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Abstract

We have developed a theoretical framework for developing patterns in multiple dimensions using 

controllable diffusion and designed reactions implemented in DNA. This includes so-called strand 

displacement reactions in which one single-stranded DNA hybridizes to a hemi-duplex DNA and 

displaces another single-stranded DNA, reversibly or irreversibly. These reactions can be designed 

to proceed with designed rate and molecular specificity. By also controlling diffusion by partial 

complementarity to a stationary, cross-linked DNA, we can generate predictable patterns. We 

demonstrate this with several simulations showing deterministic, predictable shapes in space.

1. Introduction

Pattern formation is biologically and technologically important. Biomimetic methods for 

moving from top-down to bottom-up formation of designed patterns and materials have the 

potential to revolutionize manufacturing by dramatically reducing costs. These approaches 

include biomimetic molecular recognition (Chen et al. 2011) leading to self-assembled, 

folded structures made from block-copolymers, (Murnen et al.) biopolymers (Rothemund 

2006) or patterned microparticles. Yet none of these techniques has recapitulated the 

“algorithmic” assembly used by complex organisms to create macroscopic structures (Peter 

and Davidson 2009). Very precise submicroscopic structures have been generated using 

deterministic DNA assembly in so-called DNA Origami, but this is at or near the molecules’ 

own size scale and is not scalable to cellular or larger length scales (Rothemund 2006). 

Longer-range ordering has been accomplished with DNA-assembled nanoparticle crystals, 

but the definition of the pattern is so far limited to repetitive patterns (Macfarlane et al. 

2011). Meso- and nano-structured materials formed by self-assembly are finding 

applications in photonics (Fan et al. 2011), microelectronics, micro electromechanical 

systems (MEMS), and analytical devices (Fernandez and Khademhosseini 2010). We also 

feel that programmed self-assembly may have applications in tissue engineering (Nichol and 

Khademhosseini 2009).

Biological patterns are often an outgrowth of the behavior of reaction-diffusion networks, as 

first described by Alan Turing (Turing 1952). Mathematical models of reaction-diffusion 

networks have been shown to be capable of generating complex and beautiful patterns 

resembling everything from leopards’ spots to variegated pigmentation in sea shells. That 

said, the first actual demonstration of a biological Turing mechanism occurred almost 40 
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years after the theoretical description, (Castets et al. 1990) illustrating how difficult these 

systems are to study, let alone engineer.

One of the aims of synthetic biology is to standardize the engineering of biology. Being able 

to rationally program spatio-temporal organization would be a great accomplishment, but 

requires the ability to algorithmically set down biological molecules and superstructures in 

specific times and places. While no scalable, programmable pattern formation system has 

yet been demonstrated, we now describe a potential approach that should allow for nearly 

arbitrary pattern formation from bottom-up principles. Our approach appropriately rests on 

having programmable chemical reaction networks (CRNs) unfold in time and space.

While complex chemical reaction diffusion systems (e.g., the well known B-Z reaction) are 

known (Vanag and Epstein 2001), they are far from programmable. We will instead rely 

upon implementing CRNs with programmable DNA circuits (Yin et al. 2008, Phillips and 

Cardelli 2009). Arbitrary CRNs can be implemented in DNA, (Soloveichik et al. 2010) and 

the function of at least one modeled circuit has been verified in vitro (Zhang and Winfree 

2009). However, previous work focused on the implementation of DNA CRNs in time, 

rather than in space. We now hope to design DNA CRNs that are inhomogeneous in space. 

We will initially focus on small, modular DNA reaction networks that can be treated as 

building blocks, meaning that the basic reaction can be duplicated, modified, and linked 

together to run in parallel. These primitives are then shown to be the basis for more complex 

CRNs that act as algorithmic, spatial pattern generators.

2. DNA-based programmable chemical reaction networks

Reaction networks that can be programmed to interact with one another should also prove 

capable of pattern formation. DNA strand displacement reactions represent a class of 

reactions that have programmable inputs and outputs, and predictable kinetics (Zhang and 

Winfree 2009). In strand displacement reactions, a single-stranded DNA molecule binds to a 

hemi-duplex DNA molecule via specific Watson-Crick pairings (the so-called 'toehold'). 

Hybridization proceeds from the toehold via strand displacement to form a longer, more 

stable DNA duplex, with concomitant release of the originally paired strand (Figure 1a). 

Because progression of the reaction is only favorable for complementary DNA strands, 

parallel reactions occurring concurrently in solution can be designed to be chemically 

“orthogonal,” as eloquently described by Phillips and Cardelli (Phillips and Cardelli 2009). 

