
Computing with Planar Toppling Domino
Arrangements

William M Stevens

Oxford University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX
william@stevens93.fsnet.co.uk

Abstract. A method for implementing Boolean logic functions using
arrangements of toppling dominoes is described. Any desired combina-
tional function can be implemented. A circuit constructed using this
method has no timing or order constraints on its inputs and requires no
out-of-plane bridges for passing one line of dominoes over another. Since
it is built using toppling dominoes, a circuit can be used only once.

Keywords: Logic circuit, dual-rail logic, one-shot logic, non-electronic
logic, domino

1 Introduction

There are several different reasons for studying domino computation. There are
didactic reasons that have nothing directly to do with science: for people inter-
ested in the physical basis of computing it is interesting and enjoyable to build
computing primitives from simple materials that are easy to manipulate and
which do not require elaborate tools to construct. Domino computers have been
technologically possible for many thousands of years, but only since the advent
modern mathematics and digital computing theory has anybody had the insight
and motivation to both build one and tell other interested people about it.

Just as pure mathematicians strive to explore and understand all areas of
mathematics, regardless of their practical utility, so some scientists apply the
same philosophy to physical phenomena. Even those who have a different phi-
losophy and who believe that all scientific endeavour should be directed towards
practical outcomes must admit that there are well known examples in math-
ematics of ideas that seemed entirely useless at the time that they were first
conceived of and developed, but which later turned out to be fundamental to
theoretical science, which is in turn fundamental to several modern technologies.
Domino systems are one-shot, collision-based systems, so studying their infor-
mation processing potential could lead to insights into other systems that fall
into one or both of these categories.

A one-shot computing system is a system that can be configured to carry out
a computation, but it can only perform the computation once. A collision-based
system is one in which mobile objects or patterns interact with one another to
carry out information processing operations. Examples of collision-based systems



2 William M Stevens

include the systems based on the Belousov-Zhabotinsky (BZ) reaction that have
been devised by Gorecki et al. [1], and Fredkin and Toffoli’s billiard ball model
[2], which is also a one-shot system. A comprehensive collection of work related
to collision-based computing systems can be found in [3].

1.1 Previous Work

The idea of using interacting dominoes to carry out Boolean operations has
occurred to many people, as a web search around the subject area will reveal.

O’Keefe [4] seems to have been the first to explore the area in some detail
and publish his findings. O’Keefe described a system of logic gates made from
dominoes in which a travelling disturbance on a line of dominoes represents a
Boolean value of 1, and the absence of a disturbance represents a value of 0.
Figure 1 shows a NOR gate in O’Keefe’s system. The relative timing of the
inputs to this gate is critical to its correct functioning. In the NOR gate, the A
and B inputs to the gate must be applied before the auxiliary 1 input has been
applied so that they have time to prevent the auxiliary 1 input from causing a
value of 1 to be output at C.

1A B

C

Fig. 1. A NOR gate in O’Keefe’s system.

O’Keefe did not restrict his dominoes to a two-dimensional surface, he allowed
bridges so that one line of dominoes could cross another without interference.
O’Keefe points out that constraining a system to planar geometry requires that
the flow of information in a domino system must be carefully managed so as to
avoid signals being blocked by barriers of de-energised dominoes.



Computing with Planar Toppling Domino Arrangements 3

1.2 Challenges

This paper addresses two of the challenges that O’Keefe’s work raises.

– Can a toppling domino logic system be devised that has no timing constraints
on its inputs?

– Can arbitrary combinational functions be implemented in a planar system
of dominoes, without requiring bridges to allow one domino line to cross
another?

2 Domino Interactions and Boolean Algebra

There are a large number of ways that dominoes can be arranged. This paper
makes use of conventional arrangements in which all dominoes initially stand
upright, spaced apart from one another, and topple over in the course of prop-
agating a disturbance. There are two different transitions that an individual
upright domino can undergo: it can topple in one direction, or it can topple in
the opposite direction. This paper does not make user of the finer details of the
physics of toppling waves of dominoes, but interested readers can find out about
some of these in the paper by Wagon et al. [5].

