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Abstract

Typically viewed as a deterministic model of spatial computing, cellu-
lar automata are here considered as a collective system subject to the noise
inherent to natural computing. The classical updating scheme is replaced
by stochastic versions which either randomly update cells or disrupt the
cell-to-cell transmission of information. We then use the novel updating
schemes to probe the behaviour of Elementary Cellular Automata, and
observe a wide variety of results. We study these behaviours in the scope
of macroscopic statistical phenomena and microscopic analysis. Finally,
we discuss the possibility to use updating schemes to probe the robustness
of complex systems.

Keywords: Asynchronous cellular automata, robustness, discrete dy-
namical systems, phase transitions, directed percolation.

1 Introduction

Cellular automata (CA) are known as a model of computation based on the
parallel evolution of cells according to their neighbourhood state. Originating
from the study of self-replicating systems as introduced by von Neumann (1966),
they are considered as an alternative to sequential computing models. Indeed,
their spatially-extended and yet simple structure make them a suitable model
for parallel computing and simulations of natural phenomena.

In their original form they are deterministic and synchronously evolved, that
is, all components of the system are updated simultaneously. However, as nat-
ural computing supposes the use of non-classical methods involving a number
of interacting components, the determinism of the model is somewhat incom-
patible with the presence of noise. This raises the question of the robustness of
cellular automata, that is, the stability of the behaviour despite external distur-
bances, such as an asynchronous update or errors in transitions or interactions
between cells.
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This question was initially discussed by Ingerson and Buvel (1984) who
“wanted to estimate how much of the behaviour of cellular automata comes
from synchronous modeling and how much is intrinsic to the iteration pro-
cess”. For that purpose, they questioned the perfect synchrony hypothesis by
randomising the transition function of Elementary Cellular Automata, and ob-
served behavioural changes. From their observations they concluded that the
updating scheme plays a fundamental role in the behaviour of the system. Since
then, authors have tackled the question of whether cellular automata are robust
to non-synchronous updating, either by keeping the same individual rule or
adding adapted constructs (Peper et al. 2002). For instance, Grilo and Correia
(2011) investigated behaviour changes for asynchronous symmetric 2-player evo-
lutionary games, such as the Prisoner’s Dilemma. Similarly, models of cellular
automata have been studied under asynchronous updating, such as Elementary
Cellular Automata (Fatès and Morvan 2005, Regnault 2008) or the Game of
Life (Blok and Bergersen 1999, Fatès 2010) and revealed qualitatively different
behaviours.

The definitions of asynchronous cellular automata used so far have mainly
focused on either randomising the transition function or updating cells sequen-
tially (Bandini et al. 2010a). But as asynchronism is first defined as a negation
of synchronicity, several interpretations remain possible. Our approach, which
shares the main ideas from the fields of spatially-extended computing (Gouäıch
et al. 2005, Ackley and Williams 2011) and autonomous agents (Bandini et al.
2010b), intends to consider cellular automata as a collective system where cells
are autonomous components and their interactions are subject to perturbations.
Instead of questioning whether cells are updated at each time step, we repre-
sent explicitly the perception by the cells of their neighbourhood, and consider
failures in the cell-to-cell transmission of information.

Questioning the perfect synchrony hypothesis. Let us first consider an
illustrative example: two planes are flying in opposing directions and at suc-
cessive time steps must decide to go up or down in order to avoid collision.
The decision function, the same for both planes, is deterministic: if the oppos-
ing plane goes down, then go up and vice versa. Here three types of updating
schemes are considered (see Fig. 1):

(a) The perfect synchrony assumes that planes update their state simultane-
ously at each time step. An initial configuration with both planes going
in the same direction inevitably results in a periodic cycle and a crash.

(b) However, when planes update their state with a given probability, the sys-
tem finds a stable situation after a few time steps. This updating scheme
is called asynchronous update.

(c) This time, planes do update their state at the same time, but the updated
state of one plane is not always transmitted to the other. When one plane
fails to transmit its new state, the system stabilises. We call this novel
type of updating scheme asynchronous information transmission.
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Figure 1: Different updating schemes applied to a rudimentary collision avoid-
ance system. Black planes represent actual states, and in the case (c), white
planes denotes how they are perceived by the opposite plane.

