause just as

the OHð1:8393nÞ algorithm would, or, if there does not exist

an assignment that can satisfy that clause, to halt the

assembly. Thus, if SEXAM finds that the clause has three

unassigned literals, SSELECT will pick either (1) the first lit-

eral to be true, or (2) the first literal to be false and the second

to be true, or (3) the first two literals to be false and the third

to be true. Alternatively, if SEXAM finds that the clause has its

first literal already assigned and the other two unassigned,

SSELECT will pick to ignore the first literal and either (1) the

second literal to be true, or (2) the second literal to be false

and the third to be true. The clause assignment defines the set

of possible assignments for a clause c.

Definition 3 (Clause Assignment) For every clause c of a

general 3CNF Boolean formula, a clause assignment ac(c)

is a proper subset of ft; bt; ft; bbt; bft; fbt; fft@;Fg; as

defined by Fig. 3.

Figure 5 shows the 13 tiles of TSELECT that perform the

assignment selection. SSELECT will attach a tile just to the

west of the westmost tile attached by SEXAM and nonde-

terministically select one of the possible assignments in

ac(c) as that tile’s north binding domain. The assignment

selection lemma formally describes what SSELECT does.

Figure 6 shows an example execution of SSELECT on a seed

that encodes that the clause in question has three unas-

signed literals. In this execution, SSELECT chooses to assign

the first literal to be FALSE, the second to be TRUE, and

makes no assignment for the third literal at this time.

Lemma 2 (Literal Selection Lemma) For every clause c

of a general 3CNF Boolean formula, for all a; b 2 Z; let

some seed S be such that bdNðSða� 1; bÞÞ ¼ c and

bdW(S(a, b ? 1)) = p(c).

Let TSELECT be the set of tiles described in Fig. 5 and let

SSELECT ¼ hTSELECT ; gFS; 2i: Then,

– if c contains the TRUE literal, SSELECT produces F on S

such that bdWðFða� 1; bþ 1ÞÞ ¼@ and bdNðF
ða� 1; bþ 1ÞÞ ¼@;

– if all three of the literals in c are FALSE, then SSELECT

produces F on S such that F = S (that is, no tiles attach

to S), and

t

c

@ 3:1

bt

c

@ 3:2

bbt

c

@ 2:

t

c

@ 3:12

ft

c

@ 3:12

t

c

@ 2:1

fbt

c

@ 2:1

bt

c

@ 2:2

bft

c

@ 2:2

t

c

@ 2:12

ft

c

@ 2:12

fft

c

@ 2:12

@

c

@ T

Fig. 5 The 13 tiles of TSELECT

Efficient 3-SAT Algorithms in the Tile Assembly Model 217

123

– otherwise, there exists j such that SSELECT nondetermi-

nistically produces F1; . . .;Fj on S such that for all

0� i\j; bdWðFiða� 1; bþ 1ÞÞ ¼@ and bdNðFiða�
1; bþ 1ÞÞ 2 acðcÞ; and for each a 2 acðcÞ; there exists

some 0 B i \ j such that bdN(Fi(a-1, b ? 1)) = a.

Proof (Lemma 2) This lemma follows from direct anal-

ysis of the tiles in TSELECT. Since region III consists of only

a single position, examining the south and east binding

domains of each tile reveals that every tile has the south

binding domain c and

– if bdWðSða; bþ 1ÞÞ ¼ T (which is only the case if c

contains the TRUE literal), the tile that attaches in

position (a-1, b ? 1) has the north and west binding

domain @;

– if bdWðSða; bþ 1ÞÞ ¼ 3:(which is only the case if all

three of c’s literals are FALSE), no tile in TSELECT can

attach in in position (a-1, b ? 1), and

– for all other possible c, there exist exactly as many tiles

in TSELECT with p(c) as their east binding domains as

there are elements of ac(c), and for each element of

ac(c), exactly one such tile has that element as its north

binding domain, and the west binding domains of all

these tiles are @:

h

3.4 Clause rotation (region IV)

In this section, I define the tile system SROTATE; which will

become the part of SFS that will operate in region IV, as

denoted in Fig. 1. Formally, for the m̂th clause, Region IV

is right triangle with the right-angle corner on its southwest

and the base in positions ð�cðm̂Þ; cðm̂Þ þ 1Þ through

ð�ðcðm̂Þ þ 3m� 1Þ; cðm̂Þ þ 1Þ:
The goal of SROTATE is to rotate a horizontally positioned

clause encoding to be vertically positioned. This rotation

later allows SSIMPLIFY to simplify the formula. SROTATE will

present the clause encoded in the north binding domains of

part of its seed as the west binding domains of the com-

pleted right triangle. Figure 7 shows the 21 tiles of TROTATE

that perform the rotation. The clause rotation lemma for-

mally describes what SROTATE does. Figure 8 shows an

example execution of SROTATE that rotates the clause

:x2 _ x1 _ x0ð Þ:

Lemma 3 (Clause Rotation Lemma) Let TROTATE be the

set of tiles described in Fig. 7 and let SROTATE ¼
hTROTATE; gFS; 2i: Then for all a; b 2 Z; for all d[1, for

every seed S such that:

– for all 0� i\d� 1; bdWðSða� i; bþ 1þ iÞÞ ¼ H;

– for all 0� i\d; bdNðSða� 1� i; bÞÞ 2 f0; 1; xH;

:xH;@g; and

– for all other positions p in the square defined by the

corners (a, b) and (a-d, b ? d), S(p) = empty,

1 0 ¬x* 0 1 x* 0 0 x*

*

*

*

*

*

*

*

*

*

(a)

*

*

*

*

*

*

*

*

*

¬x*

¬
x *

x*

x *

x*

x *

0

0

x x

0

0

x x

0

0

x x

¬x*

¬x*

x x

x*

x*

x x

1

1

x x

0

0 *

0

0 *

0

0 *

0

0 *

0

0

x x

1

1

x x

0

0

0 0

0

0

0 0

0

0

0 0

x*

x*

0 0

¬x*

¬x*

0 0

1

1

0 0

1

1

0 0

0

0

0 0

0

0

0 0

x*

x*

0 0

¬x*

¬x*

0 0

1

1

0 0

1

1

0 0

0

0

x x

0

0

x x

¬x*

¬x*

x x

1

1

x x

1

1

x x

1

1 *

1

1 *

0

0

1 1

0

0

1 1

1

1

1 1

¬x*

¬x*

1 1

0

0

0 0

¬x*

¬x*

0 0

1

1

0 0

0

0

¬
x

¬
x

1

1

¬
x

¬
x

1

1

0 0

(b)

Fig. 8 An example execution

of SROTATE: The seed (a)

encodes the clause

:x2 _ x1 _ x0ð Þ and tiles from

TROTATE attach to rotate that

encoding (b)

0

0 *

0

0

0 0

0

0

1 1

0

0

x x

0

0

¬
x

¬
x

1

1

0 0

1

1

1 1

1

1

x x

1

1

¬
x

¬
x

x*

x*

0 0

x*

x*

1 1

x*

x*

x x

x*

x*

¬
x

¬
x

¬x*

¬x*

0 0

¬x*

¬x*

1 1

¬x*

¬x*

x x

¬x*

¬x*

¬
x

¬
x

1

1 *

x*

x *

¬x*

¬
x *

@

@

@ #

Fig. 7 The 21 tiles of TROTATE

c

2:12

(a)

ft

c

@ 2:12

c

2:12

(b)

Fig. 6 An example execution of SSELECT : The seed (a) encodes the

fact that a clause contains three unassigned literals and a tile from

TSELECT attaches to nondeterministically select the first literal to be

FALSE and the second to be TRUE

218 Y. Brun

123

SROTATE produces F on S such that:

– if @ 2 fbdNðSða� 1; bÞÞ; bdNðSða� 2; bÞÞ; . . .; bdN

ðSða� d; bÞÞg then for all 0� i\d; bdWðFða� d; bþ
1þ iÞÞ ¼@; and

– if @ 62 fbdNðSða� 1; bÞÞ; bdNðSða� 2; bÞÞ; . . .; bdN

ðSða� d; bÞÞg then for all 0 B i \ d,

bdWðFða� d; bþ 1þ iÞÞ ¼
x if bdNðSða� 1� i; bÞÞ ¼ xH

:x if bdNðSða� 1� i; bÞÞ ¼ :xH

0 if bdNðSða� 1� i; bÞÞ ¼ 0

1 if bdNðSða� 1� i; bÞÞ ¼ 1:

8
>>><

>>>:

Proof (Lemma 3) First, note that TROTATE contains exactly

one tile for every pair of possible east-south binding domain

pairs that can occur as north and west binding domains of

the seed, and of the tiles of TROTATE. Thus, the triangle

formed by the seed will be filled in with tiles.

If there exists some 0 B i \ d such that bdNðSða� 1�
i;bÞÞ ¼@; then the orange tile with @ south and north

binding domains will attach in column a-1-i, as well as all

columns to the west of that one, until column a-d. Therefore

the west binding domains of column a-d will be @:

Otherwise, I separate the green tiles of TROTATE (ones

without @ binding domains) into two sets of tiles: TH of

tiles with the east H binding domain, and TREST of tiles with

other east binding domains. Because no tiles in TROTATE

have H west binding domains, it is clear that the tiles of TH

can only attach in positions (a-i, b ? i), for all 0 B i \ d
(because the seed has H west binding domains in positions

directly to the east of those). Note that for all tiles in t 2 TH

have the property

bdWðtÞ ¼
x if bdSðtÞ ¼ xH

:x if bdSðtÞ ¼ :xH

0 if bdSðtÞ ¼ 0

1 if bdSðtÞ ¼ 1:

8
>><

>>:

h

Now, notice that for each tile t 2 TREST ; bdNðtÞ ¼ bdSðtÞ
and bdW(t) = bdE(t). Therefore, for all 0 B i \ d, the value

of bdN(S(a-1-i, b ? i)) will be transferred northward by

tiles from TREST, until position (a-1-i, b ? i ? 1), where

a tile from TH will transfer that value to its west binding

domain, erasing the H; and then tiles from TREST will

transfer that value until position (a-d, b ? i ? 1).

