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Abstract

Self-assembly is a phenomenon observed in na-
ture at all scales where autonomous entities build
complex structures, without external influences
nor centralised master plan. Modelling such enti-
ties and programming correct interactions among
them is crucial for controlling the manufacture
of desired complex structures at the molecular
and supramolecular scale. This work focuses
on a programmability model for non DNA-based
molecules and complex behaviour analysis of their
self-assembled conformations. In particular, we
look into modelling, programming and simulation
of porphyrin molecules self-assembly and apply
Kolgomorov complexity-based techniques to clas-
sify and assess simulation results in terms of in-
formation content. The analysis focuses on phase
transition, clustering, variability and parameter
discovery which as a whole pave the way to the
notion of complex systems programmability.

1 Introduction

Self-assembly research and practice (Krasnogor
et al, 2008) (regardless of the scale at which it
operates) often encounters three key problems (a)
the forward problem, (b) the backward problem
(also known as the designability problem) and
(c) the yield problem (Pelesko, 2007). The for-
ward problem is concerned with trying to predict
what the final product of the self-assembly pro-
cess would be, given a set of objects, environ-
mental conditions and the natural laws (physi-
cal, chemical, biological) that are prevalent at a
given specific scale. Usually the forward problem
is addressed through the use of simulations and
mathematical models. The backward problem,
the most difficult of the three, addresses the issue
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of how the objects and the environment that con-
tains them can be designed in such a way that the
final outcome of the self-assembling process is a
specific pre-ordained one. As surveyed in Pelesko
(2007), this problem is usually addressed through
very sophisticated heuristics methods as, in lieu
of the NP-hardness (in some cases even undecid-
ability) of the most relevant backward problems,
exact analytical solutions are very rarely achiev-
able. The third problem, that of the yield of a self-
assembly process, is related to the estimation and
control of how many of the intended target self-
assembled objects one can expect from a partic-
ular self-assembling system (this problem is ubiq-
uitous in the chemical sciences). The observation
that “self-assembly and computation are linked by
the study of mathematical tiling” (Rothemund,
2000) has produced a step change in the way
the forward, yield and, more significantly, the
backward problems in molecular self-assembly are
dealt with. More specifically, Mao et al (2000);
Soloveichik and Winfree (2005); Winfree (1996);
Winfree et al (1998) have shown that universal
computation can be carried out by self-assembling
discrete DNA tiles in a 2D plane and, by utiliz-
ing the power of universal computation, complex
DNA-based patterns have been implemented in
the lab through a clever programming of the DNA
tiles. Indeed, linking self-assembly and computa-
tion provides a powerful new approach to address-
ing profound questions about the controllability
of complex physico-chemical nanosystems. We
could ask, for example (Adleman et al, 2001, 2002;
Rothemund and Winfree, 2000; Soloveichik and
Winfree, 2005) what are the least complex molec-
ular tiling motifs which may be exploited in the
programming of self-assembly 2D lattices with spe-
cific geometries? It was shown in Adleman et al
(2001, 2002) that answering this question might,
in some cases, be a computationally undecidable
query while in other cases it might give rise to NP-
hard problems, thus it is strongly suspected that
exact polynomial time deterministic algorithms do
not exist for these problems. It is important to
remark that the idea is not necessarily to use self-
assembly for computational purposes (as in DNA
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computing) but, rather, the other way around: to
use computation in such a way as to program nano
tiles so they self-assemble, with exquisite detail,
into specific patterns. That is, computation em-
bedded in the tiles design allows for an enhanced
control of the self-assembling entities; this remark-
able formal connection between self-assembly and
computation is the subject of our work.

We have demonstrated that a combination of
experiments, modelling and evolutionary compu-
tation can automatically program idealized mod-
els of discrete self-assembly tiling systems (Ter-
razas et al, 2005, 2007a) and also self-organising
gold nanoparticle assemblies (Siepmann et al,
2007) in such a way that they achieve specific
self-assembled conformations. In one of our stud-
ies we concentrated on a system that consisted
of so called Wang tiles. Wang tiles live in a 2-
dimensional world and can freely move in this 2D
space. When two tiles collide, the glue type of the
colliding sides is used to decide whether the tiles
should stick to each other or bounce back. Given a
set of glue types with their characteristic strengths
and a given temperature, we were able to solve
the backward problem and provide answers to
the question of what is the (optimal) family of
tiles that will self-assemble into a specific spatio-
temporal pattern? We have also shown (Siepmann
et al, 2006, 2007; Terrazas et al, 2005, 2007b) that
it is possible to evolve the parameters of a cellular
automata-based Monte Carlo model to coerce a
specific spatio-temporal pattern closely matching
observed nanoscience experiments imaged with
an atomic force microscope while substantially
speeding-up the process of nanoscanning (Wool-
ley et al, 2011). In contrast to work mentioned
previously, here we focus on extensive simulations
of non DNA-based molecules deposited on a suit-
ably processed solid substrate and on complex
behaviour analysis. Indeed, outside DNA-based
systems (Rothemund and Winfree (2000); Solove-
ichik and Winfree (2005); Winfree and Bekbola-
tov (2003)), analogues of programmable molecu-
lar tiling of complex self-assembling patterns have
yet to be systematically studied and this paper is
a first step in that direction. For a survey of self-
assembly systems at various scales and under var-
ious physical embodiments please refer to Krasno-
gor et al (2008).