As one can deduce from this simple example, both asynchronous updating
schemes alter the long-term behaviour of the system, as they directly prevent
the stability of the crash scenario of the synchronous case. However, their
intrinsic difference also suggests that there may exist models which would react
differently to each of them. We intend to use these updating schemes to probe
cellular automata, that is, to study how each of the different updating schemes
influences the behaviour of a set of cellular automata rules.

Asynchronous information transmission in cellular automata. To study
the effects of asynchronous information transmission on cellular automata, we
propose a novel updating scheme, extending two features of the classical defi-
nition: (1) we extend the state space to take into account the internal state of
the cell as well as how it is perceived by the neighbourhood and (2) we describe
the updating process of the system in the frame of a cellular cycle, that is, the
sequential application of two steps, (a) the local computation of the new state,
and (b) the transmission of the updated state to the cells of the neighbourhood.

Extending a previous work (Bouré et al. 2011), we present a more general
definition of asynchronous information transmission and a more complete study
of Elementary Cellular Automata. In Sec. 2 we give a general formal defini-
tion of asynchronous information transmission for cellular automata. Then, an
overview of our observations on asynchronous Elementary Cellular Automata
is given in Sec. 3 and in Sec. 4, we present an analysis of phase transitions.
Section 5 presents two case studies of a microscopic approach to the study of
the effects on two models, which present different reaction depending on the
asynchronism. Finally, we discuss our results in Sec. 6.
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2 Asynchronous Cellular Automata

2.1 Definition of Cellular Automata

A cellular automaton is a discrete dynamical system defined by (L, Q,N , f)
where :

• L ⊂ Zd is the cellular space, where elements of L represent cells.

• Q is a finite set of states.

• N ⊂ L is a finite set of vectors called the neighbourhood, which associates
to a cell the set of its neighbouring cells. N and L are such that for all
c ∈ L and for all n ∈ N , the neighbour c+ n is in L.

• f is the local transition rule, which defines the next state of a cell according
to the state of this cell and the ones of its neighbours.

A configuration xt represents the state of the automaton at time t; it is defined
as a function xt : L → Q which maps each cell to a state. Classically, cellular
automata are synchronously updated, meaning that at each time the local tran-
sition rule is applied simultaneously to all cells. The global transition function
is therefore defined as xt+1 = F (xt), so that, for N = {n1, ..., nk}:

∀c ∈ L, xt+1(c) = f
(
xt(c), xt(c+ n1), ..., xt(c+ nk)

)
.

Without loss of generality, we assume that the neighbourhood N does not con-
tain the cell itself. This hypothesis is necessary to explicitly represent the flow
of information between a cell and its neighbours. Note that this does not re-
strict the expressiveness of f since the current state of a cell xt(c) is always a
parameter of f , possibly not taken into account in the transition function.

To give a proper definition of asynchronous information transmission, we
need to extend the classical framework of cellular automata.

1. The cell update is represented by a two-step cell cycle (see Fig. 2):

• the state update step, where a cell changes its state according to the
local transition function and its perception of the neighbourhood.

• the information transmission step, where the cell transmits the up-
dated state to its neighbours.

2. The state space Q must be extended to distinguish:

• the eigenstate, that is, the actual, internal state of a cell in Q,

• a vector of m observation states, that is, m elements of Q that rep-
resent how a cell is perceived by its neighbours.

In the frame of this extension of cellular automata, we define three types of
updating schemes (see Fig. 3 for schematic representations):
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Figure 2: Left: schematic representation of the classical update. Right: repre-
sentation of the update as a cellular cycle, for a cell with two neighbours. A
triplet {yL, y, yR} represents a cell with eigenstate y, and its observable states,
for each of its neighbours (yL for left cell and yR for right). The classical
transition corresponds to y′ ← f(x, y, z). However, for the cellular cycle, the
transition is divided into the update step y′ ← f(xR, y, zL) and the transmission
step, which performs y′L ← y′ and y′R ← y′.

α-synchronism (m = 0): at each time step, each cell is updated with a fixed
probability α, or else left unchanged (no representation of perception).

β-synchronism (m = 1): each cell is updated at each time step, but the trans-
mission of the new state to the whole neighbourhood is realized with a
probability β.