Orthogonal strand displacement reactions can be coupled in arbitrary networks, (Soloveichik 

et al. 2010) where single-stranded outputs from one reaction can serve as the inputs of 

additional strand displacement reactions. DNA-based chemical reaction networks (CRNs) 

are completely programmable, unlike (for instance) a Zhabotinski reaction. In this system, 

the predetermined location of the feature and operational parameters of the reaction are 

programmed into the base sequence (i.e. the pattern is generated deterministically according 

to the DNA hybridization rules).

3. Simulation of DNA CRNs

In order to simulate DNA CRNs, we needed to be able to solve equations relating diffusion 

and bimolecular kinetics, in either 1D or 2D. To this end, we used MATLAB’s ODE45 
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solver or a simple Euler method solver. We include MATLAB code with demonstrations of 

all simulations performed in this paper in the Supporting Material online.

4. Controlling diffusion via hybridization

In order to create patterns with a reaction-diffusion system, we must be able to control both 

diffusion and reactivity. While there are many examples of how designed DNA circuits 

control reactivity, there are virtually no examples of programmable diffusion. We realized 

that we could slow the diffusion of any given component of a programmable DNA CRN by 

incorporating antisense oligonucleotides into the matrix where diffusion was occurring, in 

this instance a hydrogel. Figure 2a shows how the DNA may be anchored by co-

polymerizing antisense molecules terminating with an acrylic moiety, an acrydite, into the 

hydrogel superstructure. Because of the complete control over sequence that is afforded by 

DNA CRNs, different DNAs in the network can have zero, partial, or complete 

complementarity to the immobilized antisense strand. This will in turn lead to variable (and 

programmable) diffusion through the hydrogel, since the diffusion parameters for any given 

DNA can be altered from complete fixed to fully diffusible depending on the number and 

strength of the base-pairs formed.

We first wanted to simulate the execution of DNA CRNs in which there was differential 

diffusion due to hybridization. We examined mobile DNA species A and B which were 

presumed to have equal diffusion coefficients (D=0.1×10−8 cm2sec−1) in an unmodified gel. 

We then compare the predicted diffusion of A and B in the presence of an immobilized, 

complementary species C*. We further assume that species A has no significant interactions 

with C*, but that B does. Both C* and BC* have zero diffusion because C* is covalently 

linked to the gel (denoted by asterisk). This slows the effective diffusion of B relative to A. 

We assume an equilibrium constant of Keq=1×10−6mol−1 such that [B] = [BC*] when all 

reagents are present at a concentration of 2 µM. This could be readily achieved by designing 

about 9 base-pairs of complementarity between B and C*. We further assume that the rate of 

binding/unbinding is fast relative to diffusion. Figure 2c shows that A and B have very 

different concentration profiles at the same time point due to their interactions with the 

fixed, complementary oligonucleotide.

Beyond this simple simulation, the diffusion of an oligonucleotide is influenced by its size 

and conformation, and manipulation of these variables provides opportunities to engineer a 

given DNA strand's diffusion.

5. Generating a simple pattern based on diffusion and strand displacement 

CRNs

We will initially show how we might implement a spatially-controlled reaction by 

controlling the reactivity and the diffusion of a set of properly designed DNA constructs. 

Two DNA molecules that are diffusing towards one another will react to form a local, 

immobilized fluorescent product. From a historical perspective, this is similar to 

Ouchterlony double-diffusion experiments (Ouchterlony 1958). In these experiments an 

antigen and a mixture of antibodies were allowed to diffuse toward each other through a gel 
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matrix. Depending on the diffusion constants of the antigen and antibody, a region of visible 

immuno-precipitation occurred at some location between the starting locations.

The strategy for implementing this simple reaction with DNA is shown in Figure 3A. We set 

up a simulation modeling two diffusing DNA substrates, a diffusible complex called ABFQ 

and a second diffusible reactant D. As above, ABFQ and D can partially hybridize to an 

immobilized oligonucleotide, C* (through short domain 0). Interactions between ABFQ and 

C* or between D and C* slow their diffusion by a predictable degree, as demonstrated 

above. The equilibration between mobile strands (A and B) and the immobile strand C* is 

described by K1 and K2 as shown in Figure 3b.

In order to readily see where and how strand displacement reactions are taking place, the 

complex denoted ABFQ is composed of a common backbone (A) which is modified with a 

fluorophore (F), a blocker strand (B), and quencher-modified oligonucleotide (Q). Upon 

interaction with displacer (D), the blocker is displaced and the complex is converted to an 

intermediate, AFQ. Our simulation treats the nonfluorescent intermediate, AFQ, as mobile 

with an equivalent diffusion coefficient to ABFQ. Upon interaction with the immobilized 

oligonucleotide C*, this intermediate undergoes a further strand displacement reaction that 

releases the quencher Q. The fluorescent product AFC* is also immobilized by hybridization 

to C*. Thus, an immobile fluorescent band should indicate where the strand displacement 

reactions have taken place in the gel.