Different approaches have been employed for
the characterisation, quantification and classifi-
cation of complex behaviour. Kolmogorov com-
plexity (Kolmogorov, 1965) is the mathematical
measure of randomness that together with some
metric variations is well equipped to tell apart
structure from simplicity as a measure of infor-
mation. The Kolmogorov complexity of a given
object is defined as the length of the shortest pro-

gram for computing such object by a universal
Turing machine (Chaitin, 1969). In other words,
this method characterises the complexity of an
object by the length of its shortest description,
that is, the minimum number of symbols needed
for a computer program to reproduce such object.
Kolmogorov complexity is an uncomputable func-
tion and one of its approximations is implemented
by lossless compression algorithms. Such approx-
imation has been applied to study the qualitative
dynamical properties of cellular automata (Zenil,
2010), classification of cellular automata (Dubacq
et al, 2001), classification of biological sequences
(Ferragina et al, 2007) and data mining (Keogh
et al, 2007), to name but a few. An important re-
sult of Kolmogorov complexity is the Normalised
Compression Distance (Li et al, 2004) which is
a measure of similarity between two given objects
in terms of information. The information distance
between two objects is defined as the amount of
information required to compute one object given
the other. This metric has been applied to dif-
ferent purposes in a wide range of research fields
such as pattern recognition, data mining, cluster-
ing, evolutionary design and classification (Cili-
brasi and Vitányi, 2005; Siepmann et al, 2006;
Terrazas et al, 2007b; Vitányi, 2012), and also em-
ployed as a base for defining information distance
between multiple objects (Vitányi, 2011).

In this work, we introduce a simple mathe-
matical model that captures relevant porphyrin
molecules dynamics and blends with a classic
stochastic algorithm into a self-assembly simu-
lation system. The behaviour of this system
is mainly governed by programmable porphyrin
molecules, the different instances of which give rise
to an extensive variety of morphologically com-
plex self-assembled structures where some of these
closely match supramolecular conformations ob-
served in porphyrin molecules deposited onto a
A(111) solid processed gold substrate. Our aim
is to characterise qualitative traits of the com-
plex behaviour captured by our system, i.e. the
resulting self-assembled aggregates, in terms of
Kolmogorov complexity and information distance.
Next section introduces the porphyrin molecules
programmability model followed by a full descrip-
tion of our self-assembly simulation system, de-
scription of experiments and simulation results.
Then, the characterisation of the system follows
focusing on phase transition, clustering, variabil-
ity, parameter discovery, orthogonality and fin-
ishes with an introduction to the notion of com-
plex system programmability.
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(a) (b)

Fig. 1: Correspondence between a Wang tile and a double cross-over, antiparallel, odd-spacing (DAO)
molecule where tile labels map to sticky ends of unique DNA sequence (a). Self-assembly of molecular units
into two-dimensional lattice by means of programmed Watson-Crick complementary sticky ends (b). (Reported
in Winfree et al (1998))

2 Programmability Model

The programmability of detailed structure of mat-
ter at nano scale has been reported in Winfree
et al (1998) where the aim is to design molecu-
lar DNA-based units with predictable and con-
trollable interactions that self-assemble into two-
component lattices, with a stripe every other unit,
and into four-component lattices, with a stripe
every fourth unit. In order to achieve this, the
mathematical theory behind Wang tiles (Wang,
1961) has been employed for the physical and op-
erational design of antiparallel double-crossover
(DX) DNA-based molecules which act as molecu-
lar tiles with programmable interactions (see Fig.
1 (a)). This resulted in the production of 12.6nm
wide double cross-over, antiparallel, odd-spacing
(DAO) molecules and double cross-over, antipar-
allel, even spacing (DAE) molecules, the corners
of which consist of single stranded sticky ends of
unique DNA sequence. Correct association among
DX units is then achieved by carefully program-
ming their sticky ends with Watson-Crick com-
plementarity (see Fig. 1 (b)) in such a way that
undesired associations are unlikely to take place.
For such purpose, the principle of sequence sym-
metry was employed in order to maximise the free
energy difference between desired and alternative
conformations.

In our work, we employed porphyrin molecules
which are planar molecular units with a dimen-
sion of 2.89nm2, fourfold symmetry and suit-
able for solid substrate deposition. The chemi-
cal structure of a porphyrin molecule reveals four
structural units which can be synthesised with
substituent functional groups, hence giving as
a result functionalised (programmable) porphyrin
molecules. The intermolecular hydrogen bond-
ing and van der Waals interactions among such
substituents allow diverse self-assembly complex-
ity together with a high degree of reversibility
and highly dynamic pattern formation. We have
currently synthesised porphyrins with iodine, car-
boxylic acid, pyridine, bromine and nitro func-

tional groups. Their chemical structures as well
as some of the currently estimated relative bind-
ing strengths between them are collected in Table
1. Thus, the programmability of the structural

N/A N/A N/A 0.13 N/A

0.30 N/A N/A 0.39

1.00 N/A N/A

0.087 0.17

0.10

Table 1: Functional groups employed to synthe-
sise porphyrin molecules. The approximate binding
energy values between nitro (NO2), carboxylic acid
(O2H), bromine (Br), iodine (I) and pyridine (N)
are expressed in electro volts ( eV ).

