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Abstract The Google Artificial Intelligence (AI) Chal-

lenge is an international contest the objective of which is to

program the AI in a two-player real time strategy (RTS)

game. This AI is an autonomous computer program that

governs the actions that one of the two players executes

during the game according to the state of play. The entries

are evaluated via a competition mechanism consisting of

two-player rounds where each entry is tested against others.

This paper describes the use of competitive coevolutionary

(CC) algorithms for the automatic generation of winning

game strategies in Planet Wars, the RTS game associated

with the 2010 contest. Three different versions of a prime

algorithm have been tested. Their common nexus is not

only the use of a Hall-of-Fame (HoF) to keep note of the

winners of past coevolutions but also the employment of an

archive of experienced players, termed the hall-of-celeb-

rities (HoC), that puts pressure on the optimization process

and guides the search to increase the strength of the solu-

tions; their differences come from the periodical updating

of the HoF on the basis of quality and diversity metrics.

The goal is to optimize the AI by means of a self-learning

process guided by coevolutionary search and competitive

evaluation. An empirical study on the performance of a

number of variants of the proposed algorithms is described

and a statistical analysis of the results is conducted. In

addition to the attainment of competitive bots we also

conclude that the incorporation of the HoC inside the pri-

mary algorithm helps to reduce the effects of cycling

caused by the use of HoF in CC algorithms.

Keywords Coevolution � Competition � Self-learning �
RTS game � Virtual player

1 Introduction

The videogame sector represents the largest of the enter-

tainment industries and is an area that is constantly

evolving. The main purpose of videogames is to provide

entertainment to the player(s) but how to infact do this, is

an open question that has yet to be fully answered. In the

past, game developers primarily concentrated on having

more realistic games and worked on implementing games

with high quality graphics (i.e., having high resolution

textures, a good measure of frames-per-second, etc.).

Whilst, until recently, this policy guaranteed reasonable

profits for the development company, in the last decade it

has not been enough to ensure the success of a game, as

players now demand other features for their games. Many

of these required features are associated with the resolution

of problems that demand knowledge from a wide set of

research domains such as art, psychology, narrative, or

music to name but a few.

In this heterogeneous context, one paradigm that is

present in all (or in most) videogames is artificial intelli-

gence (AI). Currently, it is applied to most aspects of game

development and design such as learning, human player

imitation, procedural content generation (PCG), intelligent

camera control, automatic game testing, player/opponent

modeling, and computational narrative, among others
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(Lucas 2009). The application of AI, and computational

intelligence (as the AI representative of the nature-inspired

computational techniques for learning and optimization

such as evolutionary algorithms, artificial neural networks,

swarm intelligence and ant-colony optimization methods,

to give a few examples) in games is thus an active research

field that poses significant challenges to the game devel-

opment community (Lucas et al. 2012). Nonetheless, the

most traditional application of AI in games is to govern the

behavior of the non-player-characters (NPCs) in the game

with the aim of endowing intelligence on the enemy and as

a consequence increasing the satisfaction of the player who

demands an opponent who exhibits intelligent behavior.

However, generating an AI to control NPCs is a hard

task—traditionally tackled by hand—that also requires a

quite a large dose of patience. For instance, in triple-A

videogames the cost of developing the AI is very high due

to the huge number of possible situations in which the NPC

might be at a given instant of the game and to the fact that

in many commercial games the AI that controls an NPC is

still made up of very specialized scripts (previously pro-

grammed based on the experience of the designers/pro-

grammers and via some traditional AI technique—e.g.,

finite state machines, of fuzzy logic). These are usually at

the root of very well-known problems associated with

‘‘artificial stupidity’’ (Lidén 2004; e.g. loss of reality, or the

predictability and the existence of holes/bugs in the NPC

behavior).

It is well-known that a NPC behavior which is too stupid

is not desirable as this always leads to a very easy victory

for the player thus decreasing his/her satisfaction; an

analogous argument can be applied to a very specialized

game AI as the player would then most probably suffer a

heavy defeat with the same consequence. As an interme-

diate solution, commercial videogames offer different dif-

ficulty levels to the player so that in the most complex

levels the player faces high-quality (again pre-pro-

grammed) difficult-to-beat opponents. Once the player is

able to beat all the opponents in each level, they lose

interest. In this context, the generation of opponents whose

behavior evolves in accordance with the player’s increas-

ing abilities is an appealing feature that makes the game

more attractive. In the literature can be found many pro-

posals for generating NPCs whose behaviors self-adapt to

player skills (Szita et al. 2009; Gutiérrez et al. 2011).

One of the most interesting game research problems is

that of developing AI for real-time strategy (RTS) games.

In general, in an RTS game the players make decisions in a

team (or army) consisting of a number of (not necessarily

equal) units (e.g., soldiers, workers,…) and each player has

two main objectives: (a) to destroy the opponent’s assets

and (b) to create additional structures with some specific

goal (e.g., construct buildings to protect their units or

defend a specific position in the map). The objectives have

to be achieved with an initial limited number of resources

because during the game it is possible to obtain more

resources. So an RTS game can be viewed as a resource

gathering game. Here, game AI means to define the

behavior of a virtual player that controls one of the teams

in the game. These features and the complexity of the

search space (states describe large playing scenarios with

hundreds of units simultaneously acting, and the environ-

ments consist of many thousands of possible positions for

each of the hundreds, possibly thousands, of units) make

the design of game AI a very interesting challenge. How-

ever this is at the same time, a very hard to handle task due

to the specific problems caused by the large search spaces

and the parallel nature of the problem—unlike traditional

games, any number of moves may be made simultaneously

(Corruble et al. 2002).