6. Modifying pattern formation by modifying diffusivity

Since adjusting the energy of interactions with the immobile phase can change the effective 

diffusion of a mobile DNA, it should also be able to change the pattern generated by reactive 

DNA species. For example, by adjusting the length and base pair content of domain 0’ on 

ABFQ we can change its interaction with domain 0 on C* and arbitrarily adjust the reaction 

equilibrium constant K1 (See Figure 3b). In our simulation, we start, as above, with 

micromolar concentrations and a Keq=1×10−6mol−1 for both complex ABFQ diffusing from 

the left and displacer oligonucleotide D diffusing from the right. Figure 3c shows the cross-

section of the concentration patterns that would be generated in a gel when both species 

diffuse at equal rates; fluorescent product (AFC*) evolution occurs in the center. By altering 

the diffusion coefficients of the substrates, we can control the location where the fluorescent 

product is produced. Figure 3d shows three cases where the ratio of the equilibrium 

constants (K1/K2) is varied. We start by assuming that the unmodified diffusion constants of 

ABFQ and D are equal. If species ABFQ has an equilibrium constant five times higher 

(K1=5×10−6mol−1; for example, by decreasing the number of base-pairs between A and C*) 

and species D is decreased by a factor of five (K2=0.5×10−6mol−1 by increasing the length 

of domain 0’ on D) then the ratio K1/K2 is increased from 1 to 25 and this creates a line 

shifted to the right; the opposite changes produce a K1/K2 ratio of 0.04 and shift the line to 

the left. It should be noted that although the position of fluorescent product AFC* is only 

affected by the ratio of K1 to K2 rather than the absolute values of K1 and K2, these absolute 

values affect the time required for the pattern to develop. We chose to perform simulations 

at conditions that approximate our observations of DNA in a gel medium of ~5% w/v 
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acrylamide. The same patterns could be generated in a different density of gel by adjusting 

the length of interactions with X or by simulating over a different timescale.

7. Analytically representing diffusivity via complementarity

It is computationally expensive to model equilibrium between fixed and mobile states for 

each species in the CRN. To simplify and speed up the simulation, we implement an 

effective diffusion coefficient Deff for each species depending on its designed 

complementarity to the fixed DNA. Fast equilibrium with a fixed, immobile state constitutes 

a time-average of the diffusion at normal rate (corresponding to diffusion coefficient D) and 

zero. The native diffusion rate D without DNA interactions is determined by the medium 

(e.g. polyacrylamide gel). While different hydrogel densities will affect the global diffusion 

coefficients, the relative diffusivities among the components arising from interactions with 

immobile DNA can be treated an independent variable. The quantity of DNA co-

polymerized into the gel is independent of the quantity of acrylamide and the type of buffer 

used to generate the hydrogel matrix. From the concentrations and standard free energy of 

the DNA-DNA reaction (Nakano et al. 1999), we can calculate Keq, the standard equilibrium 

constant for the reaction and in turn derive the fraction of time spent in the fixed state BC*.

First, we calculate the dissociation constant and the concentration of the reactants from their 

initial concentrations, B0 and C0.

(1)

(2)

(3)

Taking the definition of the equilibrium constant:

(4)

And defining the fraction of B bound at any given time as follows:

(5)

We can substitute and simplify using the quadratic equation to express the Fbound of BC in 

terms of B0, C0 and Kd:

(6)

We can therefore express the effective diffusion coefficient with the following relationship:
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(7)

For complex simulations, we will use Deff in lieu of modeling equilibrium between a mobile 

and immobile state. To predict the diffusion from sequence, we use an estimated Keq of B + 

C* ↔ BC* based on calculated ΔG values from widely used and empirically validated base-

pair stacking energies (Breslauer et al. 1986). This approximation breaks down without fast 

equilibrium or if all B sites are occupied. As B0 approaches saturation, the diffusion in that 

saturated region will approach the native diffusion rate. If this is to be avoided in practice, 

the concentration of B0 should be considerably greater than the species it is designed to 

interact with.

8. Specifying a pattern in two dimensions

The ability to specify the location of a reaction product can be extended into additional 

dimensions. The products of two otherwise orthogonal reactions can create a third product. 

In other words, two Ouchterlony-like line generators can be designed and aligned such that 

only at their intersection will a final product be generated. For example, in Figure 4a species 

AC and B diffuse horizontally and meet to produce species C in a vertical line, while the 

orthogonal reaction in Figure 4b produces a horizontal line (species G). At the intersection 

of these two lines, C and G react with the immobilized fluorogenic construct FQP* to form a 

central fluorescent spot, rather than a line.