units on porphyrin molecules is the point of inter-
est in our work. The potential of our approach
is that by employing non-DNA based molecules
one can access different chemical/physical systems
and eventually embed computation in them. By
being different than DNA, porphyrins based com-
putation will be able to operate under tempera-
ture regimes, solvents, PH levels, concentrations,
etc., unlike those required for DNA. Also, por-
phyrin tiles are considerable smaller than DNA
tiles. In addition, porphyrins self-assembly takes
place not in bulk solution but rather parallel to
a surface, hence naturally leading to a 2D self-
assembly stratagem and thus contrasting to DNA-
based strategies which employ highly complex 3D
motifs for self-assembly even when dealing with
2D patterns. We show two example applications
in Terrazas et al, 2013, pp. 4-5. In the first
one we demonstrate that counters (Cheng et al,
2004; Moisset de Espanés, 2008) can be engi-
neered with porphyrin tiles. These counters are
employed to systematically self-assemble a two-
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dimensional structure in such a way that some
porphyrin tiles form backbones directing the phys-
ical extent other porphyrin tiles can “flood” a
well-defined region. Another example is provided
of a two-state probabilistic automaton that can
output a globally complex pattern made up of in-
ternally ordered substructures. Thus, we model
a physico-chemical system where fully function-
alised porphyrin molecules deposited onto a gold
processed substrate perform intermolecular inter-
actions which drive the creation of self-assembled
supramolecular aggregates. We choose Wang tiles
as physical embodiment since these are square
in shape with labelled edges and undergo tile-to-
tile interactions, hence exhibiting not only a mor-
phological correspondence to functionalised por-
phyrin molecules, but also a functional mapping
to the intermolecular interactions. An illustration
of such correspondence between Wang tiles and
porphyrin molecules is shown at the top of Fig.
2. From here onwards we refer to such embod-
iment as porphyrin-tile, which could be defined
as either iso-functionalised when its four sides
are programmed with the same functional group
and as hetero-functionalised when its four sides
are programmed with different functional groups.
An example of a hetero-functionalised porphyrin
molecule and its corresponding porphyrin-tile em-
bodiment is depicted at the bottom of Fig. 2. In
addition, the substrate where molecules are de-
posited and on which aggregates are formed is
modelled as a two-dimensional square site lattice
set with periodic boundary conditions where each
position is occupied by only one porphyrin-tile at
a time.

3 Porphyrin-tiles Kinetic Monte Carlo
System

The Monte Carlo family of methods are stochas-
tic simulation algorithms used to model the
behaviour of complex systems without the need
to solve analytically the equations governing
the system in question. These methods are
generally good when a fast approximation of
the overall behaviour of the system is needed
(Flenner et al, 2012). Inspired by a kinetic
Monte Carlo (kMC) system programmed for
the simulation of nucleation and growth of thin
metal films onto amorphous substrates (Bruschi
et al, 1997), we have designed and developed a
porphyrin-tiles kMC system for the simulation of
the self-assembly process between functionalised
porphyrin molecules. Energy interactions among
neighbouring molecules are at the core of the
system dynamics and in our case the neighbour-
hood for a molecule at position (i, j) is defined
as von Neumann type. A symbolic example of

Fig. 2: Wang tile as embodiment of a porphyrin
with labels corresponding to molecular structural
units (top) set with nitrogen and iodine originate
a functionalised porphyrin molecule embodied by
a Wang tile where different labels correspond to
functional groups (bottom).

a molecule hop from position (i, j) to position
(i, j+1) together with its neighbouring positions
is depicted in Fig. 3 (a).
Energy interactions among neighbouring
molecules are exploited here for capturing
three phenomena: deposition, motion and rota-
tion of a molecule on the substrate. In particular,
deposition models the arrival of a molecule onto
an empty position of the substrate, i.e. the
entrance of a porphyrin-tile to an unoccupied
position (i, j) of the lattice. Motion models
the translation of a molecule to one of its four
neighbouring empty positions of the substrate,
i.e. the movement of a porphyrin-tile located
at position (i, j) into one of its four unoccupied
nearest neighbouring positions (i+1, j), (i, j+1),
(i-1, j) or (i, j-1) by considering three cases: the
diffusion of a molecule across the lattice without
interacting with neighbouring molecules as shown
in Fig. 3 (b), diffusion along an aggregate as
depicted in Fig. 3 (c) or departure of a molecule
from an aggregate as illustrated in Fig. 3 (d).
Rotation models spinning of a molecule on its
centre of mass, i.e. the ±90 degrees gyration of a
porphyrin-tile on its geometrical midpoint.

The porphyrin-tiles kMC is configured with:
1) a set of porphyrin-tile families, or descriptors,
each of these mapping a species of functionalised
porphyrin molecule and from where porphyrin-
tile instances are drawn to deposit on the lattice,
and 2) numerical properties of the system. The
latter comprises continuous numerical values to
specify binding energies among functional groups,
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(a) (b)

(c) (d)

Fig. 3: Symbolic examples of a molecule hop from
position (i, j) to position (i, j + 1) together with its
neighbouring positions (a), diffusion of a molecule
across the lattice without interacting with neighbour-
ing molecules (b), diffusion of a molecule along an
aggregate (c) and departure of a molecule from an
aggregate (d).

binding energy between a molecule and substrate,
binding energy of rotation, concentration of each
porphyrin-tile, environmental factors such as tem-
perature of the system as well as discrete numer-
ical values to specify number of labels and num-
ber of porphyrin-tile families. In each time step
of the simulation, a list with the possible transi-
tions of the system, i.e. deposition, motion and
rotation of a porphyrin molecule, and their cor-
respondent rates is compiled. In particular, de-
positions take place at a constant deposition rate
(RDep) whereas diffusions and rotations are per-
formed according to a diffusion rate (rijkl) calcu-
lated as:

rijkl = exp(
−Eijkl

TT0
) (1)

where Eijkl is the activation energy a molecule
needs to jump from position (i, j) to position (k, l)
and TT0 is a fixed parameter capturing the tem-
perature of the system and the Boltzmann con-
stant. The activation energy for diffusion is cal-
culated in terms of the binding energies involved
between the porphyrin molecule of interest and
each of its nearest neighbouring molecules and the
binding energy to the substrate. For instance, the
calculation of the activation energy for moving the
porphyrin molecule in red colour of Fig. 4 (b) to
the right is given by:

Eijkl = Es + Eac1 + Ebc2 + Ecc3 (2)

where Es is the binding energy between molecule
and substrate (see Fig. 4 (a)), Ex∈{a,b,c} is the

(a) (d)

(b) (e)

(c) (f)

Fig. 4: Binding energy between a porphyrin molecule
and substrate Es (a) and binding energies Ea, Eb, Ec

between a porphyrin molecule and its neighbours (b),
all them involved when the molecule hops from posi-
tion (i, j) to (i, j + 1). The +90 degrees rotation of
a porphyrin molecule involves binding energy of rota-
tion Er (c), binding energy of starting configuration
Ea, Eb, Ec, Ed (d) and binding energies of final config-
uration Ee, Ef , Eg, Eh (f). Differences in energy be-
tween starting and final configuration, i.e. |Ea −Ef |,
|Eb −Eg|, |Ec −Eg|, |Ed −Ee|, are called energies of
the saddle point.

binding energy between functional groups located
at adjacent edges of neighbouring molecules and
ci∈{1,2,3} ∈ {0, 1} is the occupancy of neighbour-
ing position i. Similarly, the activation energy for
rotation is calculated in terms of the binding en-
ergies involved between the porphyrin molecule of
interest and each of its nearest neighbours, the
binding energy of rotation, and the binding ener-
gies of the saddle. For example, the calculation
of the activation energy for rotating +90 degrees
a porphyrin molecule like the one in red colour of
Fig. 4 (d - f) is given by:

Eijij = Er + Eac1c2 + Ebc2c3 + Ecc3c4 + Edc4c1

+ |Ea − Ef |c1 + |Eb − Eg|c2
+ |Ec − Eh|c3 + |Ed − Ee|c4

(3)

where Er is the binding energy for a porphyrin
molecule to rotate ±90 degrees about its centre of
mass (see Fig. 4 (c)) and |Ex − Ey| is the energy
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of the saddle point. The latter is the difference
between the binding energy of the breaking bond
and the binding energy of the newly formed bond-
ing.

Once the list of all possible transitions of the
system and their rates are compiled, a Monte
Carlo selection process follows in which the tran-
sition with the best chances to happen is chosen
and performed. The chance of a transition is given
according to the value of its associated rate which
is directly linked to the activation energy. Hence,
the bigger the activation energy of a transition,
the lower chances it has to be performed. This
rationale can be seen in the plot of Fig. 5 where
for explanation purposes x is a scaled transforma-
tion of Eijkl/TT0 in Eq. 1. Therefore, the more
neighbouring molecules are present and the bigger
Es or Er, the lower chances a given porphyrin-
tile has to diffuse or rotate. After a transition is
performed, the list is updated and the process is
repeated for a fixed number of time steps.

Fig. 5: Plot of rijkl defined in Eq. 1 where x is
a scaled transformation of Eijkl/TT0. During the
Monte Carlo process, the bigger the activation energy,
the lower chances its associated transition has to be
chosen and performed.

A pseudo-code of the porphyrin-tiles kMC sys-
tem is listed in Algorithm 1. The algorithm con-
sists of three main data structures: P that stores
porphyrin-tiles, T that lists the possible transi-
tions of the system and the square site lattice L.
The calculation of rates for motion and rotation
associated to each porphyrin-tile takes place in
calculateRates in which activationEnergy(p, t)
implements Eq. 2 when t is motion or Eq.
3 when t is rotation. The selection of the
most likely transition takes place in doDiffu-

sion where performOn(t, p) moves or rotates
a porphyrin-tile p. If neither rotation or mo-
tion takes place, the arrival of a new porphyrin-
tile onto L is performed by doDeposition where
getEmptyPosition(L) returns an empty site of
the lattice.

Algorithm 1 porphyrin-tiles kMC algorithm

1: procedure Main(n)
2: P ← ∅
3: T ← {motion, rotation}
4: for i← 1, n do
5: calcRates
6: if not(doDiffusion) then
7: doDeposition
8: end if
9: end for

10: end procedure
11:

12: procedure calculateRates
13: for all p ∈ P do
14: for all t ∈ T do
15: Eijkl ← activationEnergy(p, t)
16: p.rt ← exp(−Eijkl/TT0)
17: end for
18: end for
19: end procedure
20:

21: procedure doDiffusion
22: for all p ∈ P do
23: total← total + p.rt
24: end for
25: counter ← 0
26: rndShoot← RND[0, 1)× (total + rDep)
27: for all p ∈ P do
28: counter ← counter + p.rt
29: if counter > rndShoot then
30: performOn(t, p)
31: return TRUE
32: end if
33: end for
34: return FALSE
35: end procedure
36:

37: procedure doDeposition
38: pnew.ij ← getEmptyPosition(L)
39: P ∪ {pnew}
40: end procedure
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In what follows we present the experiments
and results obtained with the porphyrin-tiles
kMC system. The aim here is to explore what
self-assembled aggregates are possible to obtain
as we vary the binding energy between por-
phyrin molecule and substrate, and as we program
porphyrin-tiles with different functional groups.