3.5 Assignment preparation (region V)

In this section, I define the tile system SPREP; which will

become the part of SFS that will operate in region V, as

denoted in Fig. 1. Formally, for the m̂th clause, Region V is

part of a column between positions ð�ðcðm̂Þ þ 3mÞ; cðm̂Þ þ
1Þ and ð�ðcðm̂Þ þ 3mÞ; cðm̂Þ þ 3mÞ:

The goal of SPREP is to turn the assignment selected by

SSELECT into up to three literals that evaluate to TRUE. In

other words, to apply the assignment to the clause. This

application of the assignment is the final preparation before

SSIMPLIFY can simplify the formula. SPREP will present the

up to three literals as the west binding domains of the

column in which it operates. Figure 9 shows the 36 tiles of

TPREP that perform the rotation. The assignment prepara-

tion lemma formally describes what SPREP does. Figure 10

shows an example execution of SPREP that prepares the

clause :x2 _ x1 _ x0ð Þ by using the decision that the first,

from the right, literal (x0) will be FALSE, the second literal

(x1) will be TRUE, and no assignment will be made for the

third literal (:x2), at this time.

Lemma 4 (Assignment Preparation Lemma) Let TPREP

be the set of tiles described in Fig. 9 and let

SPREP ¼ hTPREP; gFS; 2i: Then for all a; b 2 Z; for every

clause c of a general 3CNF Boolean formula, for every

a 2 acðcÞ; let s ¼ hs0; s1; . . .; s3m�1; ci be the encoding of

c, and let the seed S be such that:

– bdN(S(a-1, b)) = a,

– for all 0�i\3m; bdWðSða
– bdN(S(a-1, b)) = a,

– for all 0� i\3m; bdWðSða; bþ 1þ iÞÞ ¼
@ if a ¼@
0 if si 2 f0; 0f; 1fg
si otherwise;

8
<

:

– and for all other positions p from (a-1, b ? 1)

through (a-1, b ? 3m), S(p) = empty.

Then SPREP produces F on S such that,

1. if a ¼@; then for all 0� i\3m; bdWðFða� 1; bþ
1þ iÞÞ ¼@; and

2. if a 62 f@;Fg; for all 0 B i \ 3m bdW(F(a-1,

b ? 1 ? i)) = zi, where zi is such that

(a) z0 ¼
s0 if the 1st character of a is t
:s0 if the 1st character of a is f
@ if the 1st character of a is b; and

8
<

:

*

t

x x

*

t

¬
x

¬
x

@

@

@ #

t

bt

@ x

t

bt

@ ¬
x

t

ft

¬
x x

t

ft

x ¬
x

bt

bbt

@ x

0

0

@ @

1

1

@ @

x

x

@ @

¬x

¬x

@ @c

c

@ @

*

*

0 0

*

*

1 1

@

*

@ x

@

*

@ ¬
x

t

t

0 0

t

t

1 1

bt

bbt

@ ¬
x

bt

bt

0 0

bt

bt

1 1

bt

fbt

¬
x x

bt

fbt

x ¬
x

ft

fft

¬
x x

ft

fft

x ¬
x

ft

bft

@ x

ft

bft

@ ¬
x

ft

ft

0 0

ft

ft

1 1

T

T

@ @

F

F

@ @

@

#t

T ::

@

#

T T

@

c

@ T

@*

|

Fig. 9 The 36 tiles of TPREP

Efficient 3-SAT Algorithms in the Tile Assembly Model 219

123

(b) for all 1 B i \ m, zi = si, and

(c) zm ¼

smþ1 if the 2nd character of a is t
:smþ1 if the 2nd character of a is f

@ if the 2nd character of a is
b or a has one character; and

8
>><

>>:

(d) for all mþ 1� i\2m; zi ¼
@ if a has one or two characters
si otherwise; and

�

(e) z2m ¼
s2mþ1 if a has a 3rd character

ðwhich must be tÞ
@ otherwise; and

8
<

:

(f) for all 2mþ 1� i\3m; zi ¼
@ if a has one or two characters
si otherwise:

�

Proof (Lemma 4) The lemma has two cases, which I will

prove separately.

1. If a ¼@; then bdNðSða� 1; bÞÞ ¼@ and the orange

tile with south and north binding domains @ will

attach in positions ða� 1; bþ 1Þ; ða� 1; bþ 2Þ; . . .;
ða� 1; bþ 1þ 3mÞ; and therefore the west binding

domains of tiles in F in all those positions will be @:

2. The second case contains six subcases, which I will

prove sequentially, with each subcase depending on

the previous one.

(a) The only south binding domain of the tiles in

TPREP that has t as its first character is t: There are

two tiles in TPREP that have that binding domain

on their south sides and either x or :x east

binding domains. For all such tiles t, bdW(t) =

bdE(t), so bdW(F(a-1, b ? 1)) = bdW(S(a, b
? 1)) = s0. Note that the north binding domain

of these tiles is H:

The only south binding domains of the tiles in

TPREP that have f as their first characters are

ft; fbt; and fft: There are six tiles in TPREP that

have those binding domains on their south sides

and either x or :x east binding domains. For all

such tiles t; bdWðtÞ ¼ :bdEðtÞ; so bdWðFða� 1;

bþ 1ÞÞ ¼ :bdWðSða; bþ 1ÞÞ ¼ :s0: Note that

the north binding domain of these tiles are the

same as their south binding domains, but with the

first character dropped.

The only south binding domains of the tiles in

TPREP that have b as their first characters are

bt; bbt; and bft: There are six tiles in TPREP that

have those binding domains on their south sides

and either x or :x east binding domains. For all

such tiles t; bdWðtÞ ¼@; so bdWðFða� 1; bþ
1ÞÞ ¼@: Note that the north binding domain of

these tiles are the same as their south binding

domains, but with the first character dropped.

(b) Thus, the possible values of bdN(F(a-1, b ? 1))

are H; t; ft; and bt: All tiles in t 2 TPREP that have

one of those binding domains on their south sides

and either 0 or 1 east binding domains have

bdW(t) = bdE(t) and bdN(t) = bdS(t). So for all

1 B i \ m, bdW(F(a-1, b ? 1 ? i)) = bdW(S(a,

b ? 1 ? i)) = si.

(c) The first character of bdN(F(a-1, b ? m)) is

either H or the second character of a. If it is H; the

only tiles with H south binding domains and x or

:x east binding domains have @ west and north

binding domains, so bdWðFða� 1; bþ 1þ mÞÞ ¼
bdNðFða� 1; bþ 1þ mÞÞ ¼@: Otherwise, if

bdN(F(a-1, b ? m)) is the second character of

a, by the same argument as in (2a),

bdWðFða� 1; bþ 1þ mÞÞ ¼
smþ1 if the 2nd character of a is t

:smþ1 if the 2nd character of a is f

@ if the 2nd character of a is b, and

8
><

>:

bdNðFða� 1; bþ 1þ mÞÞ ¼

H if the 2nd character of a is t
t if the 2nd character of a is f or b:

�

(d) If bdNðFða� 1; bþ 1þ mÞÞ ¼@; by the

argument in (1), all north and west binding

domains of tiles that attach above (a-1,

b ? 1 ? m) will be @: Otherwise, by argument

(2), for all m ? 1 B i \ 2m, bdW(F(a-1, b ?

1 ? i)) = bdW(S(a, b ? 1 ? i)) = si.

x
0

0
x

1
0

¬
x

#
#

ft

(a)

t

t

0 0

*

t

x x

*

*

1 1

*

*

0 0

@

@

@ #

@

@

@ #

t

ft

¬
x x

t

t

0 0

@

*

@ ¬
x

(b)

Fig. 10 An example execution of SPREP: The seed (a) encodes the

clause :x2 _ x1 _ x0ð Þ and the decision that the first, from the right,

literal (x0) will be FALSE, the second literal (x1) will be TRUE, and

no assignment will be made for the third literal (:x2), at this time.

Tiles from TPREP attach to make the appropriate assignment (b)

220 Y. Brun

123

(e) The first character of bdN(F(a-1, b ? 2m)) is

either H or the third character of a. If it is H; the

only tiles with H south binding domains and x or

:x east binding domains have @ west and north

binding domains, so bdWðFða� 1; bþ 1þ 2mÞÞ
¼ bdNðFða� 1; bþ 1þ 2mÞÞ ¼@: Otherwise, if

bdN(F(a-1, b ? 2m)) is the third character of a

(which can only be t), by the same argument as

in (2a), bdW(F(a-1, b ? 1 ? 2m)) = sm?1, and

bdNðFða� 1; bþ 1þ 2mÞÞ ¼ H:

(f) If bdNðFða� 1; bþ 1þ 2mÞÞ ¼@; by the argu-

ment in (1), all north and west binding domains of

tiles that attach above (a-1, b ? 1 ? 2m) will be

@: Otherwise, by argument (2), for all

2m ? 1 B i \ 3m, bdW(F(a-1, b ? 1 ? i)) =

bdW(S(a, b ? 1 ? i)) = si.

3.6 Formula simplification (region VI)

In this section, I define the tile system SSIMPLIFY ; which will

become the part of SFS that will operate in region VI, as

denoted in Fig. 1. Formally, for the m̂th clause, Region VI

is the rectangle defined by the corner positions ð�cðm̂þ
1Þ; cðm̂Þ þ 1Þ and ð�ðcðm̂Þ � 1Þ; cðm̂Þ þ 3mÞ:

The goal of SSIMPLIFY is to simplify the formula by

replacing instances of the up to three literals prepared by

SPREP with TRUE and negations of those literals with

FALSE. SSIMPLIFY will present an encoding of the simplified

formula as the north binding domains of the rectangle in

which it operates. Figure 11 shows the 63 tiles of TSIMPLIFY

that perform the simplification. The formula simplification

lemma formally describes what SSIMPLIFY does. Figure 12

shows an example execution of SSIMPLIFY that simplifies the

formula :x3 _ :x2 _ x0ð Þ ^ x3 _ x2 _ :x1ð Þ by using the

assignment x0 = FALSE and x1 = TRUE.