RTS games provide a range of challenging problems for

AI design, e.g., planning in an uncertain world with

incomplete information, learning, opponent modeling, and

spatial and temporal reasoning (Buro 2004) just to name a

few. One of the most significant challenges is to provide

non-cheating and human-like virtual players. To quote

Lucas et al. (2012), this basically involves ‘‘restricting the

information available to the AI player to the information a

human player may be able to gather in the game, and

restricting the actions of the AI player to human player

actions (executed in time and space’’. Additionally, the

virtual player should pose a challenge to the human players

independently of their skills and of the strategies they adopt

to play.

This paper deals with the automatic generation of self-

adaptive AI for NPCs in RTS games. This can be cata-

logued as a form of PCG and combines the advantages of

PCG and self-adaptation as for instance level adjustment to

player skills and the possibility of producing endless games

among others (Togelius et al. 2011). In particular, we

consider coevolution, a biologically inspired technique

based on the interaction between different species which in

our opinion represents one of the most interesting

approaches to be exploited in the evolutionary program-

ming area.

Coevolutionary systems are usually based on two kinds

of interactions, akin to symbiotic and predator/prey rela-

tionships in nature. The former is a cooperative approach in

which an individual is typically decomposed in to different

components that evolve simultaneously and the fitness of

which depends on the interaction between these compo-

nents; the latter is a competition-based approach in which

an individual competes with other individuals for the fit-

ness value and, if appropriate, will increase its fitness at the

expense of its counterparts, whose fitnesses decrease. As in

predator/prey relationships in nature, this second approach
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is prone to trigger ‘‘army races’’ in which the improvement

of some individuals stimulates the improvement in the

opponents, and vice versa.

This technique has been shown to be successful in a

number of applications but it also has a number of draw-

backs (Ficici and Bucci 2007). Many approaches, e.g.

Ebner et al. (2010), center on the analysis of the dynamics

of the coevolutionary process with the aim of identifying

both its weaknesses and strengths and to produce more

solid techniques for coevolution support. Miconi (2009)

also underlines the importance of the terms superiority and

progress, to avoid fails in the coevolutionary search pro-

cess. The first remedy to the inherent pathologies of

coevolution consisted of proposing some forms of evalu-

ating individuals (Rosin and Belew 1995), and the mem-

orization of a number of successful solutions to guide the

search. Following this idea, Rosin and Belew (1997) pro-

posed the use of a Hall-of-Fame (HoF) based mechanism

as an archive method. It acts as a long-term memory

mechanism in competitive coevolutionary (CC) algorithms

for managing the historical set of champions during the

individuals’ evaluation.

The work presented here, builds on our previous work

(Nogueira et al. 2012, 2013) on testing the use of HoF-

based CC (HoFCC) algorithms for finding winning strate-

gies in RTS games. In our previous papers we analyzed

how the diversity and the growth of the HoF can influence

the quality of the solutions obtained by HoFCC algorithms.

This was done in the context of the RTS game RobotWars,1

a self-developed game the simplicity and inherent limita-

tions of which handicapped the scope of our experimen-

tation; the CC algorithms that imposed certain diversity

and tried to maintain a manageable size of the HoF (by

removing those champions not contributing to the optimi-

zation process) demonstrated a better performance than the

others that did not work on the two metrics considered but

they still suffered from the appearance of cycling. This is a

well-known problem of CC algorithms that work with

‘archive’ structures such as the HoF. Now we considerably

extend our previous work by considering a new RTS

game—namely Planet Wars, the Google AI challenge in

2010—that allows a deeper experimental analysis and

therefore provides more consistent conclusions. We also

propose a different evaluation mechanism to exploit the

potential offered by archive methods to maintain transi-

tivity between the solutions. Moreover we add novel

strength indicators which are independent from the fitness

function with the objective of avoiding the appearance of

cycling. The novelty of this last aspect consists of incor-

porating into our prime CC algorithm, an additional

archive (termed hall-of-celebrities, HoC) that contains a

team of experienced virtual players that are used to eval-

uate how strong a candidate is. The combined use of both

halls (HoF and HoC) with the (possibly combined)

employment of diversity and quality metrics helps the

optimization to obtain competitive bots that self-adapt to

beat their (co)evolved enemies.

2 Background

This section discusses a number of approaches that are

related to competitive coevolution applied in games

(Sect. 2.1), and describes the RTS game used in our

experimental section (Sect. 2.2).

2.1 (Competitive) coevolution in games

Due to the intrinsically competitive nature of the games,

many researchers have opted for the application of a

competitive coevolution approach to solve searching and

self-learning problems in games, e.g., the study described

in Angeline and Pollack (1993) on competitive fitness

functions in the Tic Tac Toe game, the application of

simple competitive models for evolving strategies in a

pursuit-evasion game (Reynolds 1994), or the evolution of

both morphology and behaviors of artificial creatures

through competition in a predator–prey environment (Sims

1994). Also Ashlock et al. (2012) analyzed the level of

difficulty involved in finding solutions with a basic

coevolutionary algorithm for zero-sum games as well as

non-zero-sum games; a fitness metric with the score

obtained by an agent when faced with another one

belonging to the same generation was employed; the

authors detected that co-evolving good strategies for zero-

sum games is more difficult than for non-zero-sum games.

Competitive coevolution has been used heavily in

complex scenarios such as those that emerge in strategy

games; so, Smith et al. (2010) developed coevolved arti-

ficial intelligent opponents with the objective of training

human players in the context of a capture-the-flag game.