3.1 Experiments

For each experiment, the simulator was con-
figured with: a lattice of 256 × 256 posi-
tions, two different species of heterogeneous iso-
functionalised porphyrin-tiles, binding energy be-
tween each of the two identical functional groups
(E11 and E22), binding energy between differ-
ent functional groups (E12) and binding en-
ergy between molecule and substrate (Es). The
first three binding energies taking values from
[0.1 eV, 0.2 eV, . . . , 1.0 eV ] whilst the latter from
[0.5 eV, 0.6 eV, . . . , 1.0 eV ]. Although the pro-
grammability of porphyrin-tiles is conceptually
given by changing the functional groups assigned
to the labels representing structural units, its ac-
tual implementation is carried out by changing
the values assigned to E11, E22 and E12. Thus,
all the possible combinations among E11, E22, E12

and Es were systematically given in turns together
with maximum lattice coverage of 25%, Er =
1.3 eV , TT0 = 28 × 10−3 and RDep = 5 × 10−5.
From now onwards the units of energy eV will
be omitted when referring to values taken by Es,
E11, E22 and E12.

3.2 Results

The final configuration of each experiment was
captured in an image available for inspection in
a website at http://www.cs.nott.ac.uk/~gzt/

3x1St3nC3. We observe that the four input pa-
rameters have different levels of impact on the
simulation results. To begin with, the binding
energy between molecule and substrate controls
the quantity of originated aggregates. That is,
the smaller (bigger) the value of Es, the lower
(higher) stickiness to the substrate that gives a
molecule more (less) freedom to move. Second,
we observe that by programming the porphyrin-
tiles in specific ways it is possible to control the
aggregates’ composition, morphology as well as di-
versity. For instance, the binding energy between
different functional groups influences the compo-
sition of the aggregates and diversity of morpholo-
gies. In other words, more (less) segregation be-
tween porphyrin-tiles species as well as more (less)
diversity on aggregates morphology is observed
when E12 increases (decreases). In addition, the
combinations of binding energies between identi-
cal functional groups has a direct impact on the

morphology of the aggregates. These binding en-
ergies are, however, more (less) influential in the
presence of low (high) Es and low E12. A repre-
sentative selection of simulation results is shown
in Fig. 6 where the number of aggregates in each
simulation result goes between 1 and 5 due to low
Es. A visual inspection reveals that there is more
segregation in the aggregates composition since
low E12 drives the self-assembly process towards
the creation of aggregates among molecules of the
same species. From a more general point of view,
there is also a transition on the morphologies of
the aggregates which goes from square bulky (Fig.
6 bottom right) to thin dendritic (Fig. 6 top left)
as E11 and E22 vary across their range.

Fig. 6: A sample of experiment results
set with two species of heterogeneous iso-
functionalised porphyrin nano-tiles (yellow
and blue), E11 ∈ [0.3 eV, 0.4 eV, . . . , 1.0 eV ],
E22 ∈ [0.2 eV, 0.3 eV, . . . , 1.0 eV ], E12 = 0.1 eV
and Es = 0.5 eV .

4 Kolmogorov Complexity and Informa-
tion Content

Algorithmic complexity (Chaitin, 1969; Kol-
mogorov, 1965) characterises the information con-
tent of an object as the shortest computer pro-
gram that produces it. The result of the differ-
ence between the length of a string and its great-
est compressed version determines the complexity
of a string and how difficult it is to predict. For-
mally,

KU (s) = min{|p|, U(p) = s} (4)

where |p| is the length of the shortest program
that produces a string s running on a univer-
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sal Turing machine U . The minimal length for
a description of an object depends on the exact
method used for reproducing the object from the
description, but the Invariance theorem guaran-
tees that differences will be bounded by a con-
stant, coincide in the limit and do not depend on
the object. More formally, the theorem establishes
that if U1 and U2 are two (universal) Turing ma-
chines and KU1

(s) and KU2
(s) algorithmic com-

plexities of a binary string s when U1 or U2 are
respectively used, there exists a constant c such
that for all binary strings s:

|KU1
(s)−KU2

(s)| < c
U1,U2

(5)

No algorithm can tell whether a program p gen-
erating s is the shortest (due to the undecidabil-
ity of the halting problem of Turing machines)
but K(s) is upper semi-computable meaning that
it can be approximated from above, for example,
using lossless compression algorithms. The result
of a compression algorithm is a sufficient test for
non-randomness, i.e. K cannot be greater than
the length of the compressed version (C) of s.
Previous investigations on a phase transition co-
efficient (Zenil, 2010, 2012) were undertaken in an
attempt to quantify the qualitative behaviour of
systems with order parameters based on these no-
tions, namely Kolmogorov complexity and com-
pressibility. The implementations of such con-
cepts have been performed in terms of the De-
flate compression algorithm which is available in
both pngcrush (zlib) tool1 version and the func-
tion Compress in Mathematica v.8. Deflate is a
variation of the universal (Li et al, 2004) loss-
less data compression algorithm LZ77 (Lempel-
Ziv) popular in many computer formats such as
Portable Network Graphics (PNG) and GNU zip
(gzip).

In what follows, Kolmogorov complexity no-
tions are applied to the simulation results ob-
tained from experiments performed with the
porphyrin-tiles kMC system presented in Section
3.1. Our interest in employing these concepts here
is two-fold. First, we would like to investigate if
there exists any type of correlation between the
input parameters values of the system and the
simulation results. Also, we are interested to in-
vestigate if phase transitions emerge across the
complexity associated to the captured structures.
The second goal is to apply a similarity measure
based on the notion of information distance in
order to automatically classify the self-assembled
aggregates according to their information content.