In this paper two domino configurations are defined that will be used exclu-
sively as the basis for constructing other arrangements. These configurations are
shown in Figure 2, along with symbols that will be used in schematic diagrams
of more complex arrangements later on.

forkline

A

B

C

A B

Fig. 2. Elementary domino configurations.

The first is the line configuration. When A topples towards B then A will
cause B will topple in the same direction as A. When B topples towards A
then A will topple in the same direction as B. If A and B both topple towards
one another at the same time then the two toppling wavefronts will collide and
nothing further will happen. Once a domino is toppled it can no longer take part
in any further interaction.

The second is the fork configuration. This configuration has three lines of
dominoes meeting at a junction, dominoes at the external ends of these three



4 William M Stevens

lines are labelled A,B and C. When C topples toward the junction, then it will
cause both A and B to topple away from the junction. When A topples toward
the junction it will cause C to topple away from the junction, but B will be
unaffected. When B topples toward the junction it will cause C to topple away
from the junction, but A will be unaffected. It is possible that two or three lines
leading into the fork configuration topple simultaneously. Clearly if all three of
A, B and C topple towards the junction simultaneously there can be no resulting
output. If both A and B topple toward the junction at the same time this will
cause C to topple away from the junction. If A and C (or equivalently, B and C)
topple toward each other at approximately the same time then whether or not
B will topple is dependent on the precise timing and location of the resulting
collision. Clearly if the collision happens nearer to C than to A then B will not
topple. If the collision happens nearer to A than to C then B will topple. If the
collision happens in the vicinity of the fork junction then whether or not B will
topple is unpredictable.

The word ‘signal’ refers to a toppling domino wavefront. So the phrase ‘a
signal is applied to an input of a mechanism’, means that the domino located
at that input is toppled in the direction that will cause a toppling wavefront
to travel into the mechanism. The phrase ‘a signal emerges from an output of
a mechanism’ means that the domino located at the output is toppled by a
wavefront emerging from the mechanism.

2.1 One Way Line

A one way line can be constructed using two forks as shown in Figure 3. A
signal entering the configuration from A will split at fork F into two signals
that will collide with each other, preventing any signal from emerging at B. In
the other direction, a signal entering the configuration from B will pass through
fork G, through F and then emerge from A. Correct operation of the one way
line requires that the rate of signal propagation along any two domino lines is
similar, otherwise the collision that is required after a signal from A splits at
fork F may happen in the wrong location. Figure 3 also shows the schematic
symbol that will be used for a one way signal line.

2.2 Single Line Crossover

A single line crossover is a mechanism with two inputs A and B and two outputs
A’ and B’ which are crossed over topologically. A signal may arrive either at
input A or at input B. A signal arriving at A will be passed to output A’, a
signal arriving at B will be passed to B’. This definition of a single line crossover
does not specify what will happen if a signal arrives at both inputs: in this paper
the single line crossover will only be used in situations where it is guaranteed
that only one of the inputs will ever receive a signal.

A pair of forks can be used as the basis of a single line crossover, with one way
lines on each input to prevent signals from one input propagating back to the
other input. Figure 4 shows the single line crossover and the schematic symbol



Computing with Planar Toppling Domino Arrangements 5

A

B

F
G

Fig. 3. A one way line.

A B

B' A'

A

BB'

A'

Fig. 4. A single line crossover.

that will be used to represent it. A total of six forks are used in a single line
crossover.

2.3 Both Mechanism

A both mechanism has two inputs and one output. Only when signals have arrived
at both inputs will it generate an output. It is not immediately obvious that
this mechanism can be implemented using only the fork and line configurations.
Figure 5 shows the both mechanism and the schematic symbol that will be used
to represent it.

If a signal is applied to A well before a signal is applied to B, then the one
of the two paths that emanate from the fork near input B will be interrupted,
permitting a signal derived from B to emerge at C. If a signal is applied to B
well before a signal is applied to A then the same process happens, with A and
B exchanged. A situation that might occur if both A and B are applied close
together in time is that in which A prevents B from propagating to C, but B
also prevents A from propagating to C. To prevent this situation from occurring,
the length of the path T must be long enough so that if a signal from B reaches



6 William M Stevens

A B

C

A B

C

T

F

G

Fig. 5. A both mechanism.

fork F before a signal from A, then a signal from B will reach fork G before a
signal from A. A total of 17 forks are used in the both mechanism.