γ-synchronism (m = k): each cell is updated at each time step, but the trans-
mission to each neighbour is realized independently with a probability γ.

As a result, perturbations consist in applying one of the steps of the cell
cycle with a probability defined as the synchrony rate. Remark that for the
sake of simplicity, α, β and γ denote both the type of asynchronism and the
associated synchrony rates.

2.2 Formal definition of the updating schemes

α-synchronism. We introduce a selection function ∆α : N → P(L) which
gives for time t the subset of cells to be updated, where each cell has a prob-
ability α to be selected. Note that when α = 1 the updating is fully syn-
chronous and the system is deterministic. The global transition function be-
comes ∀t ∈ N, ∀c ∈ L, N = {n1, ..., nk}:

F∆(xt(c)) =

{
f(xt(c), xt(c+ n1), ..., xt(c+ nk)) if c ∈ ∆(t)

xt(c) otherwise.

By contrast with asynchronous updating, asynchronous information trans-
mission aims at modelling the disruption of the exchange of information about
states between cells. We now give a framework for this new type of asyn-
chronism, modifying the classical definition of cellular automata with adequate
extensions.
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Figure 3: Example of the time cycle for a 3-cell sample for three perturbations
of the updating scheme: α-synchronous (left), β-synchronous (middle) and γ-
synchronous (right) (0 is represented in white, 1 in gray). The applied rule is
ECA 50 (see Sec. 3).

Consider a CA defined by (L, Q,N , f). First, the state space Q is extended
to Q′ = Q × Qm in order to differentiate for a cell configuration xt(c), its
eigenstate et(c) ∈ Q and a vector of m observation states ot(c) ∈ Qm. Secondly,
the transition function f is replaced by f ′ = ftr◦fu, that is, two functions applied
sequentially to represent the actual update and the transmission of the state:

• fu : Q′k+1 → Q′ is the update function; it computes the new eigenstate of
a cell based on its eigenstate and the observation state of the neighbours,
leaving the observation states unchanged:

fu

((
e
o

)
,

(
.

o1

)
, · · · ,

(
.

ok

))
=

(
φ(e,o1, · · · ,ok)

o

)
(1)

where φ : Q×Q′k → Q computes the new eigenstate based on the re-
sult of the local transition function f and the observation states for each
neighbour.

• ftr : Q′ → Q′ is the transmission function; it carries out the “propagation”
of the eigenstate et(c) to the neighbourhood: this operation consists of
replacing the values of observation states ot(c) of the cell by the eigenstate.
To this end, we introduce a set of random variables (θt,ci )t∈N,c∈L,i∈[[1,m]]

which represent the atomic transmissions of the eigenstate et(c) to the i-th
element of ot(c), such that:

∀t ∈ N, ∀c ∈ L, ∀i ∈ [[1,m]], θt,ci (e, o) =

{
e with a probability P ,

o with a probability 1− P ,
(2)

where P is the synchrony rate corresponding to the asynchronisms (α, β, γ).
The transmission function ftr is thus defined, for the configuration (e,o)
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of a cell c at time t, as a stochastic function such that:

f t,ctr

(
e
o

)
=


e

θt,c1 (e, o1)
...

θt,cm (e, om)

 . (3)

We now detail the two implementations of this definition:

β-synchronism. This asynchronism consists in considering perturbations as
disruptions of the emission of the eigenstate by a cell. We represent the ob-
servation state by a single element of Q (m = 1), which is perceived by all
neighbouring cells:

• the state of a cell, for a given configuration xt, is given by xt(c) =
(et(c),ot(c)), where ot(c) ∈ Q .

• φ(e, o1, · · · , ok) = f(e, o1, · · · , ok).

γ-synchronism. This asynchronism consists in considering the disruption of
the transmission of a cell’s eigenstate to each neighbour independently. As a
consequence, the vector of observation states associates an element of Q for each
element of the neighbourhood (m = k):

• the state of a cell, for a given configuration xt, is given by xt(c) =
(et(c),ot(c)), where ot(c) ∈ Qk.

• The transition function φ is given by:

φ(e,o1, · · · ,ok) = φ

e,
 o1,1

...
o1,k

 , · · · ,

 ok,1
...

ok,k




= f(e, o1,1, · · · , ok,k),

where oi,i(c) corresponds to the independent transmitted state to cell c
from its i-th neighbour.