Figure 4d shows a simulation of this system. This simulation involved the simplifying 

assumption that the effective diffusion constants (according to equation 7) should accurately 

model diffusivity, thus alleviating the need for additional terms to account for transiently 

bound species. The slight asymmetry in the final frame of Figure 4d is due to the sequential 

reaction of FQP* with C, then G; a delay introduced by requiring the first reaction to be 

complete allows for more progress in the AC+B reaction and, thus, a wider horizontal line 

(and a taller final spot in the vertical direction). It is also worth noting that the sharpness of 

the generated spot is limited by the forward reaction rates, as we will discuss below.

We set out to show how patterns might be developed in multiple dimensions by autonomous 

DNA-DNA interactions. The results of our simulations indicate that a feature could be 

deterministically developed at a specific location within a reduced diffusion medium based 

solely on its sequence. In essence, positional information can be directly encoded into 

sequence. In principle, these interactions can occur with both fixed and mobile elements and 

produce more complex effects by contingently interacting with the fixed strands.

9. Composite patterns based on orthogonal strand displacement CRNs

Because DNA:DNA interactions can be designed to be very specific, it is possible to build 

reaction networks where each reaction is chemically orthogonal; the reactions will not 

randomly or aberrantly interact with one another. For example, expansion of the 'point 

generation' program described above with orthogonal, DNA-based CRNs should allow the 

generation of arbitrary, complex patterns.
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We present an example in which we selectively de-quench immobilized fluorophores in 

multiple, spatially-confined regions based on the lateral and vertical overlap of diffusing, 

orthogonal, DNA-based CRNs. Each system, lateral (row) and vertical (column), has a pair 

of reagents with defined sequences and diffusivities that determine the final position of a 

fluorescent feature. The fluorescent feature can be thought of as a “pixel” or dot at an 

arbitrary position.

In greater detail, the seven strand-displacement reactions (Figure 5a through g) are designed, 

independent line generators, similar to the system described above. Two of the reactions 

produce vertical lines and three produce horizontal lines as shown in Figure 5a. For 

example, line generator A produces a vertical line, while line generator C produces a 

horizontal line. The overlap of those two lines produces a fluorescent dot. Dot formation can 

occur because the gel contains two immobilized fluorophore-quencher pair species, FaQPa 

and FbQPb, with specific 8 base-pair toeholds (shown as TH1 and TH2 in Figure 4c). In the 

case of the overlap of line generator A and line generator C, the reaction cascade ultimately 

produced single-stranded nucleic acid species that specifically interacted with toehold TH1a 

then TH2a to create a fluorescent dot in the upper left of the gel. An example of the 

progression of events is as follows. Overall, three different pixels are created using vertical 

line generator A. Line generator A produces a product in a specific vertical region. 

Immobilized construct FaQPa uses a version of TH1a that responds specifically to this 

product. In the vertical line from line generator A, TH2a is opened to make a “primed” 

region, as shown in Figure 5a. In this primed vertical line, the specific toehold (TH2a on 

product FaQPa) is ready to interact with the products of horizontal line generator C, which is 

responsive to TH2a and completes the cascade of strand exchange reactions, resulting in 

dequenching of FaQPa and forming fluorescent dot A∩C. It should be noted that 

programming the reactions with specific toeholds also avoids the initiation of undesired 

reaction cascades; the intersection of vertical line B with horizontal line E does not activate 

the substrate.

Table 1 describes the complete inter-reactivity of the 7 line generators. Table 1 also gives 

two effective diffusion coefficients for each generator, corresponding to the diffusion of the 

components from two sides. Ultimately, the seven lines develop in parallel to produce five 

immobilized spots that differentially interact with the two reporters to produce the crescent 

shape, and a simulation that takes into account diffusion is shown in Figure 5b.

10. Scalability and resolution limits

This system is scalable in an unintuitive way. The topology of the pattern will be generated 

without regard to the dimensions of the gel slab (although the time and material necessary to 

achieve the result will increase with the size of the gel). This is shown in Figure 5c where a 

simulation was run with all parameters consistent with those used for the generation of 

Figure 5b, with the exception that the size of the simulated region was enlarged.

The minimal size of the features generated by this system also scales with the overall size of 

the gel in which the reactions are occurring. The narrowest possible features are generated 

when reactants diffuse only a short distance into each others’ territory before reacting. Sharp 
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features are obtained if the effective diffusion rate does not greatly exceed the effective 

reaction rate. Whether a given reaction is diffusion- or reaction-limited can be characterized 

in terms of the Thiele modulus. Reeves et al. conclude that for effective patterning using 

diffusing signal molecules, the Thiele modulus must be approximately 1, at which point the 

influences of reaction and diffusion are balanced (Reeves et al. 2006). Because we directly 

link sequence design to reactivity and diffusivity, we in turn exert direct control over the 

Thiele modulus of the system.