Also, Avery and Louis (2010) analyzed the use of coevo-

lution for creating a tactical controller for small groups of

game entities in a real-time capture-the-flag game; a rep-

resentation for generating adaptive tactics using coevolved

Influence Maps was proposed, and the result was the

attainment of an autonomous entity that plays in coordi-

nation with the rest of the team to achieve the team

objectives. Related with this line of research, Miles and

Louis (2006) presented a spatial decision making system

within the context of a 3D computer RTS game, that used a

basic implementation of co-evolution in which players

were firstly evolved against static hand-coded opponents

and later against another population of co-evolving players.1 http://wp.me/p2cObl-60.
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More recently, Dziuk and Miikkulainen (2011) has

explored several methods for automatically shaping the

coevolutionary process, and this is done by modifying the

fitness function as well as the environment during evolu-

tion. Another interesting perspective was presented in

Avery and Michalewicz (2007) where the authors, using

the game of Tempo as a test space, facilitated the selection

of optimal strategies by clustering the solutions in the

population of a coevolutionary system through the concept

of similarity. This cluster system integrated a long-term

memory that valued the changes produced in the environ-

ment to trigger appropriate coevolution. The game of

Tempo has also been used with the aim of improving the

creation of smart agents in Johnson et al. (2004) and Avery

et al. (2008).

More closely related to our work, we can cite several

articles that address the use of archive methods as an

alternative to avoid the effect of pathologies, and that

present interesting proposals for optimizing their perfor-

mance. For example, Nerome et al. (1998) propose a com-

petitive co-evolution model that introduces the concept of

package as a set of good strategies and the best package is

the one that contains the smallest number of strategies

providing, at the same time, the highest number of victories.

Different forms of archives, like the layered Pareto-coevo-

lution archive (de Jong 2004) and the coordinate system

archive (Jaskowski and Krawiec 2010) have also been pro-

posed. However, one can find other simpler structures like

for instance the use of one simple champion memory that

can be improved via different proposals. Lichocki (2008)

describes three useful extensions of the HoF that include

uniqueness, manual teachers, and competitive fitness shar-

ing, CFS (Bosin and Belew 1997); the results showed that

HoF works better than single elimination tournament (An-

geline and Pollack 1993) but this method was not able to

prevent the lack of diversity in the population. In Living-

stone (2005) the author presents a system in which different

levels of a hierarchical AI coevolve in a simple RTS game

environment; archive methods were applied to avoid some

of the pathologies of coevolution using fixed, non-evolving

opponents during the evaluation process. More recently

Samothrakis et al. (2013) presents a set of measurements to

identify cycling in a population, and proposes an algorithm

that minimizes the effect of cycling in a coevolutionary

system for the game Othello; in the experiments the authors

used different algorithms for generating artificial players,

including one that uses a simple archive method with fixed

size, which obtained good results.

According to Avery et al. (2008), the question of how to

actually use the memory in the coevolution tends to be split

into two areas: inserting individuals from memory into the

coevolution, or evaluating individuals from the populations

against the memory. Our investigation falls comes under

the latter, and we have implemented different variants of

HoF for controlling evaluation process, in a CC algorithm.

However, although the contribution of the ‘‘archive

methods’’ to reduce the number of drawbacks (e.g., missing

features and cycling) of coevolutionary systems is unde-

niable, their implementation entails a number of issues that

have to be taken into account such as the strength of the

archive members and the control of the archive diversity.

So for instance, a high risk of generating cycles can appear

if the strength of a member is valued by pitting this

member against a fixed set of opponents, and this is pre-

cisely what we did in our previous work (Nogueira et al.

2012, 2013). A key point to consider is the metric that

defines the strength of an individual, which should indicate

when an individual is qualitatively superior to the rest but

without losing sight of the fact that sometimes quantitative

superiority does not correspond with a high strength.

This paper addresses precisely this issue and proposes the

consideration of an archive of experts in the evaluation of

individuals, in addition to the classic archive of champions.

This expert archive will include a fixed set of high quality

opponents that will be used to provide an additional evalu-

ation (to that already provided by the use of the champion

memory, i.e., the HoF) to measure the quality of the indi-

vidual; for our particular RTS game and this paper, this

expert set is conformed by the collection of built-in bots

provided by the Google AI Challenge 2010 competition plus

an optimized genetic algorithm (GA)-based bot from Fern-

ández-Ares et al. (2011). The idea of adding an expert

archive for the assessment of candidate fitness is to reduce

the likelihood of cycling during coevolution. The fitness of

an individual will be calculated by pitting it against its

ancestral opponents, but individuals with better fitness will

be up against one of the experts’ bot (chosen at random) in

various scenarios (i.e., different maps); only in case that this

individual beats them three times will it be included in the

champions’ memory. In doing this, we are trying to exploit

the potential offered by archive methods to maintain tran-

sitivity between the solutions, but adding strength indicators

which are independent from the fitness function with the

idea of preventing the appearance of cycling.

Another important aspect to consider is the control of

diversity to avoid the redundancy in the memory of

champions (which may also combat the over-specializa-

tion); we also consider this issue here and propose an

algorithm (HoFCC-diversity) that updates the archive from

a diversity metric and eliminates those solutions identified

as ‘‘less diverse’’. The paper also proposes a multi-objec-

tive HoFCC algorithm based on both metrics: strength and

diversity, different variants from this algorithm are com-

pared empirically.

Note that this section does not mention other forms of

coevolution that have also been applied in games because
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they are not directly related with competition (e.g., Cook

et al. 2012 focused on cooperation and not on competition).

2.2 Planet Wars

Planet Wars was the game used in Google AI Challenge

2010,2 this contest was run by the University of Waterloo

Computer Science Club and supported by Google. The

game takes place on a map which contains several planets,

each of which has a specific number of ships (NS) on it.

The planets may belong to the player, the opponent, or just

be neutral. Each planet owned by a player (not those that

are neutral) will increase the forces there according to the

‘‘growth rate’’ of the planet. This rate indicates the ratio of

growth to the NS on the planet. Figure 1 shows a screen-

shot of this game, in which the red planets belongs to the

player, the green to the enemy, and the rest are neutral.