As we defined them, β- and γ-synchronism differ only in the representation of
the observation states. Readers should note that, like α-synchronism, β- and
γ-synchronism can be understood as classical probabilistic cellular automata
with an extended state space (Bouré et al. 2011).

Let us now observe how these updating schemes affect the behaviours of
cellular automata using a well-known set of rules.
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3 Preliminary observations

We now apply β- and γ-synchronism to one of the simplest classes of cellu-
lar automata, the Elementary Cellular Automata, and compare the resulting
behaviours1 to the dynamics of α-synchronism.

Elementary Cellular Automata (ECA). An ECA is a one-dimensional
binary cellular automaton with nearest-cell neighbourhood. It is defined with
(L,N , {0, 1} , f) where:

• L = Z/LZ is a 1-dimensional ring of length L,

• N = {−1,+1}, i.e. the left and right neighbours,

• the local transition function f : Q3 → Q.

It is common to designate each ECA by the decimal code W = f(0, 0, 0) · 20 +
f(0, 0, 1) · 21 + ... + f(1, 1, 1) · 27. Through the use of left/right reflexion and
0/1 complementarity, it is possible to narrow down the study of the ECA space
to 88 classes, each represented by the rule of smallest number.

In the following, initial conditions are constructed by setting the value of the
eigenstates randomly and uniformly in {0, 1}. As we consider the disruption of
information transmission as a perturbation, we set the values of the observable
states equal to the eigenstate, thus assuming that no error exists at initial time.

Experimental protocol. It is well known that the classification of ECA rules
is a difficult problem, due to the richness and the complexity of the encountered
behaviours (see e.g. Wolfram classes in (Culik II and Yu 1988)). Similarly,
studies on α-synchronism have suggested that there is no straightforward cor-
relation between Wolfram classes and their robustness to α-synchronism (see
Fatès 2009). As β- and γ-synchronism define new updating mechanisms, they
raise the question of whether they have the same effects than α-synchronism.
As an analytical prediction of behaviour is a difficult problem (Fukś and Skelton
2012), we first decide to probe the entire ECA rule space experimentally2.

In order to facilitate the comparison of the effects between different asynchro-
nism, we will classify ECA rules according to their response to asynchronism,
that is, an observation of the behaviour as a function of the perturbation ap-
plied. To estimate the response of ECA, we here use two methods (see Fig. 4
for visualisations):

1. We visually compare the space-time diagrams obtained by displaying the
values of eigenstates over a few time steps. This approach provides a good
idea on the changes of behaviour, but cannot hold as a formal classification
criterion.

1Because of the proximity of their definitions, the effects of β- and γ-synchronism on CA
behaviours are expected to be similar in most cases. Therefore γ-synchronism will only be
mentioned when a difference with β-synchronism is observed.

2The complete set of results can be found at: http://www.loria.fr/~boure/eca.
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Figure 4: A sample of the observations made on ECA rules on asynchronous
updating schemes. The plot show the profile of the density parameter as a func-
tion of the synchrony rate (black line for α, red/dark gray for β, and green/light
gray line for γ). All diagrams start from the same initial configuration. Time
goes from bottom to top.
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Figure 5: Samples of space-time diagrams of ECA 50 for different synchrony
rates and different types of asynchronism, starting from the same initial config-
uration.

2. We quantify the behaviour using an order parameter, the density, defined
as the ratio of cells with eigenstate 1. We give an estimation of the asymp-
totic density, by letting a system of size L = 2000 evolve for 5000 steps,
and then averaging the parameter value for 100 steps.

Results. For the vast majority of rules, neither the space-time diagram nor the
density profile allow to qualify any change of behaviour between α-synchronism
and the two other types of asynchronism. However, some rules show remarkable
changes, as illustrated by the examples of Fig. 4:

• The space-time diagrams of rule ECA 51 (NOT rule) shows a trivial
example of a qualitative difference between α- and β-synchronism. Indeed,
as the transition function does not actually depend on the state of the
neighbourhood, ECA 51 is perfectly robust to asynchronous information
transmission.