Lemma 5 (Formula Simplification Lemma) Let TSIMPLIFY

be the set of tiles described in Fig. 11 and let

SSIMPLIFY ¼ hTSIMPLIFY ; gFS; 2i: Then for all a; b 2 Z; for

every literal ‘; for every general 3CNF Boolean formula /,

for every encoding s ¼ hs0; s1; . . .; szi of /, let the seed S

be such that:

– for all 0 B i B z, bdN(S(a-1-i, b)) = si, and

– if ‘ 2 fTRUE;FALSEg;

– bdWðSða; bþ 1ÞÞ ¼@; and

– for all 1� j\m; bdWðSða; bþ 1þ jÞÞ 2 f0; 1;@g;
or

– if ‘ 62 fTRUE;FALSEg;

– bdWðSða; bþ 1ÞÞ ¼

x if ‘ is identically a variable
:x if ‘ is the

�

negation of a variable; and:

– for all 1 B j \ m, bdW(S(a, b ? 1 ? j)) is the jth

bit of ‘’s variable’s index.

Then SSIMPLIFY produces F on S such that, if /0 is

identical to / except that wherever ‘ appears in /, it is

replaced with TRUE in /0, and wherever :‘ appears in /, it

is replaced with FALSE in /0, (if ‘ 2 fTRUE;FALSEg then

/0 = /), then there exists an encoding s0 ¼ hs00; s01; . . .; s0zi
of /0 such that for all 0 B i B z, bdN(F(a-1-

i, b ? m)) = s0i.
I now define two equality operators over binding

domains: & and =.

Definition 4 Two binding domains are & if they are

identical after removing the characters t and f from them.

For example, 0 � 0t � 0f 6� 1f:

Definition 5 Two binding domains are = if they are

identical, or if they are both 2 f0f; 1f;Fg or if they are both

2 f0t; 1t;Tg: For example, 1 ¼ 1; 0f ¼ F; but 0f 6¼ 0:

Proof (Lemma 5) SSIMPLIFY will operate within the z 9 m
rectangle defined by S. That rectangle can be broken up

into m 9 m squares. A set of three horizontally-adjacent

m 9 m squares make up the representation of a clause of /.

xt

x

x x

¬xf

¬x

x x

¬xt

¬x

¬
x

¬
x

xf

x

¬
x

¬
x

x

xt

0t 0

x

xt

1t 1

¬x

¬xt

0t 0

¬x

¬xt

1t 1

0t

0

0 0t

1t

1

1 1t

1

1

0 0t

0

0

1 1t

c

c

0 0

c

c

1 1

c

c

x x

c

c

¬
x

¬
x

x

xf

0f 0

x

xf

1f 1

¬x

¬xf

0f 0

¬x

¬xf

1f 1

0f

0

0 0f

1f

1

1 1f

1

1

0 0f

0

0

1 1f

F

F

0 0#

F

F

1 1#

F

#f

x x

F

#f

¬
x

¬
x

T

T

0 0#

T

T

1 1#

T

#t

x x

T

#t

¬
x

¬
x

0

0t

0t 0

0

0t

1t 1

1

1t

0t 0

1

1t

1t 1

0

0f

0f 0

0

0f

1f 1

1

1f

0f 0

1

1f

1f 1

0

0

0 0

0

0

1 1

0

0

x x

0

0

¬
x

¬
x

1

1

0 0

1

1

1 1

1

1

x x

1

1

¬
x

¬
x

x

x

0 0

x

x

1 1

¬x

¬x

0 0

¬x

¬x

1 1

@

@

@ #

0

0

@ @

1

1

@ @

x

x

@ @

¬x

¬x

@ @

c

c

@ @

T

#t

@ @

@

#t

T ::

@

#

T T

@

c

@ T

F

#f

@ @

Fig. 11 The 63 tiles of TSIMPLIFY

Efficient 3-SAT Algorithms in the Tile Assembly Model 221

123

These 3m 9 m rectangles are separated by 1 9 m rectangles

(the columns with the c north binding domains). The tiles

of TSIMPLIFY have the following special property: for each

tile t 2 TSIMPLIFY ; bdW(t) & bdE(t). Therefore, as tiles

attach to fill the z 9 m rectangle, for each row b ? j, the

east and west binding domains of all the tiles in that row

will & bdW(S(a, b ? j)). As I will show later, for each

m 9 m square, the binding domains directly to the east of

that square will be identical to those west binding domains

of the seed. This allows me to argue that as long as the

entire z 9 m rectangle is filled with tiles, each m 9 m square

can attach tiles independently of what happens in other

m 9 m squares. Therefore, to prove the lemma, it is suffi-

cient to demonstrate the following fact for a single m 9 m
square: Without loss of generality, let the square in

question be the eastmost square, defined by corner posi-

tions (a-1, b ? 1) and (a-m, b ? m). Let ‘0 be the

literal encoded by hbdNðSða� 1; bÞÞ; bdNðSða� 2; bÞÞ;
. . .; bdNðSða� m; bÞÞi:

1. If ‘ 2 fTRUE;FALSEg; then

– for all 0 B j \ m, bdN(F(a-1-j, b ? m)) =

bdN(S(a-1-j, b)).

2. If ‘ 62 fTRUE;FALSEg; then

– if ‘ ¼ ‘0 (respectively, ‘ ¼ :‘0), then hbdNðFða�
1; bþ mÞÞ; bdNðFða� 2; bþ mÞÞ; . . .; bdNðFða�
m; bþ mÞÞi encodes TRUE (respectively, FALSE),

and

– if ‘ 62 f‘0;:‘0g; for all 0 B j \ m, bdN(F(a-1-

j, b ? m)) = bdN(S(a-1-j, b)).

h

I now prove the above statement.

1. Suppose ‘ 2 fTRUE;FALSEg: In TSIMPLIFY, every tile

with an east binding domain @ has the west binding

domain @; and its north binding domain = its south

binding domain. For every north binding domain of the

seed and the tiles in TSIMPLIFY, there is exactly one tile

with that south binding domain and @ east binding

¬
x

0
0

x
1

0
@

@
@

1 1 x 1 0 x 0 1 ¬x1 ¬x 1 0 ¬x 0 0 x cc 1

(a)

¬xt

¬x

¬
x

¬
x

1

1

¬
x

¬
x

0

0

¬
x

¬
x

xf

x

¬
x

¬
x

0

0

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

c

c

¬
x

¬
x

c

c
¬

x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

¬xt

¬x

¬
x

¬
x

¬xt

¬x

¬
x

¬
x

¬x

¬xt

0t 0

¬x

¬xt

0t 0

¬x

¬xt

0t 0

1

1

0 0t

0

0

0 0

1

1

0 0t

0t

0

0 0t

x

xf

0f 0

x

xf

0f 0

x

xf

0f 0

1

1

0 0

1

1

0 0f

1

1

0 0

c

c

0 0

c

c

0 0

0f

0

0 0f

0f

0

0 0f

0

0

0 0

1

1

0 0

1

1
0 0

¬x

¬x

0 0

1

1

0 0

0

0

0 0

x

x

0 0

0

0f

0f 0

1

1

0 0f

x

x

0 0

1

1

0 0

1

1

0 0

c

c

0 0

x

x

0 0

0

0f

0f 0

0f

0

0 0f

¬x

¬x

0 0

0

0t

0t 0

1

1

0 0t

¬x

¬x

0 0

1

1
0 0

1

1

0 0

c

c

0 0

¬xf

¬x

x x

1

1

x x

0

0

x x

xt

x

x x

xt

x

x x

xt

x

x x

¬xf

¬x

x x

¬xf

¬x
x x

c

c

x x

0

0

x x

0

0

x x

0

0

x x

1

1

x x

1

1

x x

1

1

x x

1

1

x x

1

1

x x

1

1

x x

c

c

x x

F

#f

x x

¬x

¬xf

1f 1

¬x

¬xf

1f 1

¬x

¬xf

1f 1

1f

1

1 1f

1f

1

1 1f

x

xt

1t 1

x

xt

1t 1

x

xt

1t 1

1t

1

1 1t

0

0

1 1

0

0

1 1t

1

1

1 1

1

1

1 1

c

c

1 1

c

c

1 1

0

0

1 1t

0

0

1 1f

1

1
1 1

1

1

1 1

¬x

¬x

0 0

1

1f

0f 0

1

1f

0f 0

1

1t

0t 0

0f

0

0 0f

x

x

0 0

0

0

0 0

1

1

0 0

x

x

0 0

1

1

0 0t

c

c

0 0

c

c

0 0

x

x

0 0

0

0

0 0

¬x

¬x

0 0

0

0
0 0

1

1

0 0

¬x

¬x

0 0

1

1

0 0f

¬x

¬x

@ @¬x

¬x
@ @¬x

¬x

@ @ x

x

@ @x

x

@ @x

x

@ @ c

c

@ @c

c

@ @ 1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @ 0

0

@ @0

0

@ @0

0

@ @ F

F

@ @ F

#f

@ @

F

F

@ @¬x

¬x

@ @¬x

¬x

@ @ x

x

@ @x

x

@ @x

x

@ @ c

c

@ @c

c

@ @ 1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @ 0

0

@ @0

0

@ @0

0

@ @ F

F
@ @ ¬x

¬x

@ @1

1

@ @

F

F

@ @¬x

¬x

@ @¬x

¬x

@ @ x

x

@ @x

x

@ @x

x

@ @ c

c

@ @c

c

@ @ 1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @ 0

0

@ @0

0
@ @0

0

@ @ F

F

@ @ ¬x

¬x

@ @1

1

@ @

F

F

1 1#

F

F

0 0#

(b)

Fig. 12 An example execution

of SSIMPLIFY : The seed (a)

encodes the formula

:x3 _ :x2 _ x0ð Þ ^
x3 _ x2 _ :x1ð Þ and an

assignment of x0 = FALSE and

x1 = TRUE. Tiles from

TSIMPLIFY attach to make the

appropriate assignments and

simplify the formula (b)

222 Y. Brun

123

domain. Therefore, these tiles will attach to the west of

position (a, b ? 1), all the way to (a-m, b ? 1), and

the north binding domains of that row will be = to the

north binding domains of the seed row below it.