At the start of each turn, the player receives the current

status of the game (i.e., information about the planets and

fleets) and can only do one type of action: send fleets of

ships from any planet the player owns (i.e., those planets

where the NS is higher than 0 and the ships belong to the

player) to any other planet on the map. Players may send as

many fleets as they wish in a single turn as long as they own

enough ships. After sending fleets, each planet owned by a

player will increase the NS staying there proportionally to

the planet growth rate. The fleets that were sent in a previous

order take a number of turns to reach their destination

according to the distance between the planet of origin and

the destination one; upon the arrival of the ships if both the

planet and the ships belong to the same player, then the NS

increases by adding up the current NS on the planet and the

number of newly arrived ships. Otherwise, if the arrival

planet is neutral, then it has a fixed NS and the player must

be sent at least NS ? 1 ships to own the planet (i.e. for

reaching the neutral planet in order to conquer it); and if the

player sends fleets to an enemy planet (i.e. the player attacks

an enemy planet) a fight is initiated for the control of the

planet (ships from both sides destroy each other until the

player with the highest NS owns the planet, in this case the

destination planet does not have a fixed NS, because he/she

increments his/her force according his/her growth rate).

Fleets cannot be redirected once they start their journey.

Players may continue to send more fleets in later turns even

while older fleets are in transit. Although the players issue

their orders on a turn-by-turn basis, they carry out these

orders at the same time, so we can treat this game as a real-

time one.

The player with the most ships at the end of the game

wins. The game may also end earlier if one of the players

loses all his/her ships and in this case the player that has

ships remaining wins instantly; also if one player exceeds

the time limit without completing his/her orders she forfeits

the game. If both players have the same NS when the game

ends this is considered a draw.

3 Competitive coevolution for self-learning in Planet

Wars

This section describes our CC approaches. Section 3.1

centers on codification issues for the representation of a

game strategy, and Sect. 3.2 details our primary CC algo-

rithm that employs the HoF as a long-term memory

mechanism, and the HoC as the expert archive for evalu-

ating the strength of individuals; three variants of this

algorithm are also explained.

3.1 Representation issues

Our goal is to find winning strategies, governing a bot (i.e.,

the virtual player) in Planet Wars by optimizing the rules

Fig. 1 Screenshot of Planet

Wars: both planets and fleets are

identified by a number which

shows the number of ships that

they have. Their colors also

identify the player who owns

them. (Color figure online)

2 http://planetwars.aichallenge.org.
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that guide its decision making so that in each turn the bot

should select the best action according to its current state in

the game. Here the state at a specific instance of the game

is determined by the advantage (with respect to its oppo-

nent) of the bot in terms of ships and growth rate. Both

advantage metrics have three possible values (‘high’, ‘null’

or ‘low’) which indicate the level of advantage in each

case. Lets say that, for player p (resp. opponent o), GRp

(resp. GRo) is the total ‘‘growth rate’’, according to the

‘‘growth rate’’ of the planets owned by player p, and let

DGRpo = GRp - GRo; then if DGRop [ 0, we say that

player p has a ‘high’ advantage over opponent o in terms of

the ‘‘growth rate’’; ‘null’ in the case of a draw (i.e.,

DGRpo = 0), and ‘low’ if DGRpo \ 0. The calculation of

the advantage in terms of ships is similar but considering

NSp instead of GRp (resp. NSo instead of GRo) as the total

NS owned by player p (resp. opponent o) at the current

instant of the game; in other words, DNSpo = NSp - NSo.

However, we considered different thresholds for the

advantage values so that if DNSpo[10, then player p has a

‘high’ advantage, ‘null’ if 0 B DNSpo B 10, and ‘low’

otherwise (note that we consider that a difference of 10

ships is not significant enough to distinguish between the

two players; this value was arrived at through our experi-

ence of playing).

So, a virtual player strategy is coded as a bidimensional

matrix (see Table 1), where the first dimension symbolizes

the player’s advantage over his/her opponent in terms of the

NS (i.e. the DNSpo), and the second dimension represents the

advantage in terms of the total ‘‘growth rate’’ (i.e. the DGRop),

and as we explained above each axis has three possible values

(‘high’, ‘null’ or ‘low’). Each cell in the matrix acts as a gene

and stores one of the next possible actions:

(1) attack the strongest enemy planet (AS) (i.e., the

enemy planet that owns the highest NS),

(2) attack the weakest enemy planet (AW),

(3) attack the closest enemy planet (AC),

(4) conquer the strongest neutral planet (CS; again in

terms of NS),

(5) conquer the weakest neutral planet (CW),

(6) conquer the closest neutral planet (CC),

(7) follow the enemy (FE; in this action the order is to

send fleets of ships to the planet to which the enemy is

now sending his/her own fleets).

This way, the whole matrix represents a strategy that

controls, deterministically, the behavior of a bot during the

game by executing the action associated with a specific

instance of the game. For a virtual player there are nine

possible different states (i.e. 3 9 3, all the possible value

combinations considering the two dimensions of the matrix).

And basically, in a specific turn of the game the player will

execute the action stored in the state in which he perceives

that he is. See Table 1 for an example of the actions’ matrix

which shows the distribution of the actions for each possible

state, e.g. when the player has a high advantage with respect

to his/her opponent in terms of ‘‘growth rate’’ and ‘‘ships’’

(DGRop [ 0 and DNSop [ 10) the selected action will be

‘‘attack the strongest enemy planet (AS)’’. Note that the

search space is 79 = 40,353,607 [ [225, 226], which cannot

be exhaustively assessed due to the cost of the evaluation that

requires a game simulation and thus metaheuristic tech-

niques are used.