• For rules like ECA 51 and ECA 57, the initial value of the density pa-
rameter is conserved for all values of the synchrony rate. However, this
observation is not representative of the behaviour as a quick comparison
of their space-time diagrams reveals that it is radically different.

• For rules with a behaviour similar to ECA 45, the density shows a slight
difference between α-, β- and γ-synchronism.

• Finally, some rules show a discontinuity in the plot profile of the density,
such as for ECA 6, 50, 58, suggesting that a qualitative change of be-
haviour occurs for a critical value of the synchrony rate. This change is
confirmed by the observation of the space-time diagrams (see Fig. 5).

In Tab. 1, we collect rules according to the type of response obtained for the
density parameter and divide them into three categories: (a) a brutal change of
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Table 1: Classification of the minimal ECA per observed difference of behaviour,
using the density parameter.

(a) Discontinuity 6, 18, 26, 38, 50, 58, 106, 134, 146
(b) Other different
response

3, 4, 9, 12, 19, 22, 33, 35, 36, 44, 45, 46, 54, 62,
72, 76, 104, 108, 110, 122, 132, 152, 164, 172

(c) No observable
difference

0, 1, 2, 5, 7, 8, 10, 11, 13, 14, 15, 23, 24, 25, 27,
28, 29, 30, 32, 34, 37, 40, 41, 42, 43, 51, 56, 57, 60,
73, 74, 77, 78, 90, 94, 105, 126, 128, 130, 136, 138,
140, 142, 150, 154, 156, 160, 162, 168, 170, 178,
184, 200, 204, 232

behaviour occurs for at least one of the asynchronisms, (b) a difference of level
or slope can be observed and (c) no difference can be observed. The observation
of a qualitative change of behaviour is a strong evidence of non-robustness,
and conveniently, it is quantifiable. To clarify further how updating schemes
affects cellular automata, we choose to focus on this category and study these
discontinuities in the context of statistical physics.

4 Study of phase transitions

The occurrence of phase transitions is probably one of the most remarkable
phenomena that arises in asynchronous cellular automata: in such models, there
exists a non-trivial value of the synchrony rate, the critical threshold, which
separates two distinct “phases”: a passive phase for which the system converges
to an homogeneous fixed point of 0s, and an active phase where the system the
system does not converge to a fixed point but nevertheless oscillates around a
fixed density. In our case, different discontinuities appear depending upon the
updating scheme used:

(a) for the rules ECA 18, 26, 50, 106, 146, a phase transition occurs for all
three types of asynchronism,

(b) for the rules ECA 6, 38, 134, a phase transitions is observed only for
α-synchronism,

(c) a phase transition can be observed for α- and β-synchronous ECA 58, but
not for γ-synchronism.

A first observation is that all these rules show a discontinuity for α-synchronism,
but not necessarily for the two others. For the α-synchronous case, these abrupt
changes were identified by Fatès (2009) as phase transitions, which belong to
the directed percolation (DP) universality class. This means that these models
follow the same characteristic power laws at criticality (see Hinrichsen 2000).
These rules were then classified into two categories3:

3For the sake of conciseness, we choose to put the third class DP2 aside, as it displays a
phase transition in ECA 178, but for an order parameter different than density.
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Figure 6: Phase transition analysis for β-synchronous ECA 50 on a log-log plot.
The straight line follows a power law f(t) = K × t−δ with the critical exponent
δ = 0.1595. Measures are averaged over 32 automata of size 10000.

• the DPhi class comprises all ECA with a “positive” phase transition: the
active phase occurs for high values of the synchrony rate, and the passive
phases for lower values. This class is made of ECA 18, 26, 50, 58, 106,
146.

• the DPlow class gathers ECA with a “negative” phase transition: active
and passive phases are reversed in order. It is made of ECA 6, 38, 134.

The existence of a correlation between these classes and the rules’ response in
β-synchronism is an interesting question, which remains as an open problem.

Quantification of the critical behaviour. Because all drastic changes in
β-synchronism also belong to the DPhi class, we conjectured that all observed
discontinuities are caused by phase transitions which belong to the directed per-
colation universality class. To verify this hypothesis for β- and γ-synchronism,
we reused the same experimental protocol described by Fatès (2009) for α-
synchronism:

1. We fix the synchrony rate, start from a random initial configuration and
let it evolve for a given number of steps.

2. We monitor the evolution of the density for a long simulation time until
we observe a sub-critical or super-critical behavior. In a log-log plot such
as Fig. 6, a concave curve occurs for the passive phase and a convex curve
for the active phase. As we expect the order parameter to follow a power
law K.t−δ near criticality, the curve at critical value should appear as a
straight line of slope −δ.