In part because the both mechanism uses one way lines, and in part because
of the timing constraint in the previous paragraph, correct operation of the both
mechanism requires that the rate of signal propagation along any two domino
lines is similar.

2.4 Dual-Rail Boolean Algebra

The mechanisms described in the previous sections can be mapped onto some
of the constituents of a Boolean algebra. The way in which we choose to map
signals onto Boolean values means that it is impossible to construct a mecha-
nism to correspond to the negation operation within this Boolean algebra. Using
von Neumann’s double-line trick, introduced in [6], this incomplete Boolean al-
gebra can be used to construct a complete dual-rail Boolean algebra that does
have a negation operation. Because we will be dealing simultaneously with two
different Boolean algebras, one constructed from the other, we will need to be
clear at every point which one we are referring to. Let us call the incomplete
Boolean algebra (without negation) B, and the complete Boolean algebra that
we construct B’. All of the constituents of B’ will be marked with an apostrophe.

The familiar definition of a two-element Boolean algebra is used, consisting
of a set containing two elements {0, 1} and three operations AND, OR and NOT
defined in the conventional way.

We use the passage of a single signal along a propagation path at any time
to represent the element 1 in algebra B, and the non-occurrence of a signal on a
path at any time to represent the element 0. The both mechanism corresponds
to the AND operation in algebra B. The fork mechanism corresponds to the



Computing with Planar Toppling Domino Arrangements 7

OR operation in algebra B. Given the way that we have chosen to represent
the elements 0 and 1, we cannot construct a mechanism that corresponds to the
NOT operation in algebra B because detecting ‘the non-occurrence of a signal
on a path at any time’ cannot be done in a finite time. We would need to wait
forever to be sure that an event was never going to happen.

Algebra B’ is constructed from algebra B as follows. The two elements {0′, 1′}
of algebra B’ are defined as 0′ = (1, 0) and 1′ = (0, 1). That is, each element in
algebra B’ is made using an ordered pair of elements from algebra B. When we
use a letter, such as x, to refer to an element of B’ we use subscripts x0 to refer
to the first member of the ordered pair and x1 to refer to the second member of
the ordered pair.

The AND’, OR’ and NOT’ operations of algebra B’ are defined in terms of
the constituents of B as follows:

x AND’ y = (x0 OR y0, x1 AND y1)

x OR’ y = (x0 AND y0, x1 OR y1)

NOT’ x = (x1, x0)

It is straightforward to show that these definitions satisfy the conventional
definitions for conjunction, disjunction and negation.

With this definition of the NOT’ operation, negation of a value x in algebra
B’ can be realised simply by crossing over the signal paths along which the
signals representing x0 and x1 travel. This can be accomplished using the single
line crossover of Figure 4.

In addition to allowing a negation operation to be realised topologically by
crossing over propagation paths, the other advantage that the dual-rail system
has is that it removes any need to be concerned with the relative timing of signals,
and so allows asynchronous circuits to be constructed. When the occurrence or
non-occurrence of a signal is used to represent a Boolean value, without any other
signal for timing reference, then it is not possible to know how long to wait before
deciding that the signal had not occurred. In the dual-rail system used here we
can expect either a signal corresponding to 0’, or a signal corresponding to 1’ to
arrive at each dual-rail output once the circuit has finished operating. We will
not be left in any state of ambiguity over whether the circuit has finished or not.

3 Logic Functions and Planar Crossover

We are now in a position to be able to construct a planar, dual-rail, one-shot,
asynchronous Boolean logic system using the mechanisms introduced above. A
dual-rail NAND gate is shown in Figure 6. This gate uses a total of 30 forks.

The NAND gate is a universal gate, and can be used as the basis for realising
any Boolean function. To complete the proof that any Boolean function can be
realised it must be shown that dual-rail signals can be split into two, so that a
single output can feed into several gates. It must also be shown that dual-rail



8 William M Stevens

A0 A1 B0 B1

C0 C1

Fig. 6. A dual-rail NAND gate.

signals can be routed from one gate to another without any restriction, perhaps
crossing each other.

