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Abstract—After a proof of concept using DropboX™, a free paper we will measure whether besides an increase in speed,
storage and synchronization, showed that an evolutionary lgo-  the algorithm profits from the distribution and asynchrony
rithm using several dissimilar computers connected via Wik or of the particular instance we have implemented, or on the

Ethernet had a good scaling behavior in terms of evaluationper ¢ it Suff f it | der to do that h i
second, it remains to be proved whether that effect also traglates contrary It suiters from Iit. In order to do that, we chose two

to the algorithmic performance of the algorithm. In this paper Optimization problems with a different degree of difficuiand

we will check several different, and difficult, problems, ard see measured the time needed to find the solution, along with the

what effects the automatic load-balancing and asynchrony &ve number of evaluations.

on the speed of resolution of problems. The rest of the paper is organized as follows: after a brief

section presenting the state of the art in voluntary and-pool

_ L ) ) ) _ based evolutionary computation, we describe the algorithm
The main objecfuve of this research is to find _easny avallhe experimental setup and the implementation in Se&fibn 11

able means to either use or connect computing nodes I s of these experiments will be briefly presented iniSec

a distributed evolutionary computation experiment, anid trm to be followed by the conclusion, discussion and future
often means resorting to free and readily available sesvic%nes of work in SectioflV

DropboxX'Mis one of these services: it is commercialized as
a cloud storageservice, which is free up to a certain level [l. STATE OF THEART

of use (m_easur_ed in traffic and usage). There are many Otheéloud computing[[2],[[3] is an emergent technology, and as
services like this one; however Dropbox was chosen due dch, research related to it is just recently emerging. Reea

its popularity, which also implies having many more poten;yressing cloud storage is mainly related to content eigfiv

tial volunteer users of a massive evolutionary computati A or designing data redundancy schemes to ensure informa-
experiment. there are also other features that make it tf

_ > integrity [5]. However, its use in distributed commgi
right tool for these experiments. Some other cloud storages not heen addressed in such depth. Even if it is related

services, like Wuala, provide a client program on which ong a5 grids[[5], in this paper we address the use of free
must add explicitly the files that will be stored, which does n ¢,,,4 storage as a medium for doing distributed evolutignar
allow a seamless integration with the filesystem; othekg, l'computation, in a more or less parasitic way [7], since we use
ZumoDrive, use remotely-mounted filesystems whose acsesga infrastructure laid by the provider as part of an imntigra

not so fast. Dropbox monitors local filesystems, and uploadsyeme in an island-based evolutionary algoritim [8].

them asynchronously, which makes it faster from the local 1,5 we will have to look at pool-based distributed evolu-

point of viev. _ _ _ tionary algorithms for the closest methods to the one ptesen
In the experiments we are performing, we are interesteddare “In these methods, several nodesigiands share a

its use as a filsynchronizatiorservice. When one file in one pool where the common information is written and read.
of the folders that is monitored by Dropbox is changed, it i, \ork against a single pool of solutions is an idea that
uploaded to Dropbox servers and then distributed to all thes peen considered almost from the beginning of research
clients that share the same folder. It is interesting, h@ne® i, istributed evolutionary algorithms. Asynchronous fhisa
note that from the programming point of view, all folders arg. A_Teams [9]-[I1] were proposed in the early nineties
written and read as local one, which makes its use quite eagy, 5 coopera-tive‘scheme for autonomous agents. The basic
and also seamless. ‘idea is to create a work-flow on a set of solutions and

In previous experiments [1] we measured whether adding\y several heuristic techniques to improve them, pbssib
several computers to an experiment of this kind resulted it ding humans working on them. This technique is not
an increase in the number of simultaneous evaluations.isn tfystrained to evolutionary algorithms, since it can beiagp

1The characteristics of these and others online backupcssrgan be seen .tO any pODU|at'on based .technlqu.e, but in the ?onteXt O_f EAs,
in |http://en.wikipedia.org/wiki’Comparisomf_online_backup services it would mean creating different single-generation altjoris,