3. We repeat the experiment with a value of the synchrony rate closer to the
critical point until a satisfactory precision is reached.

Figure 6 presents the results of this experiment for β-synchronous ECA 50. For
this particular example, the asymptotic behaviour at critical threshold follows
a power law K.t−δ with δ ∼ 0.1595, which is the characteristic exponent for the
directed percolation universality class in 1 + 1 dimensions (Hinrichsen 2000).
Using successive experiments with different synchrony rates, we measured the

12



Table 2: Measurements of the critical synchrony rates for different rules and
asynchronisms.

Class ECA αc βc γc

DPhi

18 0.714 0.749 0.655
26 0.475 0.526 0.406
50 0.628 0.601 0.487
58 0.340 0.289 –
106 0.815 0.848 0.813
146 0.675 0.732 0.635

DPlow

6 0.283 – –
38 0.041 – –
134 0.082 – –

critical value for each asynchronism with a precision of 10−3. Table 2 lists
the values of the critical synchrony rates; all measured values of the critical
exponent δ show good evidence of directed percolation.

To sum up, these experiments reveal a strong connection between α- and
β-synchronism for the DPhi class, which contrasts with the results obtained for
the DPlow class and the exception of γ-synchronous ECA 58. This is already an
interesting result, as we have identified phenomena that are exclusive to each
asynchronism. A potential use of these differences is that they can be used as a
“signature” of the updating scheme. In order to understand the origin of these
differences, we now propose to study these models at a lower level.

5 Microscopic approach

In this section, we focus on the study of the local evolution of cells under α-
and β-synchronous updating schemes, using three examples that represent dif-
ferent responses to asynchronism: ECA 50 for the DPhi class, ECA 6 for the
DPlow class, and ECA 58 as an exception to the DPhi class. Note that these
approaches are not aimed at giving a full proof of the observed behaviour, but
rather to give us an insight on how different types of asynchronism may produce
different responses.

5.1 First case study: ECA 50

ECA 50 is defined by the following transition table:

000 001 010 011 100 101 110 111

0 1 0 0 1 1 0 0

The study of this rule reveals a paradoxal response to α- and β-synchronism:
if the evolution of the density parameter suggests that directed percolation
phenomena occurs in both cases, a quick inspection of the space-time diagrams
over a few time steps clearly shows a radical difference in the local behaviours
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Figure 7: Patterns appearing in space-time diagrams of β-synchronous ECA 50.

(see Fig. 4 page 9). This suggests that the local behaviour differs from one
asynchronism to the other.

Describing patterns. By looking at the β-synchronous space-time diagrams,
we perceive a kind of periodicity in the organisation of states that does not ap-
pear for α-synchronism. In particular, configurations divide up in large patterns
of cells with consecutive or alternated eigenstates 0 and 1, which appear or dis-
appear with random events:

• The checkerboard region are defined as a group of spatially alternated
eigenstates. Under a synchronous scheme they will flip all their states,
thus drawing a “checkerboard” over a few time steps (see Fig. 7-a).

• The particles separate checkerboard regions; they are formed by pairs
of cells with identical eigenstates (i.e. 00 and 11), which both flip when
updated (see Fig. 7-a).

• Occasionally, random anomalies appear, that is, groups of three or more
cells with eigenstates 0 that perturbate the regularity of the two previous
patterns. Typically, this results in the appearance of “white holes” in the
patterns above (Fig. 7-b). When these anomalies include particles, they
can displace them spatially (Fig. 7-c) or even annihilate them by pairs
(Fig. 7-d). Remark that as the synchrony rate β gets smaller, the size of
anomalies and their frequency of appearance increase.

Consequence on the global behaviour. As a result of the observed micro-
scopic behaviour, we can deduce that the asymptotic behaviour will converge
to one of the following configurations:

• if β is below the critical value, anomalies take over other patterns until
they cover the entire lattice. This scenario corresponds to the convergent
phase as observed by the density parameter in the previous section.