The existence of such an optimum diffusion coefficient can be best illustrated with a thought 

experiment. We can take a gel of width 600 µm and embed a reaction where two DNA 

molecules are diffusing towards one another (as shown above in Figure 3) and will react 

with a rate coefficient of 106 mol−1 sec−1 Soloveichik et al. 2010). If we imagine a case in 

which diffusion rate is extremely slow, the advance edges of the DNA samples will yield a 

low, broad concentration profile and a correspondingly broad feature (see Figure 6a). In the 

opposite extreme, if we consider a diffusion rate that is very fast, such that the molecules 

diffuse across the entire gel before they find a partner and react, then this should also 

produce a broad feature (see Figure 6b).

In order to find an optimal diffusion coefficient that will produce narrow lines we used a 

numerical simulation. A typical DNA substrate has a native diffusion rate of 4.6 10−8 

cm2sec−1 in a 5% acrylamide gel (experimental estimate, data not shown), a value that can 

be further modified by interactions with oligonucleotides embedded in the gel. Using these 

reasonable estimates of the values of diffusion and reaction coefficients above, we estimate 

that the smallest full-width, half-max (FWHM) feature that can be generated in a 600 µm gel 

is approximately 63 µm or ~11% of the width of the gel (Figure 6c). This in turn 

corresponds to a hybridization length of 10 residues between substrate and gel, which 

reduces diffusion by 58% to ca. 2×10−8 cm2sec−1.

As we discussed above, the topology (and hence the resolution) of the feature size should 

scale with the outer dimensions of the gel. If we decrease the width of the gel to 150 µm, 

Figure 6d shows that the optimized diffusion coefficient produces a feature of width ~13 µm 

(again ~9% of the width), corresponding to ~11 bases of hybridization.

In principle, so long as diffusion can be limited to match the overall size of the gel, there is 

no limit to the smallest feature size that can be generated. With optimal conditions, a feature 

as small as ~10% of the width of the gel itself can be generated in any gel that can be 

fabricated. Indeed, during Drosophila development, the spatial reproducibility of the bicoid 

signal is limited to about 10% of the length of the embryo (Gregor et al. 2007). This insight 

suggests the interesting hypothesis that Drosophila may tune its diffusive environment. 

Astoundingly, for some signaling molecules, it seems that the Drosophila embryo may have 

indeed evolved to control diffusivity (Yan and Lin 2009). Removing heparan sulfate 

proteoglycans markedly decreased the distance over which the morphogen Hedgehog could 

act in developing Drosophila. It is not necessarily clear if this is due to a decreased or 

increased diffusion coefficient (Lander 2007). From a practical, experimental standpoint, 

this implies that to be able to make very small features, one must be able to manipulate 

increasingly smaller samples. In addition, there will be a breakdown of the relationship 
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between increased hybridization and lower Deff as a given interaction becomes strong 

enough to affix DNA strands semi-permanently, so that lateral motion cannot be modeled by 

simple diffusion. If the koff is too slow, our implicit assumption of local equilibrium will not 

be valid. This breakpoint occurs at a koff of ca. 10−2 sec−1 at room temperature, or 

approximately 15 base-pairs of interaction between substrate and gel (Robelek et al. 2006). 

This practical limitation sets the minimal, controllable feature size at about 10 µm for the 

types of reagents and timescales described here.

11. Reaction diffusion systems can generate complex spatial patterns

The above are simple systems with deterministic results. Feedback and amplification can 

create more complex, dynamic patterns. Periodic systems, for instance, can be generated by 

a system that comprises both amplification and inhibition at different time scales. This was 

described for a spatially homogenous system (Soloveichik et al. 2010) that developed a 

periodic reaction in time and is similar to some predator prey systems (Fujii and Rondelez 

2013). The ideal case can be realized by three reactions: two competing self-amplifiers and a 

pull-down. The simplified reactions are described as:

These three net reactions can be treated as modules and implemented by a collection of 

DNA strand displacement reactions (Soloveichik et al. 2010). The modules involve 3–7 

DNA species, including ‘fuel’ species that are initially at relatively large concentrations and 

unreactive ‘waste’ species that are generated as the reaction continues. When the rates for 

the reaction are correctly balanced, the concentrations of reagents A and B will oscillate. 

Figure 7a shows the concentration of A and B in a 1-D simulation of the full, 15-equation 

reaction-diffusion system described by Soloveichik et al. The simulated time was 2 hours. 

The result is presented as an intensity chart. Time is depicted on the Y-axis, distance on the 

X-axis and the color intensity represents the concentration. At any given point along the X-

axis, the reporters are phase-separated oscillators in time. This is shown as a line graph at 

right that represents the intensities of the two reporters at the central point of the 1-D 

simulation. A complete description of the CRN and the simulator are given in Supporting 

Material online.