I. INTRODUCTION
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with possibly several techniques, that would create a newDuring the evolutionary loop, new individuals are selected
generation from the existing pool. using 3-tournament selection and generated using bit-flip m
The A-Team method does not rely on a single implementtation and uniform crossover. Migration is introduced i th
tion, focusing on the algorithmic and data-flow aspectshin t algorithm as follows: after the population has been evalliat
same way as the Meandre [12] system, which creates a daiigration might take place if the number of generations
flow framework, with its own language (called ZigZag), whiclselected to do it is reached. The best individual is senteo th
can be applied, in particular, to evolutionary algorithms.  pool, and the best individual in the pool (chosen among those
While algorithm design is extremely important, implemenemitted by the other nodes) is incorporated into the pojauiat
tation issues always matter, and some recent papers hthv@ere has been no change in the best individual since the
concentrated on dealing with pool architectures in a singRst migration, a random individual is added to the pool,ahi
environment: G. Roy et al[ [13] propose a shared memoagds diversity to the population even if the individual féae
multi-threaded architecture, in which several threadskwois not the highest. For the time being this has no influence on
independently on a single shared memory, having read accé¥sresult, but will have it later on when algorithmic tests a
to the whole pool, but write access to just a part of ifun.
That way, interlock problems can be avoided, and, takingMigrants, if any, are incorporated into the population sub-
advantage of the multiple thread-optimized architectufe 8tituting the worst individual, along with the offspring tife
today’s processors, they can obtain very efficient, runnifevious generation using generational replacement with a
time-wise, solutions, with the added algorithmic advastaglite. Population was set to 1000 individuals for all probée
of working on a distributed environment. Although they d@nd the minimum number of evaluations has been four million.
not publish scaling results, they discuss the trade off &everal migration rates were tested to assess its impact on
working with a pool whose size will have a bigger effect operformance. Besides, we introduced a 1-second delay after
performance than the population size on single-processornaigration so that workload was reduced and the Dropbox
distributed EAs. The same issues are considered by Botiihi sdaemon had enough time to propagate files to the rest of the
Piastra in[[14], who present a design pattern for persistedt computers. This delay makes 1-computer experiments faster
distributed evolutionary algorithms; although their eragis is When less migration is made, and will probably have to be
on persistence, and not performance, they try to preseataievfine-tuned in the future. The results are updated at the end of
alternatives to decouple population storage from evaiutidhe loop to check if the algorithm has finished, that is, found
itself (traditional evolutionary algorithms are applied directlythe (single) solution to the problem.
on storage) and achieve that kind of persistence, for whichOne of the advantages of this topology-less arrangement is
they propose an object-oriented database managementsystee independence from the number of computers particigatin
accessed from a Java client. In this sense, our former takeidrihe experiment, and also the lack of need frorueatral
browser-based evolutionary computation|[15] is also simil server, although it can be arranged so that one of the comspute
using for persistence a small database accessed through a sf@rts first, and the others start running when some file is
interface, but only for the purpose of interchanging indixals present. Adding a new computer, then, does not imply to
among the different nodes, not as storage for the whadé&ange new connections to the current set of computers; the
population. only thing that needs to be done is to locate the directorfy wit
In fact, the efforts mentioned above have not had muéhe migrated individuals that is shared.
continuity, probably due to the fact that there have been,Two representative functions have been chosen to perform
until now, few (if any) publicly accessible online databmsethe tests; the main idea is that they took a long enough time to
However, given the rise of cloud computing platforms over thmake sense in a distributed environment, but at the same tame
last few years, interest in this kind of algorithms has bashc @ short enough time that experiments did not take a long time.
back, with implementations using the public FluidDB platfo One of them isP-Peaks, a multimodal problem generator

[16] having been recently published. proposed by De Jong in _[18]; B-Peaks instance is created
by generating? randomN-bit strings where the fitness value
I1l. DESCRIPTION OF THE ALGORITHM AND of a stringZ is the number of bits thaf has in common with
IMPLEMENTATION the nearest peak divided hy.

A pool based evolutionary algorithm can be described as  fp_praks(Z) = X max {N — H(Z, Peak;)} (1)
an island model [17] without topology; in fact, it is closer t N 1sise
the island metaphor since migrants are sent to fle@(pool), where H(Z,y) is the Hamming distance between binary
and come also from it, that is, the evolutionary algorithmtrings Z and ¢. In the experiments made in this paper we
is a canonical one with binary codification, except for twavill consider P = 100 and N = 64. Note that the optimum
steps within the cycle that (conditionally) emit or receivéitness is 1.0.
immigrants. A minimum number of evaluations for the whole The second function iMMMDP [19], which is a deceptive
algorithm is set from the beginning; we will see later on how tproblem composed of subproblems of 6 bits each ong)
control when this minimum number of evaluations is reacheBepending of the number of ones (unitatios) takes the



values depicted next:

fitnesss, (0) = 1.0 fitnesss, (1) = 0.0
fitnesss, (2) = 0.360384  fitnesss,(3) = 0.640576
fitnesss, (4) = 0.360384  fitnesss, (5) = 0.0
fitnesss, (6) = 1.0
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TABLE |
SUCCESS RATE FOR THEMMDP PROBLEM WITH DIFFERENT NUMBER OF
NODES AND MIGRATION RATES

Nodes Generations Success rate
between migration

1 0.83
2 100 0.95
4 1

1 0.70
2 200 0.88
4 1

1 0.80
2 400 0.90
4 1

the migration rate, the more similar to a panmictic popaolati
will be, which might make finding the solution easier; on
the other hand, it will also decrease diversity, making the
relationship between migration rate and evolutionaryime
performance quite complex and worth studying.