Because ‘ 2 fTRUE;FALSEg; for all 1� j\m; bdW

ðSða; bþ 1þ jÞÞ 2 f0; 1;@g: If that binding domain

is @; the same argument as above holds. Otherwise,

the green tiles with 0 and 1 east and west binding

domains and the same properties as the above-

mentioned @ tiles will attach to the west, propagating

the seed’s binding domains one row up at a time.

Therefore, for all 0 B j \ m, bdN(F(a-1-j, b ? m)) =

bdN(S(a-1-j, b)).

2. Suppose ‘ 62 fTRUE;FALSEg:

– Suppose also ‘0 62 fTRUE;FALSEg: In position

(a-1, b ? 1), both the east and south binding

domains contain x (because the west and north

binding domains of the appropriate seed tiles

contain x). Therefore, one of the bright yellow

tiles will attach there. If the binding domains match

identically, that binding domain is replicated on the

north side of the tile, with an extra t tag. Otherwise,

the binding domains are negations of each other,

and the south binding domain in replicated on the

north side of the tile, with an extra f tag. The light

yellow tiles are the only ones with t and f tags on

their south binding domains and east binding

domains 2 f0; 1g; so one of them must attach

above the bright yellow tile. Note that these tiles

move the t and f tag to their west binding domain.

To the west of that tile, in position (a-

2, b ? 2), if the corresponding row’s west binding

domain & the corresponding column’s north

binding domain, then a bright yellow tile attaches

and carries the t and f tag to the north. Otherwise, a

light yellow tile attaches and removes all such tags.

The result is that for all 1 B j B m, as long as the

first j bits of ‘ are equal to the first j bits of ‘0; the t

and f tags are propagated northward and westward.

Otherwise, these tags are removed. The rest of the

square is filled with green tiles with no labels.

Thus, if ‘ ¼ ‘0 then the tile in position (a-

m, b ? m) will have a north binding domain with

the t tag, if ‘ ¼ :‘0 then the tile in position (a-

m, b ? m) will have a north binding domain with

the f tag, and ‘ and ‘0 are over different variables,

the tile in position (a-m, b ? m) will have a north

binding domain with no tags. No other tiles with

exposed north and west binding domains can have

any tags. Therefore, if ‘ ¼ ‘0; the north binding

domains of the tiles in row b ? m replace ‘0 with

TRUE, if ‘ ¼ :‘0; the north binding domains of the

tiles in row b ? m replace ‘0 with FALSE, and

otherwise ‘ is left unchanged. (Note that in the dth

column, the west side’s t and f tags can only occur

in the (d ? 1)st column, and since the (m ? 1)st

row does not get filled, there are now tags in the

west binding domains of the westmost tiles of each

row of the m 9 m square, confirming the earlier

claim that for each m 9 m square, the binding

domains directly to the east of that square will be

identical to those west binding domains of the

seed.)

– Suppose ‘0 2 fTRUE;FALSEg: The fact that ‘0 2
fTRUE;FALSEg does not impact the east m-1

columns of the assembly because the encoding of

TRUE and FALSE literals is only evident in the last

element of the sequence being ¼ T and ¼ F;

respectively. Thus the exact same process will take

place in the east m-1 columns as described above;

however, that process is almost irrelevant (other

than the fact that those columns get filled with

tiles) because what happens in column (a-m)

‘‘overrides’’ the actions of the columns to the east.

If ‘0 ¼ TRUE (respectively, FALSE), then

bdNðSða� m; bÞÞ ¼ T (respectively, F). Then the

pink tiles with north binding domains T (respec-

tively, F) will attach in positions (a-m, b ? 1)

through (a-m, b ? m), ensuring that bdNðFða�
m; bþ mÞÞ ¼ T (respectively, F), thus preserving

the value of ‘0:

h

3.7 Solving 3-SAT

Thus far, I have described five tile systems: SEXAM;

SSELECT ; SROTATE; SPREP; and SSIMPLIFY that I intend to use

to solve 3-SAT. These systems will operate in regions II,

III, IV, V, and VI in Fig. 1, respectively. The tile system

SFS combines these five systems to select a truth assign-

ment for the first (eastmost) clause of a Boolean formula /,

simplify the rest of / based on that assignment, and recurse

(in region VII) on the simplified / with one fewer clause.

SFS will nondeterministically create only OHð1:8393nÞ
distinct assemblies to decide whether / is satisfiable. Note

that there are 147 distinct tiles that SFS uses (the distinct

tiles described so far and summarized in Fig. 15), and that

each nondeterministic assembly assembles in time linear in

the size of the input.

I will use the 8 tiles in CFS; shown in Fig. 13, to encode

the input /. Informally, I will encode the formula’s literals

in row 0, such that the literals of each clause are together

and place the special clause tile to the west of each clause. I

will place the tiles with HH and H west binding domains on

Efficient 3-SAT Algorithms in the Tile Assembly Model 223

123

a diagonal to the north and west of the /, and I will place

the tile with j west binding domain as the northmost and

westmost tile in the diagonal. I define the seed more for-

mally in the proof of Theorem 1. Figure 14 shows the seed

SFS/ that encodes the 3-variable 3-clause Boolean formula

:x3 _ :x2 _ x0ð Þ ^ x3 _ x2 _ :x1ð Þ ^ :x2 _ x1 _ x0ð Þ:
Figure 15 shows the 147 tiles of TFS that solve 3-SAT.

Note that TFS ¼ TEXAM [TSELECT [TROTATE [TPREP [
TSIMPLIFY : Figure 16 shows a sample execution of SFS on

the seed from Fig. 14. This execution assigns x0 = FALSE

and x1 = TRUE in the first recursive step of the algorithm

and then assigns x2 = FALSE and x3 = TRUE in the sec-

ond step. In the third step, the algorithm finds that the third

clause is already satisfied. Because this particular execution

selected an assignment that satisfied the entire formula, the

black U tile is attached in the northwest corner.

The U tile can only attach if the set of nondeterministic

decisions made by the execution of SFS results in a satis-

fying assignment. It is possible for the set of decisions to

result in a case in which one or more clauses cannot be

satisfied, halting the assembly and preventing the U tile

from attaching. Figure 17 shows an example execution that

fails to attach the U tile. In this execution, the decision

made on the eastmost clause (x0 = x1 = x2 = FALSE)

prevents the westmost clause x2 _ x1 _ x0ð Þ from being

satisfied, which prevents the U tile from attaching.

Theorem 1 Let TFS = TEXAM [TSELECT [TROTATE [
TPREP [TSIMPLIFY (the set of tiles described in Fig. 15).

Then SFS ¼ hTFS; gFS; 2i nondeterministically decides 3-

SAT with the black U tile from TPREP as the identifier tile.

Proof (Theorem 1) Let CFS be the set of tiles in Fig. 13.

Let the seed SFS be as follows:

– For all 0� m̂\m; SFSð�ðcðm̂Þ � 1Þ; cðm̂ÞÞ ¼ cHH;

where cHH is the tile in CFS with the west binding

domain HH:

– For all 0� m̂\m; for all 0 B i \ 3m-1, SFSð�cðm̂Þ �
ði� 1Þ; cðm̂Þ þ ðiþ 1ÞÞ ¼ cH; where cH is the tile in

CFS with the west binding domain H:

– SFSð�ðcðmÞ � 2Þ; cðmÞÞ ¼ cj; where cj is the tile in CFS

with the west binding domain j:
– For all 0� m̂\m; for all 0� k̂\3; SFSð�cðm̂Þ �

k̂m; 0Þ ¼ c:; where if the k̂th literal in the m̂th clause

is identically some variable, then c: is the tile in CFS

with the north binding domain x and if the k̂th literal in

the m̂th clause is the negation of some variable, then c:
is the tile in CFS with the north binding domain :x:

– For all 0� m̂\m; for all 0� k̂\3; for all

1� i\m; SFSð�cðm̂Þ � k̂m� i; 0Þ ¼ cz; where if w is

such that the k̂th literal in the m̂th clause is either xw or

:xw; then z is the ith bit of w (z ¼ w
2i

� �
mod 2) and cz is

the tile in CFS with the north binding domain z.

– For all 0� m̂\m; SFSð�cðm̂Þ � 3m; 0Þ ¼ cc; where cc is

the tile in CFS with the north binding domain c:

– And for all other positions (v, w), SFS(v, w) = empty.

Observe that the sequence hbdNðSð�1; 0ÞÞ;
bdNðSð�2; 0ÞÞ; . . .; bdNðSð�ðcðmÞ � 1Þ; 0ÞÞi is a general

Boolean formula encoding of /. Let c ¼ ð‘1 _ ‘2 _ ‘3Þ be

the first (eastmost) clause of /. Observe that

bdWðSð0; 1ÞÞ ¼ HH: Therefore, by the clause examination

lemma (Lemma 1), the tiles from TEXAM will attach to

produce p(c) as the west binding domain of the tile in

position (-3m, 1), and precisely the north binding domains

of tiles in positions (-1, 1) through (-3m, 1) that are the

preconditions of the clause rotation lemma (Lemma 1). By

the literal selection lemma (Lemma 2), either

1. ‘1 ¼ ‘2 ¼ ‘3 ¼ FALSE and no tiles will attach in

position (-3m-1, 1), and therefore in no other position

west and north of (-3m-1, 1), or

2. a tile from TSELECT will attach in position (-3m-1, 1)

to nondeterministically produce, for each a 2 acðcÞ; a

configuration with a as the north binding domain and

@ as the west binding domain of the tile in that

position.

If a tile does attach in position (-3m-1, 1), the orange

and pink tiles from TSIMPLIFY with east and west binding

domains @ will attach to the west of position (-3m-

1, 1), all the way to position (-(c(m)-1), 1). Note that for

each such tile t, bdN(t) = bdS(t), so they will propagate the

encoding of the rest of / from row 0 up to row 1.

By the clause rotation lemma (Lemma 3), tiles from

TROTATE will attach in the right triangle above positions

(-1, 2) through (-3m, 2) to produce an encoding of c in the

west binding domains of the tiles in positions (-3m, 2)

through (-3m, 3m ? 1).