1Available at http://pmt.sourceforge.net/pngcrush/
(Accessed on October 14, 2012) set to maximum compres-
sion.

4.1 Compression-based analysis

A particular combination of binding energy
values, i.e. combinations of Es, E11, E22 and
E12, define a point in the input parameter space
which, after the phorphyrin-tiles kMC simulation
finishes, links to another point onto the simula-
tion result space. Here, we define this last space
in terms of compressibility which is a measure
defining how compressible or incompressible a
given input is. In general, a string is called
compressible if it has a description which is much
shorter than the string itself. Conversely, an
incompressible string lacks regularities that could
be exploited to obtain a compressed description;
they are patternless, hence random. Thus, a
simulation result is captured in an image which,
seen as a collection of strings arranged in a special
way, works as input to a compression method.
The output of such method is a compressed file
associated to a compression ratio defined as the
compression size of the image divided by the size
of its uncompressed form. In particular, the more
compressible the image is, the smaller the com-
pression ratio of the associated compressed file.
Having all the resulting experiments captured in
images we would like to address the following:

Is it possible to classify the simulation results
in terms of compressibility ? If so, could phase
transitions be discovered from such classification ?

Is there any correlation between input pa-
rameter space and the simulation result space ?

In order to answer the first question, we em-
ployed compressibility analysis. That is, each
image capturing a simulation result is com-
pressed with the Deflate algorithm implemented
in pngcrush. This returns as a result a compressed
PNG file the size of which reveals its compressibil-
ity. In other words, the smaller (bigger) the com-
pression ratio of the PNG file, the more compress-
ible (incompressible) the captured simulation is.
The collection of images shown in Fig. 7 are some
representatives of the experiments. From left to
right and top to bottom, these images are sorted
in ascending order according to their associated
compression ratio. These findings reveal that sim-
ulation results with similar qualitative structural
properties among their aggregates are close to
each other, meaning that the compressibility mea-
sure is capturing behavioural traits of the con-
figurations in which the porphyrin-tiles distribute
themselves when interacting under different input
parameter conditions.

Considering the entire set of simulation results,
we are interested to see if it was possible to dis-
tinguish phase transitions in terms of compress-
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Fig. 7: Incompressibility classification: Aggregate configurations of porphyrin-tiles sorted by compression ratio
(from greatest to lowest compression). It is clear that aggregates with similar qualitative structural properties
are close to each other, meaning that the compressibility measure is capturing behavioural traits of the
configurations in which the porphyrin-tiles distribute themselves when interacting under different parameter
conditions.
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Fig. 8: As a proof-of-concept in the application
of Kolmogorov complexity to the conformation space
of Porphyrin molecules, a sample of 21 representa-
tive aggregates with qualitative different behaviour is
selected with the aid of an agglomerative hierarchi-
cal clustering with an Euclidian distance function. A
phase transition appeared between highly compress-
ible configurations (aggregates 1 to 9) and low com-
pressible configurations (aggregates 10 to 21) that
turned out to be a transition of fast changes according
to the compression ratios, as shown in Fig. 9. Aggre-
gates are labelled with their respective Es, E11, E22,
E12.

ibility. Thus, we ran a hierarchical clustering al-
gorithm (Anderberg, 1973) (see further details in
Fig. 8) leading to the 21 groups from which a
(uniformly) random element was chosen. A steep
rise was observed revealing a sharp increment in
the complexity of the self-assembled aggregates.
As explained in Section 3.2, input parameter val-
ues act as “microscopic” interactions which give
origin to “macroscopic” manifestations. A richer
analysis on how these relates to compressibility is
done in Section 4.4.

Fig. 9: Looking at the distribution of compression ra-
tios one can see that aggregate configurations quickly
reach medium complexity before evolving into more
random configurations. The distribution of aggre-
gates is also conform with an intuition of increasing
randomness (Kolmogorov complexity), where simple
(complex) configurations are close (far) to the origin.

We next sort the aggregates in terms of com-
pression ratio as shown in Fig. 9. The result-
ing plot reveals that there are two relevant seg-

ments within compression ratios, one going from
0.0019 to 0.020 and another one going from 0.020
to 0.034. Within the first one, there is a fast evolu-
tion going from low to medium complexity struc-
tures whereas within the second segment there
is a rather smooth transition from medium to-
wards high complexity structures. In addition, an
increase in randomness along x-axis is observed
along the entire distribution of self-assembled ag-
gregates where the simpler the structures, the
closer to the origin.

In order to address the second question, the no-
tion of distance within the input parameter space
is defined as follows. Let a point in the input
parameter space be defined as a 4-tuple compris-
ing the binding energies associated to a simula-
tion result, i.e. Pi = (Es, E11, E22, E12). Let
the point where all binding energies have zero
value the origin of the input parameter space, i.e.
Po = (0, 0, 0, 0). The distance of a point Pi in the
input parameter space is defined as the Euclidean
distance between Po and Pi, formally speaking:

dist(Pi) =
√
E2

s + E2
11 + E2

22 + E2
12 (6)

For each simulation result, its associated dis-
tance to the origin within the input parameter
space and its approximate Kolmogorov complex-
ity were calculated. The latter as an approxi-
mation by measuring the size of the compressed
file when applying Deflate algorithm implemented
in pngcrush. After sorting the simulation results
by distance to the origin within input parameter
space in ascending order, it was reveled that there
exists a correlation between the input parameter
space and the simulation result space. In partic-
ular, we observe that the farther (closer) to the
origin a simulation result, the higher (lower) its
associated compression size. As an example, Fig.
10 shows from top to bottom and left to right,
the first 40 simulation results located close to the
origin, sorted by distance within input parameter
space in ascending order and labelled with their
estimated Kolmogorov complexity.