To keep (the rest of) the conditions uniform for one and two

machines, all parameters were fixed but for the population,
which was distributed among the machines in equal propor-
tions: all computers maintained a population of 1000, so tha
initial diversity was roughly the same. Further experinsent
will have to be made keeping population constant, but this is
left for further study.
Finally, Dropbox itself was used to check for termination
conditions: a file was written on the folder indicating the
The fitness value is defined as the sum of¢hsubproblems experiment had finished; when the other node read that file,
with an optimum ofk (equation R). Figur&ll represents ond finished too; all nodes were kept running until the solntio
of the variables of the function. The number of local optimwas found or until a maximum number of generations were
is quite large 22*), while there are onl2* global solutiorg reached. That is why, in some cases, solution is not fourd; th
k number of generations was computed so that it was possible
_ . in a high number of cases to find out the solution.
fumpp(5) = Zfzmesssi @ The computers used in this experiment were laptops con-
nected via the University of Granada WiFi, they were diffeére
models, and were running different operating systems and
versions of them. The most powerful computer was the first
one; then #2 was the second-best, and finally numbers 3 and

. : . : 4 were the least powerful ones. Since computers run indepen-
In this occasion the experiments were done in several

. o ently without synchronization checkpoints, load balagds
different computers connected also in different ways; haue ywi ed P  baag
: : utomatic, with more powerful computers contributing more
computers were added to the experiment in the same order

L . evaluations to the mix, and less powerful ones contributing
the problems were solved first in a single computer, then ver

two and finally with fqur computers. Total t|m<_e, as well as he first thing that was checked with the two problems
the number of evaluations, were measured. Since the end of .

: : . examined (P-Peaks and MMDP) was whether adding more
the experiment is propagated also via Dropbox, the number 0 .

. ) ...~ computers affected the solution rate. For P-Peaks there was

evaluations is not exactly the one reached when the soligion . . o

: : ; no difference, independently of migration rate and numifer o
found. This number also increases with the number of nodes. : .
: . computers, all experiments found the solution. Howeveneh
The only parameter that was changed during experimen

ta . .

Y . : . o was a difference for MMDP, shown in Talle .

was migration rate. We were interested in _domg t.h|s, s:mma_n The evolution with the migration rate can also be observed
work performance will be impacted negatively with migratio . figure [2; as was advanced in the introduction, the rela-
rate: bandwith usage (and maybe latency) increases with tﬂe Lo . '

: N : iohship is quite complex and decrease or increase do not
inverse of the migration rate. On the other hand, evolutipn

performance will increase in the opposite direction: thgger

0.0

ones

Fig. 1. Graph of the values for a single variable in the MMDBgbem
(bottom)

i=1
In this paper we have useld = 20, in order to make it
difficult enough to need a parallel solution.

IV. EXPERIMENTS AND RESULTS

ead to a monotonic change of the success rate. In fact,

the best success rate corresponds to the highest migration
2The local optima occur when there are 3 ones; off all the 64iptes rate (migration after 100 generatu.)ns),- but the second peSt

combinations of six zeros and ones, there are 22 with exétutbe ones corresponds to the lowest one (migration after 400), which
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Fig. 2. Variation of the success rate in the MMDP problem vifita number of nodesc(axis) and migration rate: red-solid corresponds to migratate =
400; blue-dotted to 200, and black-dashed to 100.

is almost akin to no migration, since taking into account thaumber of computers and time solution is also complex. If we
generations run asynchronously, this might mean that irofiac look first at the P-Peaks experimeniin 3 we see that we obtain
migrant from other nodes is incorporated into the poputatiolittle time improvement when adding more nodes to the mix.
This result is in accordance with tletermediate disturbance Since success rate is already 100% with a single computer,
hypothesisproved by us previously [20]. However, it is notand the solution takes around two minutes, the delay imposed
clear in this case that migration in 100 generations can bg Dropbox implies that it is not very likely that the migrdte
actually considered intermediate and in 200 too high, swlutions are transmitted to the other nodes. In this caise it
more experiments will have to be performed to ascertain thige intermediate migration rate (every 40 generationsptiy
optimum migration rate. one that obtains a steady decrease of time to solution. Téte be