3.2 HoFCC algorithm and variants

Using Planet Wars we propose, in this paper, a modified and

improved version of a CC algorithm that we already

described in Nogueira et al. (2012, 2013) for a simplistic

capture-the-flag game. The latter used the HoF as a long-

term memory mechanism to keep the winning strategies

found in each coevolutionary step and all of them were also

used in the evaluation process (in the basic algorithm). In

fact, the best individual from each coevolutionary iteration is

retained for future testing, and so we obtain an historical set

of champions which is used in the evaluation of the indi-

vidual. Each population maintains its own HoF, in which its

own winning strategies (with respect to the set of winning

strategies of its opponent) found in each coevolutionary step

will be saved. So, in the coevolutionary step n each possible

solution of army A again fights with each solution in {B1,

B2,…,Bn-1}, where Bi is the champion found by army B in

the ith (for 1 B i B n - 1) coevolutionary step.

Regarding the use and implementation of HoF some

aspects must be defined. The first is the criteria for inserting a

new member in the memory. In this paper we have changed

our previous proposal (Nogueira et al. 2013) and we have set

that an individual must defeat all the HoF members (i.e., all

champions of the opponent population), and has to simulta-

neously beat an expert bot belonging to an archive of efficient

(possibly hand-coded) bots; we call this archive HoC.

We have then considered different policies for main-

taining the champions in the set. For this issue, we take into

account the contribution of the individual (i.e., the cham-

pion) to the search process as, for instance, it might be the

case that some opponents that belong to very old genera-

tions do not show a good performance in comparison with

opponents generated in recent generations and thus they

Table 1 A matrix of actions which was generated by our coevolu-

tionary process

DNSpo [ 10 0 B DNSpo B 10 DNSpo \ 0

DGRop [ 0 AS AC AW

DGRop = 0 AS AC CW

DGRop \ 0 FE AS AW
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might be easily beaten; it is therefore crucial to remove

those champions that do not contribute to the solution

which, in other words, represents a mechanism to control

the size of the champions’ memory, and is an important

element because taking into consideration all the champi-

ons (during the evaluation process) might produce more

consistent solutions at the expense of a very high compu-

tational cost (note that many simulations of the match must

be executed for each champion involved in the evaluation;

we will provide more details on this further on).

In what follows we present our new proposal for a prime

HoFCC algorithm and three variants of it that differ pre-

cisely in the policy of establishing the aspects mentioned

previously. From a general point of view, basically the

variants differ from each other in the way that they peri-

odically update the solution set on the basis of quality and

diversity metrics.

3.3 Basic HoFCC

Algorithm 1 shows the schema of our primary algorithm

HoFCC (a revised and improved version of that presented

in Nogueira et al. 2013). The algorithm has two parame-

ters: a that indicate (in percentage) the portion of the HoF

to be removed with the aim of maintaining only those

worthwhile champions that might contribute to the solution

according to some specific metric (see details below) and k
the frequency of executing this updating of the HoF.

A specific strategy is considered ‘winning’ if it achieves

a certain score when it deals with the strategies belonging

to the set of winning strategies of its opponent (i.e., the

enemy HoF), and it defeats an expert bot belonging to the

HoC. The initial objective is to find a winning strategy of

player 1 with respect to player 2 (i.e. the initial opponent)

so that the HoF of player 2 is initially loaded with some

strategies (randomly or manually initialized: line 2). The

HoC is also loaded with a set of (other demonstrated)

efficient virtual players that will be used to evaluate the

strength of the solutions (line 2).

The HoF of the player being evolved is updated (i.e.,

only those robust champions are kept) according to some

specific criteria every k coevolutionary step (lines 5–7).

Then a standard evolutionary process tries to find a strategy

for player 1 that can be considered victorious (lines 12–17).

A strategy is considered winning if its fitness value is

above a certain threshold value / (line 18; which indicates

that this strategy has defeated the members of the opponent

HoF) and at the same time it has been able to defeat one of

the (randomly chosen) celebrities (i.e., ‘experts’) in three

consecutive battles on different maps (i.e., scenarios) of the

game; if they are indeed successful, this strategy is added

to the HoF of player 1 (line 20) and the process is initiated

again but with the player roles reversed (line 21); otherwise

(i.e. no winning strategy is found) the search process is

restarted. If after a number of coevolutionary steps no

winning strategy is found the search is considered to have

stagnated and the coevolution ends (see the while condition

in line 4). At the end of the entire process we obtain as a

result two sets of winning strategies associated accordingly

with each of the populations.
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Regarding the evaluation of candidates for a specific

player p (where p [ {player 1, player 2}), the fitness of a

specific strategy is computed by pitting it against a selected

subset of the (winning) strategies in the HoF of its oppo-

nent player (that we call the ‘‘selected opponent set’’) and

evaluating his quality in a direct confrontation against any

of the expert bots in the HoC. Given a specific strategy s its

fitness is computed as follows:

fitnessðsÞ ¼
Pk

j¼1ðrs
j � nTurnsðjÞÞ

k
þ extrassðeÞ; ð1Þ

where k [ N is the cardinality of the selected opponent set,

rs
j 2 R returns / points if strategy s beats strategy hj

belonging to the selected opponent set (i.e. victorious case),

and 0 if hj wins over strategy s; nTurnsj [ N is the number

of turns spent on the game (this value is 0 in case of

defeat); and extrass(e) [ N is a bonus that individual

s receives if it defeats the ‘‘expert bot’’ e. This fitness

definition was formulated based on our game experience,

and it values the victory above any other result.

In the next paragraph we describe in detail the three

variants of our HoFCC algorithm which will be tested in

the experimental section.

3.4 HoFCC-diversity

In this proposal the HoF acts as a long-term memory

mechanism, but the content of the HoF is updated by

removing those members that provide less diversity. The

value of diversity that an individual in the HoF provides is

calculated by the genotypic distance as follows: we manage

the memory of champions as a matrix in which each row

represents a solution and each column a gene (i.e., an

action in the strategy). Then, we compute the entropy value

for a specific column j as follows:

Hj ¼ �
Xk

i¼1

pij log pij

� �
; ð2Þ

where pij is the probability of action i in column j, and k is

the memory length. Finally the entropy of the whole set is

defined by:

H ¼
Xn

j¼1

Hj: ð3Þ

The higher the value of H the greater the diversity of the

set. For determining the diversity’s contribution to a spe-

cific solution, we calculate the value of entropy with this

solution inside the set, and the corresponding value with

this solution outside the set, and finally, the difference of

these two values represents the contribution of diversity.