4.2 Information content analysis

Although a general correlation between input pa-
rameter space and simulation result space has
been defined in terms of compression ratio, noth-
ing is yet said about distance between the con-
stituents of the simulation result space. The Nor-
malized Information Distance based on the Kol-
mogorov complexity was proposed in Li et al
(2004) and shown to be universal in the sense
that it discovers all computable similarities. A
computable version was also suggested in Li
et al (2004), called normalized compressed dis-
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Fig. 10: Aggregates close to the parameter-space origin (where all parameters have zero values) are highly
compressible (low Kolmogorov complexity). Images are preceded by their compressibility value (in bits).

tance (NCD) defined as:

NCD(o1, o2) =
C(o1o2)−min{C(o1), C(o2)}

max{C(o1), C(o2)}
(7)

where C is the computable compressed length (in
bits) of input oi, and o1o2 is the concatenation
of o1 and o2. Successful applications of NCD,
such as classification of mtDNA sequences, can
be found in Li et al (2004). To the knowledge of
these authors, we make use of these measures to
questions of synthetic biology in this paper for
the first time. Our aim here is to employ NCD
in order to study the distance in terms of infor-
mation content embedded in the self-assembled
aggregates captured by the simulation results,
in particular we seek to address the following
question:

Is it possible to characterise the simulation
results and the distribution of their self-assembled
aggregates in terms of information content ?

To begin with, we apply NCD among samples
of simulation results located close to the origin of
the input parameter space and also among those
which are far from the origin of the input param-
eter space. The idea is to see how NCD works
when applied among highly compressible simula-
tion results and among low compressible ones. For
the first experiment, we arrange the simulation re-
sults shown in Fig. 10 according to their compres-
sion size in ascending order and from these the
first ten are taken. Then, all the pairwise com-
binations between consecutive simulation results
were set as input to NCD the output of which
is depicted in Fig. 11. The findings reveal that
highly compressible simulations which are close

Fig. 11: Aggregates close to each other in the
parameter-space origin are compressible (low Kol-
mogorov complexity) and NCD is less sensitive to cap-
ture similarity.

to each other in the input parameter space receive
small NCD values, hence indicating that they are
similar to one another and share information con-
tent. Similarly, the experiment conducted among
low compressible samples also reveals that close to
each other simulation results receive small NCD
values as depicted in Fig. 12.

Considering the entire set of simulation results,
we are now interested to see if it is possible to
distinguish groups among the simulation results
by means of information content. In order to do
this, the 21 representatives of Section 4.1 are em-
ployed to build a distance matrix using NCD as
distance function. This distance matrix is then set
as input for a simple clustering algorithm. The
clustering reveals two different groups, one with
high compression ratio and another one with low
compression ratio. These groups as well as their
constituent samples sorted by compression ratio
are depicted in Fig. 13.
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Fig. 12: Aggregates far from the parameter-space ori-
gin are poorly compressible (high Kolmogorov com-
plexity) but also have small NCD values (high simi-
larity).

Fig. 13: A simple clustering algorithm using NCD as
distance function yields 2 clear groups formed by ag-
gregates with high compression ratio (low Kolmogorov
complexity) and low compression ratio (higher Kol-
mogorov complexity).

4.3 Variability

Compression-based as well as information content
analysis applied to the simulation result space al-
lowed us to characterize both behaviour and dis-
tribution of the captured self-assembled aggre-
gates. Examples of such are given in Figs. 14
and 15 which show cases of consecutive aggregates
sorted by compression ratio presenting the small-
est and largest NCD respectively. In fact, the
results observed here suggest that NCD could
be employed as an alternative route to discover
phase transitions in terms of information content
among the entire set of simulation results. Like-
wise, equivalent examples can be found when sim-
ulation results are sorted in terms of the Euclidean
distance defined in Eq. 6. For instance, Fig.
16 shows pairs of consecutive simulation results
which have the largest compression length differ-
ences. One of the aims would then be to find a
suitable algorithmic measure for every qualitative
trait of a system capturing the behaviour of it.
Clearly, the idea of ultimately programming a sys-
tem is related to the variability of a system given

that a system with no apparent variability cannot
be programmed. Programmability is hence both
a combination of behavioural change and external
control.

Fig. 14: Consecutive aggregates by compression ra-
tio with small NCD show that compression ratio and
NCD are both characterising similarity.

Fig. 15: Consecutive aggregates by compression ra-
tio that have greatest NCD provide another tool to
detect possible phase transitions.

Fig. 16: Aggregates sorted by Euclidean distance to
the origin (where all parameters equal to zero) that
have largest compression length differences (|C(o1)−
C(o2)| > 2500 bits).