A periodic pattern is also generated in space. The waves of transient A and B spread out 

from the initial small concentration of species A. Spatial periodicity is clearly observed in a 

modeled 2-D intensity image (Figure 7b, a single frame at ~1.5 simulated hours of the three-

equation reaction scheme described above). The images in Figure 7b show the distribution 

of concentration of reporters A and B in space in both directions along the X and Y axis. 

Ripples move out from a point of initial excitation concentration of A. The initial conditions 

include uniform, mobile reagents and a small quantity of ‘trigger’ species in one small zone 

at the center of the active region. The experiment presented in Figure 7 is an expansion of 

the reaction diffusion system presented in Figure 4 in the following sense: output species are 

fixed and some intermediates are mobile with a consistent diffusion coefficient of 0.1×10−8 
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cm2sec−1. In the oscillating case, mechanisms are in place to regenerate the mobile species. 

This could be physically accomplished in a similar approach to our experimental work 

presented elsewhere (Chen et al. 2011).

12. Controlling diffusivity to control chemical reactions

Diffusion control leading to spatial organization can potentially be used to also control 

chemical reactivity. For example, oligonucleotides linked to small, reactive organic 

compounds can be organized by templating, which in turn helps to control the order and 

regiospecificity of the reactions that the small molecules undergo (Kleiner et al. 2010, Li 

and Liu 2004). By implementing such templated reactions in the context of CRNs it should 

be possible to add new levels of spatial and temporal control to compound synthesis.

First, control over diffusion can direct the creation of a specific product. Two 

oligonucleotides carrying reactive chemical species (A and B) can be formed into lines in a 

gel using procedures those described above (see Figure 8a). In this example, the diffusion of 

precursors AA0 and BB0 are controlled by partial hybridization of an immobilized 

oligonucleotide to domain 0 on the chimeric oligonucleotide strands A and B. Upon meeting 

a counter-diffusing strand, strand displacement reactions 'activate' AA0 and BB0 to become 

immobile substrates A and B (through reactions shown in Figure 8b). The diffusivity of a 

third reactant, DNA species D, is similarly adjusted by varying complementarity to domain 

0. If species D diffuses slowly it can react with already immobilized, activated A and B, 

forming either DA or DB. However, since reactive species D diffuses through the activated 

lines of A and B sequentially this also establishes an order of reaction. Only one of the two 

possible products shown in Figure 8c, DAB, should be generated. We simulate the relative 

production of DAB relative to DBA in Figure 8d.

Similar ordered reactions have been performed by programmed DNA nanorobots (Yurke 

2007. However, as with many aspects of the amorphous computations described herein, the 

scalability of 'classic' DNA nanotechnology may prove difficult, especially for the 

production of chemicals in bulk. Gel-based separations are already common, and thus the 

concept of controlled, gel-based reactions is more amenable to scaling. Moreover, the 

process of chemical assembly could occur continuously in the gel, with new reactants 

constantly diffusing, being activated, and assembling in an ordered fashion.

The system is modular and eminently programmable, and changing the immobilized DNA 

sequence would change the order and kinetics of compound activation, which would in turn 

alter both the nature and efficiency of production of a final chemical product. Simplistically, 

depending on the sequences of the chimeras, DBA rather than DAB could be produced with 

high specificity. More importantly, though, should a given reaction prove inefficient, the 

width of the reaction zones for the self-assembled DNA bands could be increased by simply 

altering hybridization and thus diffusivity, allowing more time for the reaction to occur. It is 

reasonable to suggest that such a system could be combined with programmable nucleic acid 

reactions (Soloveichik et al. 2010) to realize a fully programmable, algorithmic system for 

chemical construction.
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13. Discussion

The diverse forms of self-organization in living systems develop from ostensibly simple 

homogeneity. This aspect of biology has fascinated humans since antiquity (Aristotle 2004. 

From a more modern point of view, we were inspired by the biological insights presented in 

Alan Turing’s seminal paper (Turing 1952), which formulated a set of conditions for pattern 

formation, including plausible kinetic equations that had symmetry-breaking properties. 

These systems have been extensively explored since then (Koch and Meinhardt 1994). 