Thus, having proved that success rate increases with tige is obtained for a single node and a migration gap of 60; in
number of nodes, we will have to study how performandgeneral, the best times are for the highest migration gagesin
varies with it. Does the algorithm really finds the solutiofthe total delay induced by migration is also the least. These
faster when more nodes are added? We have computed thi@gults probably imply that there must be a certain degree of
only for the experiments that actually found the solutiomg a complexity in the problems to take advantage of the features
plotted the results in figurés 3 ahdl 4. in this environment. For relativelgasyproblems, which need

As seen above in the case of MMDP, there is not fg§W generations, there is nothing to gain.
straightforward relationship between the migration ratel a The situation varies substantially for the MMDP, as seen
the time to solution; in this case, the relationship betwien in figure[4. In this case, the best result is obtained for four
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Fig. 3. Variation of the time needed to find the solution in Bv@eaks problem with the number of nodesakis) and migration rate: red-solid corresponds
to migration rate = 60; blue-dotted to 40, and black-dastoed0t

nodes and the smallest mutation gap (every 100 generatidmayever, adding more computers to a set synchronized via
dashed black line). However, it is interesting to obsena thDropbox has more influence in the success rate than in the
trend change for two nodes in all cases, either the solutiime needed to find the solution, which seems roughly linked
takes more time than for a single node or it tales less thtmthe population size, although this hypothesis will hawe t
for four nodes; the conclusion is, anyways, that the in@dasbe tested experimentally. On the other hand, using relgitive
number of simultaneous evaluations brought by the numbersifnple problems like P-Peaks yields no sensible improvémen
nodes eventually makes solution faster. However, a finexgun due to the delay in migration imposed by Dropbox, which
of the migration gap is needed in order to take full advantagaplies that this kind of technique would be better left only
of the parallel evaluation in the Dropbox-based system. for problems that are at the same time difficult from the
evolutionary point of view and also slow to evaluate.

However, several issues remain to be studied. First, more

In general, and for complex problems like the MMDP, accurate performance measures must be taken to measure how
Dropbox-based system can be configured to take advantdige time needed to find the solution in all occasions scales
of the paralellization of the evolutionary algorithm andah when new machines are added. We will have to investigate
reliably (in a 100% of the cases) solutions in less time thdrow parameter settings such as population size and migratio
a single computer would. Besides, it has been proved tlggp (time passed between two migrations) influence these
it does not matter whether the new computers added to timeasures. This paper proves that this influence is important
set are more or less powerful than the first one. In generhlt it is not clear what is the influence on the final result. It

V. CONCLUSIONS AND FUTURE WORK
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Fig. 4. Variation of the time needed to find the solution in MRIBvith the number of nodes: (axis) and migration rate: red-solid corresponds to migrati
rate = 400; blue-dotted to 200, and black-dashed to 100.

would be also interesting to test different migration pielc lems suitable for this, as well as the design and implemiemtat
affect final result, as done i [21], where it was found out thassues, will have to be explored. Other cloud storage suisfi
migrating the best one might not be the best policy. preferably including open source implementations, will be

An important issue too is how to interact with Dropbox s@lso tested. Since they have different models (synchrtoiza
that information is distributed optimally and with a minimadaemon or user-mounted filesystems, mainly) latency and
latency. In this case we had to stop each node for a certgifer features will be completely different, so we expeett th
time (which was heuristically found to be 1 second) tgerformance will be affected by this.
leave time for the Dropbox daemon to distribute files. In an
experiment that lasts for less than two minutes, this caa tak
up 25% of the total time (per node), resulting in an obvious This work has been supported in part by the CEIl BioTIC
drag in performance that can take many additional nodes @:NIL (CEB09-0010) MICINN CEI Program (PYR-2010-13)
compensate. A deeper examination of the Dropbox API apgoject and the Andalusian Regional Government P08-TIC-
a fine-tuning of these parameters will be done in order to %3903 and P08-TIC-03928 projects.
that.

Finally, this framework opens many new possibilities for
distributed evolutionary computation: meta-evolutignepm- [l M. Garcia-Arenas, J.-J. Merelo, A. M. Mora, P. Casils. Romero, and

. e . . . . L J. Laredo, “Assessing speed-ups in commodity cloud stosagéces for

putation, artificial life simulations, and b|g-scale siraion distributed evolutionary algorithms,” iRroceedings CEC 20112011,
using hundreds or even thousands of clients. The type of prob to be published.
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