Let ‘01 ¼
‘1 if the 1st character of a is t
:‘1 if the 1st character of a is f
null if the 1st character of a is b:

8
<

:

Let ‘02 and ‘03 be defined similarly, based on ‘2 and ‘3 and

the 2nd and 3rd characters of a, respectively (where if a

does not have a second or third character, that character can

be assumed to be b). By the assignment preparation lemma

(Lemma 5), the tiles of TPREP will attach such that the west

binding domains of the tiles in positions (-3m-1, 2)

through (-3m-1, m ? 1) encode ‘01; the west binding

domains of the tiles in positions (-3m-1, m ? 2) through

c x01 ¬x

*** |

Fig. 13 The 8 tiles of CFS used to encode inputs to SFS

224 Y. Brun

123

(-3m-1, 2m ? 1) encode ‘02; and the west binding domains

of the tiles in positions (-3m-1, 2m ? 2) through (-3m-1,

3m ? 1) encode ‘03; (where null is encoded by @ followed

by a series of elements of @; 0; 1).

Let w be identical to / except without the first (east-

most) clause. By the formula simplification lemma

(Lemma 5) tiles from TSIMPLIFY will attach in the rectangle

defined by the corner positions (-3m-2, 2) and (-(c(m)-

1), m ? 1). The sequence of north binding domains of

the tiles attached in positions (-3m-2, m ? 1) through

(-(c(m)-1), m ? 1) will encode w0, where w0 is identical

to w, except every instance of ‘01 is replaced with TRUE

and every instance of :‘01 is replaced with FALSE. By a

second application of the formula simplification lemma

(Lemma 5), tiles from TSIMPLIFY will attach in the rectangle

defined by the corner positions (-3m-2, m ? 2) and

*

*

*

*

*

*

*

*

*
**

c 0100 0 0 01 1 1 1 1cc 0001 1 1x x x x x¬x ¬x ¬x¬x

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

|

Fig. 14 An example seed used by SFS uses the tiles from CFS to encode the Boolean formula :x3 _ :x2 _ x0ð Þ
^ x3 _ x2 _ :x1ð Þ ^ :x2 _ x1 _ x0ð Þ

Efficient 3-SAT Algorithms in the Tile Assembly Model 225

123

(-(c(m)-1), 2m ? 1). The sequence of north binding

domains of the tiles attached in positions (-3m-2, 2m ? 1)

through (-(c(m)-1), 2m ? 1) will encode w00, where w00 is

identical to w0, except every instance of ‘02 is replaced with

TRUE and every instance of :‘02 is replaced with FALSE.

By a third application of the formula simplification lemma

(Lemma 5), tiles from TSIMPLIFY will attach in the rectangle

defined by the corner positions (-3m-2, 2m ? 2) and

(-(c(m)-1), 3m ? 1). The sequence of north binding

domains of the tiles attached in positions (-3m-2, 3m ? 1)

through (-(c(m)-1), 3m ? 1) will encode w000, where w000 is
identical to w00, except every instance of ‘03 is replaced with

TRUE and every instance of :‘03 is replaced with FALSE.

Observe that the sequence of north binding domains of

tiles in positions (-3m-2, 3m ? 1) through (-(c(m)-1),

3m ? 1) encodes w000, a Boolean formula with one fewer

clause than / and every instance of the literals over the

variables selected by the assignment a over the first clause

replaced with TRUE and FALSE as appropriate. Further,

notice that the seed tiles with HH;H; and j west binding

domains are located in the same positions with respect to

this new formula as they were with respect to the original /
in row 0. Thus the algorithm can recurse on w000, by

selecting an assignment over the unassigned literals of the

new eastmost clause, and applying that assignment to the

formula. This process continues until either (1) all literals

in some clause m̂ are FALSE and no tile can attach to the

north and west of position ð�ðcðm̂Þ þ 3mÞ; cðm̂ÞÞ; as per the

literal selection lemma (Lemma 2), or (2), the last (west-

most) clause of / selects a successful assignment, in which

case, by the the assignment preparation lemma (Lemma 4),

the north finding domain of the tile in position

ð�ðcðmÞ � 1Þ; cðmÞ � 1Þ 2 f@;Hg. Note that the black U

tile can only attach in position (-(c(m)-1), c(m)) (because

it has a j east binding domain, and that domain only occurs

as the west binding domain of the seed tile in position

(-(c(m)-2), c(m))). In case (1) above, since no tile can

attach in position (-(c(m)-1), c(m)), the U tile can never

attach. In case (2) above, the U tile does attach in position

(-(c(m)-1), c(m)). Therefore, F will contain the U tile iff

the assignment selected by this particular set of nondeter-

ministic decisions satisfies /. Because whenever SFS

makes such a nondeterministic decision, it explores all

possible assignments that satisfy a given clause, it nonde-

terministically explores all assignments that might satisfy

/. Therefore, SFS nondeterministically decides 3-SAT with

the U tile as the identifier tile.

h

Theorem 2 For all n 2 N; for all Boolean formula / on

n distinct variables, SFS can nondeterministically form only

OHð1:8393nÞ distinct assemblies.

Proof (Theorem 2) The tiles of SSELECT are the only ones

that attach nondeterministically. For each clause, SSELECT

creates at most three distinct nondeterministic assemblies,

each encoding a Boolean formula with one fewer clause and

each of one, two, and three fewer variables, respectively.

Thus, if the number of distinct nondeterministic assemblies

created by SFS on an n-variable m-clause Boolean formula is

denoted T(n, m), then T(n, m) = T(n-1, m-1) ? T(n-2,

m-1) ? T(n-3, m-1), and T(3, 1) = 3, T(2, 1) = 2, and

T(1, 1) = 1. By Woeginger (2003), the solution to this

recurrence is OHð1:8393nÞ.
h

4 Contributions

I have defined SFS; a tile system that solves 3-SAT by non-

deterministically creating OHð1:8393nÞ assemblies in

*

t

x x

*

t

¬
x

¬
x

@

@

@ #

t

bt

@ x

t

bt

@ ¬
x

t

ft

¬
x x

t

ft

x ¬
x

bt

bbt

@ x

0

0

@ @

1

1

@ @

x

x

@ @

¬x

¬x

@ @

c

c

@ @

*

*

0 0

*

*

1 1

@

*

@ x

@

*

@ ¬
x

t

t

0 0

t

t

1 1

bt

bbt

@ ¬
x

bt

bt

0 0

bt

bt

1 1

bt

fbt

¬
x x

bt

fbt

x ¬
x

ft

fft

¬
x x

ft

fft

x ¬
x

ft

bft

@ x

ft

bft

@ ¬
x

ft

ft

0 0

ft

ft

1 1

@*

|

¬x*

¬x*

0 0

¬x*

¬x*

1 1

¬x*

¬x*

x x

¬x*

¬x*

¬
x

¬
x

x*

x*

0 0

x*

x*

1 1

x*

x*

x x

x*

x*

¬
x

¬
x

1

1

0 0

1

1

1 1

1

1

x x

1

1

¬
x

¬
x

0

0

0 0

0

0

1 1

0

0

x x

0

0

¬
x

¬
x

x*

x *

¬x*

¬
x *

1

1 *

0

0 *

x

x

1 1

x

x

0 0

¬x

¬x

1 1

¬x

¬x

0 0

c

c

0 0

c

c

1 1

c

c

x x

c

c

¬
x

¬
x

@

#

T T

@

#t

T ::

@

c

@ T

T

#t

@ @ F

#f

@ @F

#f

¬
x

¬
x

F

#f

x x

F

F

1 1#

F

F

0 0#

T

T

0 0#

T

T

1 1#

T

#t

x x

T

#t

¬
x

¬
x

x*

x

0: **

¬x*

¬x

0: **

0

0

0: 0:

1

1

0: 0:

0

#f

0:*

0:

x*

x

1:1 0:

¬x*

¬x

1:1 0:

x*

x

1:

0:*

¬x*

¬x

1:

0:*

0

0

1: 1:

1

1

1: 1:

0

0

1:1

1:1

1

1

1:1

1:1

0

#f

1:*

1:

0

#f

1:1*

1:1

x*

x

2:2 1:

¬x*

¬x

2:2 1:

x*

x

2:12

1:1

¬x*

¬x
2:12

1:1
x*

x

2:

1:*

¬x*

¬x

2:

1:*

¬x*

¬x

2:1

1:1*

x*

x

2:1

1:1*

0

0

2: 2:

1

1

2: 2:

0

0

2:1

2:1

1

1

2:1

2:1

0

0

2:2

2:2

1

1

2:2

2:2

0

0

2:12

2:12

1

1

2:12

2:12

0

#f

3: 2:

0

#f

3:1

2:1

0

#f

3:2

2:2

0

#f

3:12

2:12

fft

c

@ 2:12
t

c

@ 3:1

bt

c

@ 3:2

bbt

c

@ 2:

t

c

@ 3:12

ft

c

@ 3:12

t

c
@ 2:1

fbt

c

@ 2:1

bt

c

@ 2:2

bft

c

@ 2:2

t

c

@ 2:12

ft

c
@ 2:12

xt

x

x x

¬xf

¬x

x x
¬xt

¬x
¬

x

¬
x

xf

x

¬
x

¬
x

x

xt

0t 0

x

xt

1t 1

¬x

¬xt

0t 0

¬x

¬xt

1t 1

0t

0

0 0t
1t

1
1 1t

1

1

0 0t

0

0

1 1t
x

xf

0f 0

x

xf

1f 1

¬x

¬xf

0f 0

¬x

¬xf

1f 1

0f

0

0 0f

1f

1

1 1f

1

1
0 0f

0

0

1 1f

0

0t

0t 0

0

0t

1t 1

1

1t

0t 0

1

1t

1t 1

0

0f

0f 0

0

0f

1f 1

1

1f

0f 0
1

1f
1f 1

Fig. 15 The 147 tiles of TFS

226 Y. Brun

123

parallel, for an n-variable Boolean formula. Each assembly

assembles in time linear in the input size, explores some truth

assignment, and attaches a special U tile iff that assignment

satisfies the formula. SFS uses 147 ¼ Hð1Þ distinct tile types.

SFS helps bridge the gap between theoretical explora-

tions of self-assembly, which require large tilesets to

implement complex algorithms, and experimental endeav-

ors, which have been able to combine no more than 20

distinct tiles in a single experiment. Further, SFS improves

the efficiency of existing tile-inspired distributed software

systems used to leverage large public untrusted networks to

solve NP-complete problems.