• if β is high enough and strictly inferior to 1, anomalies continue to appear
but checkerboard regions will “repair” them in a few time steps. Instead,
particles follow a spatial non-biased random walk until they meet and
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synchronous α = 0.3 α = 0.5 β = 0.3 β = 0.5

Figure 8: Samples of space-time diagrams of ECA 6 under different values of
synchrony rates α and β. Note the active phase occurring for α = 0.3.

annihilate. After long simulation times, the checkerboard pattern will
cover the entire lattice.

To sum up, this behaviour, derived from the stability of checkerboard pat-
terns under β-synchronism, is a novel property exclusively observed for this
updating scheme, and suggests that the behaviour of ECA 50 is indeed quali-
tatively different in α- and β-synchronism.

5.2 Second case study: ECA 6

ECA 6 shows a peculiar behaviour under different asynchronisms: a phase
transition occurs for the α-synchronous version but it is not observed for β-
synchronism (see Fig. 8). The transition table of the rule is:

000 001 010 011 100 101 110 111

0 1 1 0 0 0 0 0

In order to understand the mechanism involved in the dynamics of this rule, one
needs to analyse the evolution of cells states at a microscopic level. To simplify
the description of configurations of ECA 6, we propose to consider branches as
contiguous groups of 1-cells surrounded by 0-cells. Under synchronous updating,
these branches shift regularly but when noise is introduced, variations can occur
in the form of delays, creation, destruction of branches.

Behaviour in α-synchronism. In order to describe the qualitative behaviour
of α-synchronous ECA 6, we analyse two “events”: the destruction or the cre-
ation of a branch, and determine which event is more likely to occur depending
on the value of the synchrony rate α. Two mechanisms need to be highlighted:

1. We first consider the case of a single branch and start to build the graph
of the possible evolutions, with their associated probabilities (see Fig. 9).
We see that for all values of the synchrony rate α, the creation of a new
branch (“birth”) is more probable than its destruction (“death”).
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Figure 9: A sample of transition graph which illustrates the possible evolutions
from a single branch in α-synchronous ECA 6. Here, by considering only groups
of four cells, we find that the probability of “Birth” events is higher than “Death”
events.

2. On contrary, when two branches are separated by only one cell, the right
branch can be destroyed (see the synchronous case of Fig. 10). As the
distance between branches varies due to random updates, multiple possi-
bilities to destruct branches exist through this process.

For values of the synchrony rate α close to 1, the probabilities to create or de-
stroy branches are almost equal. On the other hand, the probability to destruct
branches through their interactions is high as, for high α, this phenomenon hap-
pens almost surely as soon as the distance between branches becomes critical.
However, for low values of α, the opposite behaviour occurs: as bigger clus-
ters of continuous 1s appear more often, it becomes more probable to create
new branches than to destroy them, thus overcoming the effect of interactions
branches. This behaviour is confirmed by experiments, for which the behaviour
remains active and the density parameter converges to a fixed value (see Fig. 4
page 9).

To sum up, studying the local dynamics of ECA 6 allows us to understand
better why two different phases may occur for different values of α. We now
intend to consider the β-synchronous case in order to investigate why the phase
transition does not exist.

Novel mechanisms under β-synchronism. Because of the extension of the
state space, to study the dynamics of β-synchronous updating using the previous
approach is difficult. However, comparing the mechanism involved behind the
creation of branches gives an insight on why the non-converging phase does not
exist for β-synchronism.

Let us consider the examples given in Fig. 10, where creation of branches
are visualized under two updating schemes. In the α-synchronous case, as soon
as an isolated 1 is created, it remains stable (case a). However, in the β-
synchronous case, branches are created when a cell changes its eigenstate to 0

but keeps its observable as 1 (light gray cells). These branches have a short life
expectancy, as (1) they cannot activate neighbouring cells until some space is
created between branches and (2) they disappear as soon as they finally manage
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synchronous (a) α=0.8 (b) β=0.8 (c) β=0.2

Figure 10: Branching phenomenon in ECA 6 under α- and β-synchronism.
Light gray cells represent state (0, 1) and green/darker gray state (1, 0).

to update their observable state to 0 (case b). The only means to create branches
in β-synchronous ECA 6 occurs for low values of the synchrony rate β (case c):
in that case, the branch will survive sufficiently long time for some space to be
created and then it will survive like a normal branch.