Turing speculated that such reaction-diffusion systems could be the basis of embryonic 

morphogenesis. His work made it clear that specific properties of reactivity and diffusivity 

were necessary conditions for generating self-organized patterns. However, while biology 

excels at this feat, the methods by which it is accomplished are idiosyncratic and not as 

amenable to engineering as the programmable CRNs that we have imagined herein. The 

development of complex reaction networks is only realistic if the design can be made 

rational and generalized. There must be explicit, computable relationships between sequence 

and inter-reactivity and between sequence and diffusivity. The thermodynamic properties of 

nucleic acid hybridization are well known (Nakano et al. 1999). Linear strands with specific 

energies of hybridization to an immobile strand can thus be computationally designed to 

specify diffusion. We envision that the species in such circuits (including amplifiers, 

thresholds and logic gates) will dynamically modulate diffusivity by alternately exposing or 

hiding diffusion-modifying sequences to the fixed medium. By developing concepts for 

programming diffusivity and reactivity using nucleic acid sequence information, we provide 

a path forward for both better understanding the CRNs that underlie biology and for creating 

new CRNs with new applications. While computer simulation is generally adequate to prove 

that such systems can produce biological patterns, a physical system could reveal how 

simulation and theory might differ. Eventually, reaction diffusion systems like those 

presented here could direct the behavior of synthetic biological systems that mimic life-like 

behavior.

With respect to understanding biology, biological reaction-diffusion systems like those 

proposed by Turing are a hypothetical general model for the formation of complex patterns 

(Maini and Othmer 2001). In the most classic example, the use of diffusing, interacting 

molecules to generate a pattern compares quite directly to axis formation in Drosophila. In 

the case of the anterior-posterior axis, bicoid protein induces the expression of hunchback on 

only one side of the embryo. Maternal cells apply the bicoid mRNA to the anterior side of 

the embryo. This initial maternal polarity allows formation of more complex patterns 

downstream in development (Okabe-Oho et al. 2009). Drosophila development uses the 

positional information encoded into the diffusion gradient to determine the anterior-posterior 

location of key features. This is similar the patterns that emerge from our system where 

DNA species diffuse from opposite sides of a gel. A similar approach based on our 

technique could be used to set up initial order in an otherwise stochastic, self-organizing 

system. While we focused on patterns with predetermined outcomes, the control over 

reaction and diffusion is equally applicable to stochastic systems more typical of Turing 

patterns.
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Our exploration of programmable CRNs has already yielded insights relevant to biological 

pattern formation. Our analysis indicated a resolution limit to pattern formation by passive 

diffusion. We attempted to optimize the conditions for minimal feature size, and found that, 

a feature as small as ~10% of the width of the gel could be generated. We can consider the 

feature width in our system to be the probability distribution of many individual molecular 

interactions. This implies that in a stochastic system with few molecular events, the best 

possible embryo-to-embryo variability would be 10% of the width of the system. In 

Drosophila development this is indeed the observed value (Gregor et al. 2007).

We also explored the scalability of topology with our pattern generation system. In our 

simulations, a reaction-diffusion system within a gel produces features. The size and 

topography of those features scale with the outer dimensions of the gel. This is also reflected 

in the many examples of scaled patterns in biology. For example, across several varieties of 

Drosophila, the bicoid-generated features scale with the embryo size. The requirements for 

scale invariance of biological morphogenesis include an excess of binding sites to slow the 

morphogens’ diffusion and that the total number of binding sites should stay constant even 

as the size increases (Umulis 2009. Our analysis anticipates these findings in an intuitive 

way: a constant number of immobile DNA molecules in a larger volume yields a lower 

concentration. A lower concentration of immobilized DNA produces a higher effective 

diffusion rate. Higher diffusion over a larger sized gel maintains the Thiele modulus 

condition for optimal feature size.

In contrast to the work on Drosophila morphogenesis, many other studies have focused on 

either a basic understanding of natural pattern-formation systems or theoretical possibilities 

to generate stochastic patterns. By developing a programmable system for deterministic and 

non-linear CRNs it may prove possible to reimagine the mechanisms underlying many 

biological phenomena. For example, visibly patterned phenomena such as skin pigmentation 

may be developed from a reaction-diffusion type Turing mechanism (Nakamasu et al. 2009), 

and could be demonstrated using our system.

Programmed self-organization may also be an innovation that has great utility outside of 

biology. Most famously, chemical reaction networks have been substantiated in what is now 

known as the Belousov-Zhabotinsky reaction. This reaction, like Turing's hypothetical 

reactions, has specific diffusion rates that affect the appearance of patterns (Field and Noyes 

1974). Our system offers the possibility of developing much more complex patterns and 

behaviors. Indeed, given the advances that have been made in DNA computation, it may be 

possible to engineer very complex chemical reaction networks such as those pioneered by 

Qian and Winfree (2011), and to then use these CRNs for pattern formation at a variety of 

length scales. New deterministic and algorithmic patterns could potentially lead to the 

generation of “smart” materials whose bulk architectures are structured down to the 

nanoscale. For example, Janus particles, whose surfaces are two differentially patterned 

hemispheres, can be used to generate complex topologies (Chen et al. 2011). It stands to 

reason that particles with more complex surfaces generated by internal reaction-diffusion 

systems could generate more complex, patterned associations. Additionally, a reaction-

diffusion system might allow for a macroscopic positioning of other DNA structures, such 

as DNA origami (Rothemund 2006. A meso-scale pattern might be etched into a medium by 
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selectively melting a polymer gel cross-linked by self-assembled DNA helices (Zhu et al. 