The number of individuals to be deleted from the

memory should be set by the programmer as a percentage

value (a) representing the portion of the HoF to be

removed; in other words, the HoF (with cardinality #HoF)

is ordered according to the diversity value in a decreased

order and the last d#HoF�n
a e individuals in this ordered

sequence are removed. The frequency of updating (k) is

also a parameter of this version (i.e., the HoF is updated

every k coevolutions).

The motivation of this proposal is to maintain certain

diversity among the members of the HoF, and at the same

time reduce (or maintain an acceptable value for) the size

of the memory. With this in mind, we assume that the

deleted individuals will not affect the quality of the solu-

tions found. Here, the cardinality of the selected opponent

set k in the evaluation phase—see Eq. (1)—is the cardi-

nality of the opponent HoF after executing the updating of

the memory (i.e., after removing the individuals).

3.5 HoFCC-quality

In this version, we follow a similar approach to that applied

in HoFCC-diversity but now the HoF is ordered with

respect to a measure of quality that is defined as the number

of defeats that an individual obtained in the previous

coevolutionary step; in other words, a simple counter

variable associated with each member of the HoF stores the

number of defeats that were computed for the corre-

sponding member during the evaluation process of the

opponent army in the previous coevolutionary turn.

Based on our game experience, we assume that this

metric is representative of the strength of a solution, and

the aim is to keep only the robust individuals in the

champions’ memory by removing the weak strategies. As

in the HoFCC-diversity, the parameters a and k have to be

set, and the cardinality of the selected opponent set k is

exactly the same.

3.6 HoFCC-U

This variant of HoFCC follows the idea of optimizing the

memory of the champions, but in this case we propose a

multiobjective approach where each solution has a diver-

sity value and also a quality value, as previously described,

associated with it. Then, a percentage value (a) from the set

of dominated solutions according to the multiobjective

values is removed; if the set of dominated solutions is

empty then HoF is ordered according to the measure of

quality and the solutions with worst quality will be

removed. As in the previous algorithms (HoFCC-quality

and HoFCC-diversity) the frequency of updating the HoF is

an important parameter that must be defined.

This proposal uses a fitness function different to that

shown in Eq. (1) the definition of which was inspired by
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CFS (Bosin and Belew 1997). The main idea is that a

defeat against opponent X has more importance if there are

other individuals that defeated X.

So, a penalization value N for each individual i (for 1 B

i B k) in the population is then calculated as follows:

Ni ¼ 1� 1

k

Xk

j¼1

vij

VðjÞ ; ð4Þ

where vij = 1 if the ith individual of the population defeats

the jth strategy (or champion) in the HoF (whose

cardinality is k) and 0 otherwise; and

VðjÞ ¼
Xn

i¼1

vij; ð5Þ

is the number of individuals in the population which defeat

the jth opponent of the HoF. As a consequence, Ni & 0 if

the ith candidate defeats all opponents of HoF and the ith

solution itself is one of the few candidates to do so; Ni = 1

if doesn’t defeats any opponent; and 0 \ Ni \ 1 depending

on how many times it wins and how common it is to beat

certain opponents. The fitness of a candidate i is then

computed as follows:

Fi ¼ Pi � xNi; ð6Þ

where Pi is the result obtained in the battles by Eq. (1), and

x [ N is a coefficient that scales Ni in order to make it

meaningful with respect to the value P.

4 Experiments and analysis

This section describes the experimental analysis conducted

on the three variants of the HoFCC described in the pre-

vious section. All experiments were executed using the

Planet Wars engine version 1.2. Five maps from the col-

lection of maps designed for the competition (specifically,

maps 1, 10, 20, 30, 50) were considered, so that when an

individual faces another one (i.e., its opponent) it must

perform three consecutive battles on any of these maps

having a maximum of 500 turns for each game. If the

individual under evaluation defeats the opponent in all

battles then it will be considered the winner.

The initial enemy strategy was defined as ‘random’ (i.e.,

we create a random action matrix), and the HoC (i.e., the

selection of the ‘‘expert bots’’) comprised the set of bots

that were originally provided as ‘‘example bots’’ in the

competition (i.e., BullyBot, RandomBot, DualBot, Pro-

spectorBot, RageBot), and specialized hand-coded (and

later optimized via evolutionary algorithms) bot (GeneBot)

that obtained a ranking position in the top-20 % of the

Google AI competition 2010 and that was developed by a

team from the University of Granada; we selected this bot

because it competed efficiently, the source code was

available, and it has been extensively described in the

scientific literature (Fernández-Ares et al. 14; Mora et al.

2012).

Next, we detail the configuration of this experiments,

and later will discuss the obtained results.

4.1 Configuration of the experiments

Nine instances of our algorithms were used: three for each

of the HoFCC-diversity, HoFCC-quality, and HoFCC-U

varying according to the values of a [ {10, 30, 50 %}. The

notation HoFX-a—where X [ {Div, Qua, U}—is used to

denote each of these nine variants. In all cases, we set

k = 3 and perform 10 runs per algorithm instance, using a

steady-state GA—note that this corresponds to lines 11–16

in Algorithm 1—with the aim of finding a winning strategy

with respect to the set of strategies (all strategies stored in

the HoF of the opponent) that were considered winning in

previous stages of the coevolutionary algorithm; this GA

employed binary tournament for selection, uniform cross-

over, bit-flip mutation, elitist replacement. Table 2 shows

the parametrization values, where maxFailCoevolutions

represents the limit of continuous coevolutions that one of

the players can consume without finding a champion

solution; the timeout condition (line 4 in Algorithm 1) is

associated with maxCoevolutions, which indicates the

maximum numbers of total coevolutions that can achieve

an algorithm; and maxEvaluations is the limit of evalua-

tions (i.e., timeout = nCoev [ maxCoevolutions _ num-

Evaluations [ maxEvaluations, where numEvaluations

represents the number of evaluations consumed at that

instant by the algorithm). Mutation probability depends on

nb which is the number of genes of the individual; / is the

threshold value for a winning solution.