*

*

*

*

*

*

*

*

*

¬x*

¬
x *

t

t

0 0

*

t

x x

*

*

1 1

*

*

0 0

@

@

@ #

@

@ #

**

c 0100 0 0 01 1 1 1 1cc 0001 1 1x x x x x¬x ¬x ¬x¬x

x*

x *

x*

x *

0

0

x x

0

0

x x

0

0

x x

¬x*

¬x*

x x

x*

x*

x x

1

1

x x

0

0 *

0

0 *

0

0 *

0

0 *

0

0

0: 0:

x*

x

1:1 0:

1

1

1:1

1:1

0

0

1:1

1:1

0

0

2:12

2:12

ft

c

@ 2:12

x*

x

0: **

¬x*

¬x

2:12

1:1

1

1

2:12

2:12

0

0

0: 0:

0

0

x x

1

1

x x

0

0

0 0

0

0

0 0

0

0

0 0

x*

x*

0 0

¬x*

¬x*

0 0

1

1

0 0

1

1

0 0

0

0

0 0

0

0

0 0

x*

x*

0 0

¬x*

¬x*

0 0

1

1

0 0

1

1

0 0

0

0

x x

0

0

x x

¬x*

¬x*

x x

1

1

x x

1

1

x x

1

1 *

1

1 *

0

0

1 1

0

0

1 1

1

1

1 1

¬x*

¬x*

1 1

0

0

0 0

¬x*

¬x*

0 0

1

1

0 0

0

0

¬
x

¬
x

1

1

¬
x

¬
x

1

1

0 0

t

ft

¬
x x

t

t

0 0

@

*

@ ¬
x

x

x

@ @ x

x

@ @x

x

@ @ ¬x

¬x

@ @¬x

¬x

@ @ ¬x

¬x

@ @ 0

0

@ @ 0

0

@ @0

0

@ @ 0

0

@ @0

0

@ @1

1

@ @1

1

@ @ 1

1

@ @ 1

1

@ @1

1

@ @1

1

@ @ 1

1

@ @c

c
@ @ c

c

@ @

¬xt

¬x

¬
x

¬
x

1

1

¬
x

¬
x

0

0

¬
x

¬
x

xf

x

¬
x

¬
x

0

0

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1
¬

x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

c

c

¬
x

¬
x

c

c

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

¬xt

¬x

¬
x

¬
x

¬xt

¬x

¬
x

¬
x

¬x

¬xt

0t 0

¬x

¬xt

0t 0

¬x

¬xt

0t 0

1

1

0 0t

0

0

0 0

1

1
0 0t

0t

0

0 0t

x

xf

0f 0

x

xf

0f 0

x

xf

0f 0

1

1

0 0

1

1

0 0f

1

1

0 0

c

c

0 0

c

c

0 0

0f

0

0 0f

0f

0

0 0f

0

0

0 0

1

1

0 0

1

1

0 0

¬x

¬x

0 0

1

1

0 0

0

0

0 0

x

x

0 0

0

0f

0f 0

1

1

0 0f

x

x

0 0

1

1

0 0

1

1

0 0

c

c

0 0

x

x

0 0

0

0f

0f 0

0f

0

0 0f

¬x

¬x

0 0

0

0t

0t 0

1

1

0 0t

¬x

¬x
0 0

1

1

0 0

1

1

0 0

c

c

0 0

¬xf

¬x

x x

1

1

x x

0

0

x x

xt

x

x x

xt

x

x x

xt

x

x x

¬xf

¬x

x x

¬xf

¬x

x x

c

c

x x

0

0

x x

0

0

x x

0

0

x x

1

1

x x

1

1

x x

1

1

x x

1

1
x x

1

1

x x

1

1

x x

c

c

x x

F

#f

x x

¬x

¬xf

1f 1

¬x

¬xf

1f 1

¬x

¬xf

1f 1

1f

1

1 1f

1f

1

1 1f

x

xt

1t 1

x

xt

1t 1

x

xt

1t 1

1t

1

1 1t

0

0

1 1

0

0

1 1t

1

1

1 1

1

1

1 1

c

c

1 1

c

c

1 1

0

0

1 1t

0

0
1 1f

1

1

1 1

1

1

1 1

¬x

¬x

0 0

1

1f

0f 0

1

1f

0f 0

1

1t

0t 0

0f

0

0 0f

x

x

0 0

0

0

0 0

1

1

0 0

x

x

0 0

1

1

0 0t

c

c

0 0

c

c

0 0

x

x

0 0

0

0

0 0

¬x

¬x
0 0

0

0

0 0

1

1

0 0

¬x

¬x

0 0

1

1

0 0f

¬x

¬x

@ @¬x

¬x

@ @¬x

¬x

@ @ x

x

@ @x

x

@ @x

x

@ @ c

c

@ @c

c

@ @ 1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @ 0

0

@ @0

0

@ @0

0

@ @ F

F
@ @ F

#f

@ @

F

F

@ @¬x

¬x

@ @¬x

¬x

@ @ x

x

@ @x

x

@ @x

x

@ @ c

c

@ @c

c

@ @ 1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @ 0

0

@ @0

0
@ @0

0

@ @ F

F

@ @ ¬x

¬x

@ @1

1

@ @

F

F

@ @¬x

¬x

@ @¬x

¬x

@ @ x

x

@ @x

x

@ @x

x
@ @ c

c

@ @c

c

@ @ 1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @ 0

0

@ @0

0

@ @0

0

@ @ F

F

@ @ ¬x

¬x

@ @1

1

@ @

**

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

¬x*

¬x

0: **

1

1

0: 0:

x*

x

1:

0:*

0

0

1: 1:

1

1

1: 1:

x*

x

2:2 1:

1

1

2:2

2:2

bft

c
@ 2:2

0

#f

0:*

0:

1

1

2:2

2:2

*

t

x x

t

ft

¬
x x

*

*

1 1

t

t

0 0

t

t

1 1

ft

bft

@ ¬
x

ft

ft

0 0

ft

ft

1 1

0

0 *

1

1 *

x*

x *

¬x*

¬
x *

x*

x *

0
0 *

1

1 *

1

1 *

1

1 *

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1
¬

x

¬
x

x*

x*

¬
x

¬
x

x*

x*

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

0

0

1 1

0

0

1 1

1

1

1 1

1

1
1 1

1

1

1 1

x*

x*

1 1

x*

x*

1 1
x*

x*

0 0

0

0

0 0

x*

x*
0 0

1

1

0 0

1

1

0 0

1

1

0 0
0

0

x x

1

1

x x

1

1

x x

1

1
x x

x*

x*

x x

x*

x*

0 0

1

1

0 0

1

1

0 0

1

1

0 0

1

1

1 1

1

1

1 1

x*

x*

1 1

1

1

x x

1

1

x x

1

1

1 1

*

1 1
0

0

@ @1

1

@ @ x

x

@ @¬x

¬x

@ @c

c

@ @ F

F

@ @0

0

@ @1

1

@ @1

1

@ @ ¬x

¬x

@ @

0

0

@ @1

1

@ @ x

x

@ @¬x

¬x

@ @c

c

@ @ F

F

@ @0

0

@ @1

1

@ @1

1

@ @ ¬x

¬x

@ @

x

x

1 1

¬x

¬x

1 1

¬x

¬x

1 1

1

1

1 1

1

1

1 1

1

1

1 1

0

0

1 1

0

0

1 1

c

c

1 1

x

x

0 0

¬x

¬x

0 0

¬x

¬x

0 0

0

0

0 0

0

0

0 0

1

1

0 0

1

1

0 0

1

1

0 0

c

c

0 0

xf

x

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

F

F

¬
x

¬
x

¬xt

¬x

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

c

c

¬
x

¬
x

¬xt

¬x

¬
x

¬
x

x

xf

0f 0

0f

0

0 0f

¬x

¬xt

0t 0

0t

0

0 0t

1

1

0 0

¬x

¬xt

0t 0

1

1

0 0t

1

1

0 0

c

c

0 0

x

x

1 1

0

0f

1f 1

¬x

¬x

1 1

0

0t

1t 1

1t

1

1 1t

¬x

¬x

1 1

1

1

1 1

1

1

1 1

c

c

1 1

xt

x

x x

0

0

x x

F

F

x x

¬xf

¬x

x x

¬xf

¬x

x x

0

0

x x

1

1

x x

1

1

x x

c

c

x x

T

#t

x x

x

xt

1t 1

0

0

1 1t

¬x

¬xf

1f 1

0

0

1 1f

¬x

¬xf

1f 1

1f

1

1 1f

1

1

1 1

c

c

1 1

x

x

1 1

0

0

1 1

¬x

¬x

1 1

¬x

¬x

1 1

0

0

1 1

1

1f

1f 1

1f

1

1 1f

c

c

1 1

0

0 *

x*

x *

¬x*

¬
x *

0

0

x x

0

0

x x

0

0

x x

¬x*

¬x*

x x

0

0 *

0

0

0 0

0

0

0 0

¬x*

¬x*

0 0

¬x*

¬x*

0 0

0

0

0 0

0

0 *

0

0

¬
x

¬
x

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #
|

@*

|

F

F

0 0#

F

F

1 1#

T

T

1 1#

F

F

1 1#

F

F

1 1#

F

F

1 1#

F

F

1 1#

F

F

0 0#

F

F

0 0#

T

T

1 1#

x*

x

0: **

0

0

0: 0:

0

#f

0:*

0:

¬x*

¬x

1:

0:*

0

0

1: 1:

@

#

T T

@

c

@ T

@

#

T T

@

#

T T

@

#t

T ::

Fig. 16 An example execution of SFS on the seed from Fig. 14.

In this execution, tiles from TFS attach to first assign x0 =

FALSE, x1 = TRUE, x2 = FALSE, and x3 = TRUE. Because this

assignment satisfies :x3 _ :x2 _ x0ð Þ ^ x3 _ x2 _ :x1ð Þ ^
:x2 _ x1 _ x0ð Þ; the black U tile attaches in the northwest corner

Efficient 3-SAT Algorithms in the Tile Assembly Model 227

123

References

Abelson H, Allen D, Coore D, Hanson C, Homsy G, Knight TF Jr,

Nagpal R, Rauch E, Sussman GJ, Weiss R (2000) Amorphous

computing. Commun ACM 43(5):74–82. ISSN 0001-0782. doi:

10.1145/332833.332842

Adleman L (2000) Towards a mathematical theory of self-assembly.