2010).

Ultimately, modularity, abstraction and encoding should prove very important in 

engineering self-organizing systems. By analogy to computer science, the implementation of 

modular CRNs should be like a high-level computer language. A computer programmer 

need not know the deepest workings of the hardware (e.g., register shifts, memory 

addresses, etc.) in order to write useful software. The work presented herein is a step toward 

such a CRN language and compiler.
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Figure 1. 
DNA-DNA reactions including. (A) shows a strand displacement and (B) strand 

displacement chain
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Figure 2. 
The effect of decorated acrylamide on diffusion. (a) A DNA oligonucleotide terminated with 

an acrydite moiety is incorporated into a growing acrylamide polymer. (b) Starting from a 

narrow distribution, DNA spreads through a gel by free diffusion. In (c) free diffusion (left, 

Keq=0) is compared to a species that interacts significantly with the immobile DNA (right, 

Keq=2×106mol−1D=), which diffuses more slowly.
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Figure 3. 
(a) Schematic shows the reaction governing the formation of the final, fluorescent product 

AFC. DNA sub sequences are numbered with their complementary sub-sequences denoted 

with an apostrophe. (b) The three reactions occur simultaneously; ABFQ and D are in fast 

equilibrium with *C to form immobile products (denoted by asterisks) with equilibrium 

constants K1 and K2. ABFQ and D form an immobile product *AFC when they are co-

localized. (c) Concentration plots show the reactants ABFQ, and D through time as well as 

the evolution of *AFC. (d) Concentration plot shows the final distribution of product *AFC 

as a function of the ratio of the two equilibrium constants K1 and K2.
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Figure 4. 
a) Schematic shows a strand displacement that results in product C located in the vertical 

line. (b) Schematic of a second strand displacement with a different toe-hold that results in 

product G located in a horizontal line. (c) Schematic shows the fluorogenic strand 

displacement in which immobilized FPQ becomes immobilized fluorescent product FCG 

only after reacting with both C and G. This produces a single fluorescent region located in 

the center of the gel. (d) Images from our simulator showing the evolution of product FCG 

over time; time points are evenly spaced from 10 to 30 hours. The simulation uses the Deff 

approximation from equation 7; Fixed species (noted with *) are presumed to have Deff = 0 

and all other species have Deff = 0.15e-8 cm2/sec
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Figure 5. 
a) Images from our simulator show the regions activated by the reaction systems described 

in Table 1. The labeled regions indicate intended location the products of reaction systems 

A-H should appear. (b) A simulation of the same system shows a ‘C’ pattern. (a) In the same 

simulation with a larger space (all else remaining constant) the pattern scales with the space.
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Figure 6. 
A thought experiment illustration shows that in both the high-diffusion extreme (a) and the 

low-diffusion extreme (b), the resulting feature is broad. (c) Graph shows the relationship 

between the diffusion coefficients of reagents and the final full-width half-max size of the 

generated feature in the case with a gel of 600 µm in width. The same relationship is shown 

in (d) for a gel 150 µm in width. It shows that there is an optimal diffusion coefficient for a 

given size gel which produces a feature of approximately 10% of the full width of the gel.
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Figure 7. 
Periodic patterns created by an amplifier/inhibitor system. (a) Intensity vs location vs. time 

plot shows the complete 15 species model of the DNA system in time and space with two 

species X1 and X2 plus their 2-color overlay pattern where X1 is red and X2 is green. (b) A 

simplified simulation of the system in 2 dimensions at one time point; the waves of 

production of species X1 and X2 move from right to left in time (see Supporting Material 

online).
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Figure 8. 
a) Two lines (of species A and B) are developed. (b) A scheme for developing these species 

are shown. For instance AA0 meets A1 and develops A. (c) Reactive species D diffuses 

slowly through them and react to form a complex that depends on the order of operations. 

(d) The concentration of each species develops over time and is highly selective for product 

DAB.
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Table 1

shows diffusion coefficients of a set of constructs which produce an simple 2D figure.

Name Position Reacts with Deff,1 (cm2sec−1) Deff, 2 (cm2sec−1)

A L/R Xa TH1 .22 1.1

B L/R Xb TH1 .6 .6

C U/D Xa TH2 .22 1.1

D U/D Xb TH2 .22 1.1

E U/D Xa TH2 .65 .65

F U/D Xa TH2 1.1 .22

G U/D Xb TH2 1.1 .22
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