The arguments above do not formally constitute a proof, but this first anal-
ysis may provide a possible explanation for a difference of behaviour between
α- and β-synchronism.

5.3 The case of ECA 58

The observations made on ECA 58 are probably one of the most surprising result
of this study: among all ECA, it is the only rule that displays a qualitative
difference of behaviour between β- and γ-synchronism (see Fig. 11). To this
date, it is not understood why the behaviour of ECA 58 changes between the
two updating schemes. This issue is justified by several factors:

1. First, proving that the absence of a passive phase is a much more difficult
problem than proving its existence. The complexity of establishing such
a proof is also greatly increased by the fact that the state space is larger
(with observation states).

2. Second, β- and γ-synchronism follow similar mechanisms. Indeed, they
differ only in the sense that in β-synchronism, cell-to-cell transmission of
the same neighbourhood are correlated.

3. Finally, it should be noted that although the rule ECA 58 differs only
by one bit from ECA 50, it is sufficient to introduce novel patterns that
limits the use of previous techniques:

000 001 010 011 100 101 110 111

0 1 0 1 1 1 0 0

Displaying the mechanisms behind this phenomenon and explaining why the
phase transitions does not occur in γ-synchronism is still an open problem which
could provide another relevant example of how sensitive to the updating method
cellular automata behaviours can be. For now, deeper statistical experiments
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β=0.1

γ=0.1

Figure 11: Comparative observation of the behaviour of ECA 58 under β- and γ-
synchronism. According to quantitative experiments, the sub-critical behaviour
for β occurs for β < 0.289 whereas the γ-synchronous version does not seem to
converge to an all 0 configuration.

must be conducted in order to confirm this difference of behaviour, and novel
approaches must be elaborated in order to find possible divergences between β-
and γ-synchronism.

6 Discussion

This paper presented a formalism for a new type of asynchronism in cellular
automata, called asynchronous information transmission. We compared this
type of perturbation to α-synchronism for Elementary Cellular Automata. We
then highlighted specific examples for which directed percolation phenomena
occur, and observed different responses to each asynchronism:

• For ECA 50, the macroscopic behaviour is conserved, but a microscopic
analysis of the dynamics reveals novel properties for β-synchronism.

• For ECA 6, β-synchronism introduces modifications in the microscopic
dynamics, which alter qualitatively the macroscopic behaviour.

• For ECA 58, a qualitatively different response is observed for β- and γ-
synchronism.

The implications of these observations seem promising: in spite of the resem-
blance of the responses of most ECA, for each updating scheme we could find at
least one example where the behaviour differs from the other updating schemes.
This observation supports the idea that the behaviour of cellular automata can
sometimes be largely determined by the updating scheme. This echoes recent
results obtained for a biological model with a stochastic transition rule (Bouré
et al. 2012).

However, it is still an open question to predict how the updating scheme
influences the behaviour of cellular automata and why phase transitions appear
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in some automata and not in others (e.g. Fatès 2010). By resuming the ex-
ploration of the field of updating schemes, we bring to light new examples of
behaviour alterations appearing under different perturbations.

Probing a model to reveal its specificities. The approach we followed
used the updating scheme as a “probing tool” to explore the behaviour of cellu-
lar automata. By subjecting models to different kinds of updating scheme and
observing the resulting behaviour, we gained insight on (1) the models’ prop-
erties – by highlighting to which perturbation they are robust to – and (2) the
updating schemes themselves, by underlining the properties they affect, or the
novel phenomena that they introduce.

Updating schemes as a component. To this date, studies on complex
systems have mainly focused on a variation of the individual rules considering a
single updating scheme. Our conclusion is that, in studies of complex systems,
the updating scheme should hold a modular position in order to allow a scrutiny
of the behaviour that is orthogonal to the exploration of the transition rule
space.
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Abdelkader Gouäıch, Fabien Michel, and Yves Guiraud. MIC*: a deployment
environment for autonomous agents. In Post-Proceedings of the 1st Inter-
national Workshop in Environments for Multiagent Systems, pages 109–126.
Springer-Verlag, 2005.
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