Technical Report 00-722, Department of Computer Science,

University of Southern California, Los Angeles, CA

Adleman L, Cheng Q, Goel A, Huang M-D, Kempe D, de Espanés

PM, Rothemund PWK (May 2002a) Combinatorial optimization

problems in self-assembly. In: Proceedings of the 34th annual

ACM symposium on theory of computing (STOC02), Montreal,

Quebec, Canada, pp 23–32. doi:10.1145/509907.509913

Adleman L, Kari J, Kari L, Reishus D (November 2002b) On the

decidability of self-assembly of infinite ribbons. In: Proceedings

of the 43rd annual IEEE symposium on foundations of computer

science (FOCS02), Ottawa, Ontario, Canada, pp 530–537

0

0

0: 0:

x*

x

1:1 0:

1

1

1:1

1:1

0

0

1:1

1:1

0

0

2:12

2:12

x*

x

0: **

¬x*

¬x

2:12

1:1

1

1

2:12

2:12

0

0

0: 0:

¬x*

¬
x *

x*

x *

x*

x *

0

0

x x

0

0

x x

0

0

x x

¬x*

¬x*

x x

x*

x*

x x

1

1

x x

0

0 *

0

0 *

0

0 *

0

0 *

0

0

x x

1

1

x x

0

0

0 0

0

0

0 0

0

0

0 0

x*

x*

0 0

¬x*

¬x*

0 0

1

1

0 0

1

1

0 0

0

0

0 0

0

0

0 0

x*

x*

0 0

¬x*

¬x*

0 0

1

1

0 0

1

1

0 0

0

0

x x

0

0

x x

¬x*

¬x*

x x

1

1

x x

1

1

x x

1

1 *

1

1 *

0

0

1 1

0

0

1 1

1

1

1 1

¬x*

¬x*

1 1

0

0

0 0

¬x*

¬x*

0 0

1

1

0 0

0

0

¬
x

¬
x

1

1

¬
x

¬
x

1

1

0 0

fft

c

@ 2:12

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

|

c 0100 0 0 01 1 1 1 1cc 000 1 1x x x x x¬x¬xxx0

*

*

*

*

*

*

*

*

*
* *

*

t

¬
x

¬
x

t

ft

¬
x x

*

*

0 0

*

1 1

t

t

0 0

t

t

1 1

ft

fft

¬
x x

ft

ft

0 0

ft

ft

0 0

0

0

@ @1

1

@ @ x

x

@ @c

c
@ @ ¬x

¬x

@ @x

x

@ @x

x

@ @x

x

@ @x

x

@ @ c

c

@ @ 0

0

@ @0

0

@ @0

0

@ @0

0

@ @0

0

@ @ 1

1

@ @ 1

1

@ @1

1

@ @1

1

@ @ 1

1

@ @

¬xt

¬x

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

c

c

¬
x

¬
x

c

c

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1
¬

x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

¬x

¬xt

0t 0

1

1

0 0t

0

0

0 0

x

xf

0f 0

x

xf

0f 0

x

xf

0f 0

x

xf

0f 0

x

xf

0f 0

0f

0

0 0f

0f

0

0 0f

0f

0
0 0f

1

1

0 0

0

0

0 0

1

1

0 0

c

c

0 0

c

c

0 0

c

c

0 0

c

c

0 0

c

c

1 1

c

c

1 1

1

1

0 0f

1

1

0 0f

1

1

0 0

0

0

0 0

c

c

0 0

¬x

¬x

0 0

x

x

0 0

x

x

0 0

x

x

0 0

x

x

0 0

x

x
0 0

c

c

0 0

1

1

0 0

1

1

0 0

0

0

0 0

0

0f

0f 0

0

0f

0f 0

0

0f

0f 0

1

1

0 0f

1

1

0 0f

0f

0

0 0f

0

0

0 0

1

1

0 0

1

1

0 0

¬xt

¬x

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

c

c

¬
x

¬
x

c

c

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

0

0
¬

x

¬
x

0

0

¬
x

¬
x

¬xt

¬x

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

xf

x

¬
x

¬
x

c

c

¬
x

¬
x

c

c

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

1

1

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

0

0

¬
x

¬
x

F

#f

¬
x

¬
x

¬x

¬xt

1t 1

x

xf

1f 1

x

xf

1f 1

x

xf

1f 1

x

xf

1f 1

x

xf

1f 1

1t

1

1 1t

1f

1

1 1f

1f

1
1 1f

0

0

1 1

0

0

1 1

0

0

1 1f

0

0

1f

0

0

1 1f

1

1

1 1

1

1

1 1

1

1

1 1

c

c

1 1

F

F

1 1#
F

F
¬

x

¬
x

¬x

¬x

0 0

1

1t

0t 0

0t

0

0 0t

x

x

0 0

x

x

0 0

x

x

0 0

x

x

0 0

1

1f

0f 0

1

1

0 0f

c

c

0 0

T

#t

¬
x

¬
x

¬x

¬xt

0t 0

x

xf

0f 0

x

xf

0f 0

x

xf

0f 0

x

xf

0f 0

x

xf

0f 0

0

0

0 0

0

0

0

0

0

0 0

1

1

0 0

1

1

0 0

F

F

0 0#

x

x
0 0

1

1f

0f 0

0f

0

0 0f

F

#f

¬
x

¬
x

**

1

1

0t

1

1

0 0f

0f

0

0 0f

0f

0

0f
0f

0

0 0f

F

F

0 0#

1

1

0 0

1

1

0 0

T

T

0 0#

1

1

0f

F

F

0 0#

1

1

0 0

c

c

0 0

¬x

¬x

1 1

1

1

1

T

T

1 1#

x

x

1 1

x

x

1 1

x

x

1 1

x

x
1 1

x

x

1 1

1

1

1 1

1

1

1 1

1

1

1

F

F

1 1#

0

0f
1

0

0f

1f 1

F

F

1 1#

1f

1

1 1f

c

c

1 1

0

0f

1f 1

1f

1

1 1f

¬x*

¬x

0: **

1

1

0:

@

#

T T

@

#t

T ::

@

#

T T

@

#

T T

@

#

T T

@

#

T T

@

#

T T
1

1

¬
x

¬
x

1

1 *

¬x*

¬
x *

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #
@

@
@ #

@

@

@ #
@

@
@ #

@

@

@ #

@

@
@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #
@

@
@ #

@

@
@ #

@

@

@ #

@

@

@ #
@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

c
@ T

c

c

@ @ x

x

@ @x

x

@ @x

x

@ @ 0

0

@ @0

0

@ @ 1

1

@ @ F

F

@ @F

F

@ @F

#f

@ @

@

@

@ #

c

c

@ @ x

x

@ @x

x

@ @x

x

@ @ 0

0

@ @0

0

@ @ 1

1

@ @ F

F

@ @F

F

@ @F

F

@ @

c

c

@ @ x

x

@ @x

x

@ @x

x

@ @ 0

0

@ @0

0

@ @ 1

1

@ @ F

F

@ @F

F

@ @F

F

@ @

c

c

@ @ x

x

@ @x

x

@ @x

x

@ @ 0

0

@ @0

0

@ @ 1

1

@ @ F

F

@ @F

F

@ @F

F

@ @

c

c

@ @ x

x

@ @x

x

@ @x

x

@ @ 0

0

@ @0

0

@ @ 1

1

@ @ F

F

@ @F

F

@ @F

F

@ @

c

c

@ @ x

x

@ @x

x

@ @x

x

@ @ 0

0

@ @0

0

@ @ 1

1

@ @ F

F

@ @F

F

@ @F

F

@ @

c

c

@ @ x

x

@ @x

x

@ @x

x

@ @ 0

0

@ @0

0

@ @ 1

1

@ @ F

F

@ @F

F

@ @F

F

@ @

c

c

@ @ x

x

@ @x

x

@ @x

x

@ @ 0

0

@ @0

0

@ @ 1

1

@ @ F

F

@ @F

F

@ @F

F

@ @

c

c

@ @ x

x

@ @x

x

@ @x

x

@ @ 0

0

@ @0

0

@ @ 1

1

@ @ F

F

@ @F

F

@ @F

F

@ @

c

c

@ @ x

x

@ @x

x

@ @x

x

@ @ 0

0

@ @0

0

@ @ 1

1

@ @ F

F

@ @F

F

@ @F

F

@ @

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@ #

x*

x

0: **

0

0

0: 0:

0

#f

0:*

0:

x*

x

1:

0:*

1

1

1: 1:

0

#f

1:*

1:

x*

x

2:

1:*

0

0

2: 2:

0

#f

3: 2:

@

@

@ #

0

0 *

0

0

0 0

0

0

1 1

0

0

x x

1

1

x x

x*

x*

1 1

x*

x*

x x

1

1 *

x*

x *

x*

x *

x*

x *

0

0 *

0

0 *

0

0 *

0

0 *

0

0

x x

0

0

0 0

x*

x*

x x

x*

x*

x x

x*

x*

0 0

x*

x*

0 0

x*

x*

0 0

x*

x*

0 0

x*

x*

0 0

1

1

x x

1

1

0 0

1

1

0 0

0

0

0 0

0

0

0 0

0

0

1 1

0

0

1 1

0

0

x x

0

0

x x

0

0

x x

0

0

x x

0

0

x x

0

0

0 0

0

0

0 0

0

0

0 0

0

0

0 0

0

0

0 0

0

0

0 0

0

0

x x

0

0

x x

0

0

x x

no
 ti

le
 c

an
 a

tta
ch

Fig. 17 An example execution of SFS on the Boolean formula

x2 _ x1 _ x0ð Þ ^ x3 _ x2 _ :x1ð Þ ^ :x2 _ x1 _ x0ð Þ: This execution

chooses to assign FALSE to x0, x1, and x2 after examining the

eastmost clause. This decision prevents the system from being able to

satisfy the westmost clause, thus halting the assembly and not

allowing the U tile to attach

228 Y. Brun

123

http://dx.doi.org/10.1145/332833.332842
http://dx.doi.org/10.1145/509907.509913

Aggarwal G, Cheng Q, Goldwasser MH, Kao M-Y, de Espanés PM,

Schweller RT (2005) Complexities for generalized models of

self-assembly. SIAM J Comput 34(6):1493–1515. doi:10.1137/

S0097539704445202

Barish R, Rothemund PWK, Winfree E (2005) Two computational

primitives for algorithmic self-assembly: copying and counting.