Our analysis has been guided by the following indicators

which are applied for all runs of each algorithm: Best

Table 2 Parameters of the coevolutionary cycle

Parameters Values

maxFailCoevolutions 5

maxCoevolutions 15

maxGen 20

popSize 15

maxEvaluations 10,000

crossProbability pX = 0.75

mutProbability pM = 1/nb

/ 1,500

expertBonus 500

x 50

k 3

Virtual player design via competitive coevolutionary algorithms 139

123



fitness shows the fitness of the best champion strategy

found by the search process; Average fitness shows the

average fitness value reached during the coevolutionary

cycles; Number of evaluations indicates the total number of

battles which are executed during the evaluation process;

Number of victories indicates the total number of victories

obtained in a All versus All fighting among the best solu-

tions found by each version of algorithm.

Next we analyze the results obtained in ten indepen-

dent executions for the nine versions of HoFCC, and

focus on the indicators mentioned; we have used a non-

parametric statistical test to compare ranks namely

Kruskal–Wallis test (1952) with a significance of 95 %.

When this test detects significant differences in the dis-

tributions, we have performed multiple tests using the

Dunn–Sidak method (Sokal and Rohlf 1995) in order to

determine which pairs of means are significantly different,

and which are not.

4.2 Analysis of the results

Figure 2 shows the results of the fitness of the best

champion strategy found in each independent execution of

the algorithm instances. Bear in mind that in our experi-

ments we use three versions of the HoFCC which optimize

the use of HoF (in terms of diversity, quality, or both). The

Kruskal–Wallis test shows that there are no significant

differences between values (see the first row in Table 3).

Note however the existence of three outliers (with fitness

value 0) in the instances HoFU50, HoFU30 and HoFDiv30;

this indicates that in their associated executions no winning

strategy was found after completing five consecutive

coevolutions.

Figure 3 shows the behavior of the average fitness for

each algorithm instance. The Kruskal–Wallis test confirms

that the differences between values are statistically sig-

nificant (see second row in Table 3). According to the

graphic, the algorithms working on ‘diversity’ obtain the

best results. Note also that HoFDiv50 again demonstrates

the best performance and that the hybrid versions of the

algorithm are not competitive. This last assertion might be

made because it is more difficult to obtain a high fitness

value due to the penalty that is applied to the score

obtained by the individuals according to Eq. (4). A direct

consequence is a decrease in the values of the objective

function, which on the other hand should not affect the

quality of the individual (this will be verified later in

another test). In the results of multiple tests for the value of

average fitness, the extreme values of the distribution are

those that mark the difference: HofDiv50 has significant

differences respect to HoFDiv30, HoFU10, HoFU50,

HoFU30; and HoFU30 is significantly different from

HoFQua10, HoFQua50, HoFDiv10, and HoFDiv50.

In the case of the number of evaluations, there are sig-

nificant differences (see third row in Table 3) between

HoFDiv30 and HoFQua30. We noted however that the

number of evaluations is directly proportional to the length

Table 3 Results of Kruskal–Wallis test for all the indicators

Indicators p value

Best fitness 0.4605

Average fitness 1.356e-007

Number of evaluations 0.0266

Numbers of victories 0.0093

0 500 1000 1500 2000

HoFQua10

HoFDiv30

HoFQua50

HoFU10

HoFU30

HoFDiv10

HoFQua30

HoFU50

HoFDiv50

Fig. 2 Distribution of best fitnesses achieved by each algorithm. As

usual, each box comprises the second and third quartiles of the

distribution, the median is marked with a vertical line, and outliers are

indicated with a plus sign
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HoFU30

HoFU50

HoFU10

HoFDiv30

HoFQua30

HoFQua10

HoFQua50

HoFDiv10

HoFDiv50

Fig. 3 Distribution of average fitnesses obtained in each algorithm
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of the coevolutionary cycle; remember that for these

experiments we set a maximum quota of five consecutive

coevolutions without success, and when this limit is

reached the algorithm stops. We noted that the lengths of

the coevolutionary cycles were not too long, which may be

a direct consequence of the specialization of the solutions

obtained during the search what makes more difficult the

attainment of better solutions (Fig. 4).

Ten champions (the best individuals stored in the HoF at

the end of the algorithm execution) for each algorithm

instance (i.e., one for each execution) were obtained during

the experiments and these champions fought in an All versus

All tournament (note that in the cases of the outliers with

fitness values 0 that were commented previously—regarding

best fitness—the undefeated opponent of the HoF was taken

as the ‘‘winning strategy’’ in this tournament). This means

that every (best) individual competes against the ten cham-

pions of the opponent algorithm, and in each confrontation

three battles (each of them in a distinct scenario) are exe-

cuted. Figure 5 shows the results of this tournament. Note

how each family of algorithms is clearly distinguished from

the others by its results (this could not be perceived in our

previous work on the RobotWars game Nogueira et al.

2013). According to the Kruskal–Wallis test there are sig-

nificant differences between values (see fourth row in

Table 3). The main differences are between HoFDiv and

HoFU. Surprisingly all the instances of HoFU version obtain

the best results, what means that the algorithms based on the

multiobjective approach showed a more efficient behavior,

whilst those instances based on the diversity metric exhib-

ited a poor performance in direct combats. Certainly, this

seems to contradict the results shown in Figs. 2 and 3 (see

discussion on this in the next subsection) although in fact it

is an expected result that confirms that the strongest and

more consistent virtual players are those generated from the

combined use of the two metrics considered in this paper.