Dual-rail signal paths can be split using the configuration shown in Figure
7, which makes use of 8 forks.

A0 A1

Fig. 7. A dual-rail fanout mechanism.

When two dual-rail signal paths need to cross each other we could use the
planar crossover network made from AND gates and NOT gates described by
Dewdney in [7]. This method would use a total of 266 forks. An alternative
planar arrangement, which uses only 140 forks, is shown in Figure 8. It is not
known whether this arrangement is minimal.

Since the dual-rail system does not have any timing restrictions, the precise
length or route of any path between gates is unimportant, so long as the path
starts and ends in the right locations. Gates can be spaced as far apart as is
necessary to fit as many signals as required between them.



Computing with Planar Toppling Domino Arrangements 9

A0 A1 B0 B1

B'0 B'1 A'0 A'1

Fig. 8. A dual-rail crossover mechanism.



10 William M Stevens

4 Conclusion

This paper shows that a pair of domino interactions, the fork and the line,
are logically universal in the sense that they can be used to implement any
combinational Boolean logic function. The method used to show this involved
taking a Boolean algebra that was incomplete, but which could be implemented
using dominoes in a straightforward way, and using it to construct a complete
Boolean algebra.

Since the domino fork and line interactions are logically universal, subject to
the assumption that the rate of signal propagation along any two domino lines is
approximately uniform, any other system supporting identical or similar inter-
actions is also likely to be a good candidate for logical universality. The direct
construction of Boolean gates in a particular medium, based on these interac-
tions, may not in itself be significant, but knowing whether or not a medium
is logically universal can influence the decision about whether to investigate
the ability of that medium to support other, perhaps undiscovered, information
processing structures.

It is noteworthy that in the system described here a large number of ele-
mentary fork configurations seems to be required for implementing even simple
Boolean logic functions, and that proving how arbitrary Boolean logic functions
can be implemented is not as straightforward as it is, for example, in relay
circuits. It seems that within planar domino systems, asynchronous Boolean
functions are relatively complex phenomena.

A possible route for further research in this area is to formalise and to gener-
alise the concepts used in this paper. One way that this could begin is illustrated
in Figure 9. Here a one way line is split into four regions, each of which contains
either a fork or a line, and has timing parameters related to line lengths. The
response of a single region to all possible combinations of input events could be
described by formalising the descriptions given in section 2. Composition rules
could then be formulated that would permit the behaviour of a mechanism to
be deduced from the behaviour of its constituent mechanisms. Working out the
details of a formal system of this type is likely to be simpler in a domino system,
where each event can only occur once and where each region can undergo only
a finite number of state transitions, than in the more general case where events
can occur any number of times and where regions may return to a previous state.
Similar schemes have been used in the domain of asynchronous circuit design
and also in process calculi, but (to my knowledge) none of these have been ex-
tensively used for describing, modelling or understanding information processing
in event-propagating media such as domino systems, collision-based systems and
spiking neural networks.



Computing with Planar Toppling Domino Arrangements 11

A

B

Line, length=9

Line, length = 3

Fork

Fork

Fig. 9. A one way line split into four regions.

References

1. Gorecki, J., Gorecka, J.N.: Multi-argument logical operations performed with ex-
citable chemical medium. J. Chem. Phys. 124(084101) (2006)

2. Fredkin, E., Toffoli, T.: Conservative Logic. J. Theo. Phys. 21(3,4), 219–253 (1982)
3. Adamatzky, A. (ed): Collision Based Computing. Springer, London (2002)
4. O’Keefe, S.: Implementation of Logical Operations on a Domino Substrate. Int. J.

Unconventional Computing 5(2), 115–128 (2009)
5. Wagon, S., Briggs, W., Becker, S.: The Dynamics of Falling Dominoes. The UMAP

Journal 26(1), 35–47 (2005)
6. Von Neumann, J.: Probabilistic Logics and the Synthesis of Reliable Organisms

from Unreliable Components. In: Shannon C. and McCarthy J. (eds.) Automata
Studies, pp. 43–98, Princeton University Press, Princeton, New Jersey (1956)

7. Dewdney, A. K.: Logic circuits in the plane. ACM SIGACT News 10(3), 38–48
(1979)