4.4 Parameter discovery and orthogonal-
ity

Although we have previously characterised and
studied the simulation result space in terms of
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Fig. 17: Simulation results are labelled with their input parameter values Es, E11, E22, E12 and its compression
length C Consecutive single parameter variation with greatest variability and fast behavioural impact.

both compressibility and information content,
nothing has been said about how each of the in-
dependent input parameters of the porphyrin-tiles
kMC system impacts on the resulting aggregates
of the self-assembly process. In synthetic biology
the concept of orthogonality (independence) of a
property is of great interest given that one often
wants to be able to program a system to perform a
task without influencing another task. That is, a
property A is said to be orthogonal to B if A does
not influence B. This is deeply connected with
the question: what input parameters change what
biological traits? Henceforth, it is important to
study the impact of individual parameter changes
on the behaviour of a given system.

In particular we are now interested in analysing
how binding energy between molecules and sub-
strate and the programmable structural units in-
dependently triggered the self-assembled aggre-
gates (behaviour) captured in the simulation re-
sults. In order to conduct this analysis the simu-
lation results were systematically grouped in such
a way that, in turns, three of the associated input
parameters remained fixed and the fourth one was
varied in ascending order; e.g. in one group E11,
E22, E12 were fixed and Es varied. For each of
this groups, the compressed length between con-
secutive simulation results was studied in order to
discover any relationship in terms of information
content.

Among all the possible arrangements, the most
interesting findings were observed when Es, E11,
E22 were fixed and E12 varied. Example of this is
shown in Fig. 17 where Es, E11, E22 are set with

low binding energy values and E12 ∈ [0.1, . . . , 1.0]
runs from left to right. In general, a system-
atic variation in E12 leads to an increase of C,
except for rare cases (e.g. last row in Fig. 17
from the first to the second and from the eighth
to the ninth value change). More importantly,
these cases show fast phase transitions near max-
imal complexity after only four parameter value
changes. After this point, near maximal C is
reached and no qualitative or quantitative change
in complexity is observed.

The second finding is related to reverse com-
plexity observed when the associated compression
lengths of two consecutive simulation results de-
crease as one of their input parameter values in-
creases. Examples of this are found among the
simulation results shown in Fig. 18 where each
of the rows starts in a high incompressible state
and then continues with a more compressible one
due to variations in traits of their self-assembled
aggregates. This is also a recurrent phenomenon
taking place as E12 varies towards its largest pos-
sible value.

The third interesting finding is observed among
simulation results employing high binding energy
values as shown in Fig. 19. In this case, Es

is set with the largest possible value and varia-
tion occurs from left to right on input parameter
E12 ∈ [0.1, . . . , 1.0]. Contrary to what is observed
in the first finding, these groups reveal that sys-
tematically changes across E12 have a small qual-
itative impact on the compression length C and
hence little behavioural impact.

Overall, the analysis seen along Figs. 17, 18 and
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Fig. 18: Consecutive single parameter changes that give way to reversed complexity (parameter value increases
but C decreases). In all cases aggregates start in a high incompressible state which is understandable in order
to see reversed complexity.

Fig. 19: Consecutive single parameter changes with smallest qualitative impact.

19 shows that E12 seems to be the most inter-
esting input parameter in the sense that it can
either produce no behavioural impact fixing Es,
E11 and E22, but also it can have the greatest
impact when the values set to E11 and E22 are
at the lowest and Es at the middle of its range.
Adding a single parameter or covering a single one
more thoroughly brings in a combinatorial explo-
sion, making any systematic investigation an NP
problem that requires exponential time for a lin-

ear increase in number of parameters to analyse.
The numerical analysis with algorithmic complex-
ity techniques is not necessarily computationally
cheap, but it requires no human intervention, is
objective and universal in mathematical terms,
and does not need to be done but once in order
to quantify and store what behaviour is triggered
by what parameters useful for speeding up the it-
erative model in systems biology.
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5 Concluding Remarks

In this work, we have introduced porphyrin-tiles
which is a mathematical model that allow us to
abstract and program interactions between por-
phyrin molecules. In particular, we focused on
extensive simulations of differently programmed
porphyrin molecules deposited on a solid pro-
cessed A(111) substrate. As a result, we have ex-
plored molecular tiling of varied morphologically
complex self-assembled structures, the qualitative
traits of which have been analysed in terms of
complexity and information distance.

We have performed a classification of the sim-
ulation results in terms of compressibility, as ap-
proximation to the Kolmogorov complexity, which
showed that similar qualitative structural proper-
ties are arranged next to each other. From these, a
phase transition diagram has been inferred show-
ing the distribution of aggregates conformed with
an intuition of increasing randomness where low
(high) complexity structures are located close to
(far from) the origin. In addition, a general cor-
relation between the input parameter space and
the simulation result space has been established
revealing that those simulation results close to
(far from) the origin of the input parameter space
are highly (lowly) compressible. In addition, an
important related measure of Kolmogorov com-
plexity, i.e. normalised information distance, has
been employed to investigate the similarity be-
tween self-assembled aggregates captured by the
simulation results. In here we have employed
NCD as distance function from which an auto-
mated classification has yielded two very well sep-
arated groups, one with low Kolmogorov complex-
ity and another one with high Kolmogorov com-
plexity. Given that we can numerically map the
output landscape of this natural system one can
think of devising precise input sequences that pro-
duce a desired targeted behaviour. The study of
non-DNA based discrete molecular computation
is in its infancy. This paper is but one small step
into this exciting area. Several questions remain
to be answered, ranging from the physical prac-
tical implementation of these tiles (work is cur-
rently being carried out in our lab) to which is
the best model of computation that better de-
scribes porphyrin-based molecular computation.
Is an automata-based model a good one (Terrazas
et al, 2013) or is, e.g., a Moore or Mealy machines
(Mealy, 1955) or an interaction-based model bet-
ter (Goldin and Wegner, 2006)?
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