We also noted that the quality metric (as expected as well)

marks a clear distinction with the diversity measure,

although the combination of these is the most productive.

4.3 Summary of results

We observe that in the All versus All test, which attempts to

measure the strength of the ‘champions’, the results of the

algorithms are not related with the other indicators which

focus on the analysis of the fitness values. This may be a

sign that the coevolutionary process is affected by cycling

and a solution with a high fitness might be theoretically

considered as stronger although in practice it might not be;

in fact the fitness score is not directly related to the concept

of strength (or efficiency in combat). As already mentioned,

the strongest virtual players (according to the test All versus

All) were obtained by the family of algorithms that use a

multi-objective approach based on diversity and quality

values as metric to guide the search whilst the algorithms

based on just one metric (specially those considering the

diversity values) did not exhibit good results. The lowest

values associated with the bots generated from the multi-

objective instances might be caused by the penalty that is

applied to the score in the fitness function according to

Eq. (4). To relate all the algorithm instances, in the future we

might think to include some of the champions obtained by

each of the algorithms in the HoC of the rest of algorithms

so that more pressure will be given to the attainment of

champions and the fitness value of the individual might be

more consistent with their performance.
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HoFDiv50

HoFQua30

Fig. 4 Distribution of the number of evaluations used by each

algorithm
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HoFU10

Fig. 5 Distribution of the number of victories obtained by each

algorithm in the All versus All fighting tournament
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The results obtained in this paper provide conclusive

evidence in favor of the hypotheses set forth in previous

work on the RobotWars game (Nogueira et al. 2013).

Related to this, note that we include more battles against

the members of the rival HoF in the candidate evaluation,

and second (and most importantly) we believe that the

application of the concept of CFS (Rosin and Belew 1997)

to the fitness function, and the addition of pressure to the

search via the inclusion of an expert archive caused a

reduction in the appearance of cycling. In this regard, in

our previous proposals we assumed that there would be

transitivity between solutions and at the last solution added

to the archive had to be the strongest, so the solutions were

evaluated only by the score that they obtained against the

members of the opponent HoF which favored the appear-

ance of cycling and disengaged the search targets. The idea

of including in the fitness functions combats against a

group of experts (with which they have no evolutionary

relationship) helped to break relationships between the

champions found in each generation, and this surely eases

the cycle breaking.

Regarding the percentage of updating the HoF (i.e., 10,

30, or 50 %), no significant difference was observed

because their behaviors were indistinguishable. In this

case, we believe that it is due to the fact that the HoF does

not reach a significant size because in the experiments we

set a limit of total coevolutions, so the HoF cannot grow

significantly and it does not allow the capabilities of the

updating process to be exploited.

5 Conclusions

Finding algorithms that can reduce the effect of the

inherent pathologies of the coevolutionary models is an

open research line. In previous work we explored the use of

an archive method, in particular the use of a HoF, to keep

the champions obtained in each coevolutionary step and

that was used in the evaluation process to guide the search.

An empirical study conducted on a RTS game—with

intrinsic underlying limitations due to its simplicity—

showed that the well-known problem of cycling continued

appearing due to the assumption of a transitivity among the

champions. Now, in this paper, we have extended that work

significantly by introducing changes in the coevolutionary

process, trying to promote those solutions that are truly

strong. The proposed approach maintains the use of the

HoF but also incorporates an additional memory (i.e.,

another archive termed HoC) to contain other efficient bots

(i.e., ‘experienced’ or optimized virtual players) that are

used here to asses the strength of the solution candidates.

This concept of HoC allows pressure to be put on the

algorithm search as the expert bots can (and should) be

implemented independently in other contexts. This means

that these optimized virtual players do not necessarily

maintain an evolutionary relationship with the evolutionary

population. Moreover, in the experimental analysis we

have considered a new RTS game that enables a deeper

experimentation and thus the attainment of more consistent

results to draw general conclusions. In addition, we have

considered two quality metrics and, based on these, we

have suggested a number of variants (i.e., families) of a

primary CC algorithm that differ in the mechanism of

updating the HoF; this updating is executed with the aim of

removing those champions not contributing to the optimi-

zation. A new fitness function, inspired by the CFS (Rosin

and Belew 1997), was also used in a multi-objective ver-

sion of the primary CC algorithm.

The results obtained in the experiments clearly distin-

guish the performance of each algorithm family in the

search for strong solutions. In this regard, our multi-

objective CC version shows a consistent performance. This

multi-objective variant is guided by the quality of the

solution candidate (with respect to both HoF and HoC) and

the diversity of the HoF. Taking into account these two

metrics independently, the algorithmic versions led by the

quality measure provides better (in the sense of ‘‘more

competitive’’) bots than those variants guided by the

diversity metric.

An experimental analysis has also shown that our HoF/

HoC-based proposal helps to reduce the occurrence of

cycling in the coevolutionary process. Moreover, this

research have also highlighted the self-adjustment capa-

bilities of the CC algorithms described here by generating

winning strategies with respect to both the (co)evolved

enemies and other optimized enemies that form part of an

experienced line-up. This opens up multiple application in

the arena of videogames such as their use on adaptive

games (Szita et al. 2009) among others.

Future work will involve analyzing the performance of

new coevolutionary models and the application of those

described here on other RTS games, incorporating new

metrics for the HoF updating process, trying to design new

evaluation mechanisms with the aim of reducing the effects

of coevolutionary pathologies, and exploiting the potential

of archive methods when they are combined with other

approaches which help to optimize the performance of the

solutions.
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