Nano Lett 5(12):2586–2592. doi:10.1021/nl052038l

Barish RD, Schulman R, Rothemund PWK, Winfree E (2009) An

information-bearing seed for nucleating algorithmic self-assem-

bly. Proc Natl Acad Sci USA. doi:10.1073/pnas.0808736106

Berger R (1966) The undecidability of the domino problem. Number

66 in Memoirs Series. American Mathematical Society, Provi-

dence, RI, USA

Braich R, Chelyapov N, Johnson CR, Rothemund PWK, Adleman L

(2002) Solution of a 20-variable 3-SAT problem on a DNA

computer. Science 296(5567):499–502. doi:10.1126/science.

1069528

Brun Y (2007) Arithmetic computation in the tile assembly model:

Addition and multiplication. Theor Comput Sci 378(1):17–31.

ISSN 0304-3975. doi:10.1016/j.tcs.2006.10.025

Brun Y (2008a) Nondeterministic polynomial time factoring in the

tile assembly model. Theor Comput Sci 395(1):3–23. ISSN

0304-3975. doi:10.1016/j.tcs.2007.07.051

Brun Y (2008b) Solving NP-complete problems in the tile assembly

model. Theor Comput Sci 395(1):31–46. ISSN 0304-3975. doi:

10.1016/j.tcs.2007.07.052

Brun Y (2008c) Solving satisfiability in the tile assembly model with

a constant-size tileset. J Algorithm 63(4):151–166. ISSN

0196-6774. doi:10.1016/j.jalgor.2008.07.002

Brun Y, Medvidovic N (2008) Preserving privacy in distributed

computation via self-assembly. Technical Report USC-CSSE-

2008-819, University of Southern California, Center for Soft-

ware Engineering

Brun Y, Reishus D (2009) Path finding in the tile assembly model.

Theor Comput Sci 410(15):1461–1472. ISSN 0304-3975. doi:

10.1016/j.tcs.2008.12.008

Chen K, Ramachandran V (2001) A space-efficient randomized DNA

algorithm for k-SAT. DNA Comput LNCS 2054:199–208. doi:

10.1007/3-540-44992-2_13

Demaine E, Demaine M, Fekete S, Ishaque M, Rafalin E, Schweller R

(2008) Staged self-assembly: Nanomanufacture of arbitrary

shapes with o(1) glues. In: Max G, Hao Y (eds) DNA computing,

vol 4848. Berlin: Springer, pp 1–14. doi:10.1007/978-3-

540-77962-9_1

Doty D, Patitz MJ, Reishus D, Schweller, RT, Summers SM (2010)

Strong fault-tolerance for self-assembly with fuzzy temperature.

In: Proceedings of the 51st annual IEEE symposium on

foundations of computer science (FOCS10), pp 417–426. doi:

10.1109/FOCS.2010.47

Fujibayashi K, Zhang DY, Winfree E, Murata S (2009) Error

suppression mechanisms for DNA tile self-assembly and their

simulation. Nat Comput 8:589–612. ISSN 1567-7818. doi:

10.1007/s11047-008-9093-9

Kao M-Y, Schweller R (January 2006) Reducing tile complexity for

self-assembly through temperature programming. In: Proceed-

ings of the 17th annual ACM-SIAM symposium on discrete

algorithms (SODA06), Miami, FL, USA, pp 571–580. doi:

10.1145/1109557.1109620

Kullmann O (1997) Worst-case analysis, 3-SAT decision and lower

bounds: approaches for improved SAT algorithms. DIMACS Ser

Discret Math Theor Comput Sci 35:261–313

Kullmann O (1999) New methods for 3-SAT decisions and worst-

case analysis. Theor Comput Sci 223:1–72. doi:10.1016/

S0304-3975(98)00017-6

Lagoudakis MG, LaBean TH (1999) 2D DNA self-assembly for

satisfiability. DIMACS Ser Discret Math Theor Comput Sci

54:141–154

McLurkin J, Smith J, Frankel J, Sotkowitz D, Blau D, Schmidt B

(March 2006) Speaking swarmish: human-robot interface design

for large swarms of autonomous mobile robots. In Proceedings

of the AAAI spring symposium, Stanford, CA, USA

Monien B, Speckenmeyer E (1985) Solving satisfiability in less than

2n steps. Discrete Appl Math 10(3):287–296. doi:10.1016/0166-

218X(85)90050-2

Paturi R, Pudlák P, Zane F (1997) Satisfiability coding lemma. In:

Proceedings of the 38th annual symposium on foundations of

computer science (FOCS97), Miami Beach, FL, USA,

pp 566–574. ISBN 0-8186-8197-7. doi:10.1109/SFCS.1997.

646146

Robinson RM (1971) Undecidability and nonperiodicity for tilings of

the plane. Invent Math 12(3):177–209

Rothemund PWK, Winfree E (May 2000) The program-size com-

plexity of self-assembled squares. In: Proceedings of the 32nd

annual ACM symposium on theory of computing (STOC00),

Portland, OR, USA, pp 459–468. doi:10.1145/335305.335358

Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-

assembly of DNA Sierpinski triangles. PLoS Biol 2(12):e424.

doi:10.1371/journal.pbio.0020424

Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, Yokomori

T (2000) Molecular computation by DNA hairpin formation.

Science, 288(5469):1223–1226. doi:10.1126/science.288.5469.

1223

Schiermeyer I (1993) Solving 3-satisfiability in less than 1.579n steps.

Comput Sci Logic 702:379–394

Sipser M (1997) Introduction to the theory of computation. PWS

Publishing Company

Soloveichik D, Winfree E (2007) Complexity of self-assembled

shapes. SIAM J Comput 36(6):1544–1569. doi:10.1137/S009753

9704446712

Wang H (1961) Proving theorems by pattern recognition. II. Bell Syst

Tech J 40:1–42

Wang H (1962) An unsolvable problem on dominoes. Technical

Report BL30 (II-15), Harvard Computation Laboratory

Winfree E (1998a) Simulations of computing by self-assembly of

DNA. Technical Report CS-TR:1998:22. California Institute of

Technology, Pasadena, CA

Winfree E (1998b) Algorithmic self-assembly of DNA. PhD thesis,

California Institute of Technology, Pasadena, CA, USA, June

Winfree E, Bekbolatov R (June 2003) Proofreading tile sets: error

correction for algorithmic self-assembly. In: Proceedings of the

43rd annual IEEE symposium on foundations of computer

science (FOCS02), vol 2943, pp 126–144, Madison, WI, USA.

doi:10.1007/978-3-540-24628-2_13

Winfree E, Yang X, Seeman NC (1998) Universal computation via

self-assembly of DNA: some theory and experiments. DNA

Based Computers II, pp 191–213

Woeginger GJ (2003) Exact algorithms for NP-hard problems: a

survey. Combinatorial Optimization - Eureka, You Shrink!

2570:185–207. doi:10.1007/3-540-36478-1_17

Yin P, Hariadi RF, Sahu S, Choi HMT, Park SH LaBean TH, Reif JH

(2008) Programming DNA tube circumferences. Science

321(5890):824–826. doi:10.1126/science.1157312

Efficient 3-SAT Algorithms in the Tile Assembly Model 229

123

http://dx.doi.org/10.1137/S0097539704445202
http://dx.doi.org/10.1137/S0097539704445202
http://dx.doi.org/10.1021/nl052038l
http://dx.doi.org/10.1073/pnas.0808736106
http://dx.doi.org/10.1126/science.1069528
http://dx.doi.org/10.1126/science.1069528
http://dx.doi.org/10.1016/j.tcs.2006.10.025
http://dx.doi.org/10.1016/j.tcs.2007.07.051
http://dx.doi.org/10.1016/j.tcs.2007.07.052
http://dx.doi.org/10.1016/j.jalgor.2008.07.002
http://dx.doi.org/10.1016/j.tcs.2008.12.008
http://dx.doi.org/10.1007/3-540-44992-2_13
http://dx.doi.org/10.1007/978-3-540-77962-9_1
http://dx.doi.org/10.1007/978-3-540-77962-9_1
http://dx.doi.org/10.1109/FOCS.2010.47
http://dx.doi.org/10.1007/s11047-008-9093-9
http://dx.doi.org/10.1145/1109557.1109620
http://dx.doi.org/10.1016/S0304-3975(98)00017-6
http://dx.doi.org/10.1016/S0304-3975(98)00017-6
http://dx.doi.org/10.1016/0166-218X(85)90050-2
http://dx.doi.org/10.1016/0166-218X(85)90050-2
http://dx.doi.org/10.1109/SFCS.1997.646146
http://dx.doi.org/10.1109/SFCS.1997.646146
http://dx.doi.org/10.1145/335305.335358
http://dx.doi.org/10.1371/journal.pbio.0020424
http://dx.doi.org/10.1126/science.288.5469.1223
http://dx.doi.org/10.1126/science.288.5469.1223
http://dx.doi.org/10.1137/S0097539704446712
http://dx.doi.org/10.1137/S0097539704446712
http://dx.doi.org/10.1007/978-3-540-24628-2_13
http://dx.doi.org/10.1007/3-540-36478-1_17
http://dx.doi.org/10.1126/science.1157312

	Efficient 3-SAT algorithms in the tile assembly model
	Abstract
	Introduction
	Self-assembly and tiles
	Efficient algorithms for 3-SAT

	Tile assembly model
	Tile assembly model definitions
	Computation in the tile assembly model

	Solving 3-SAT efficiently with tiles
	Notations and definitions
	Clause examination (region II)
	Assignment selection (region III)
	Clause rotation (region IV)
	Assignment preparation (region V)
	Formula simplification (region VI)
	Solving 3-SAT

	Contributions
	References

