

Abstract-- In the field of empirical modeling using Genetic

Programming (GP), it is important to evolve solution with good

generalization ability. Generalization ability of GP solutions get

affected by two important issues: bloat and over-fitting. We

surveyed and classified existing literature related to different

techniques used by GP research community to deal with these

issues. We also point out limitation of these techniques, if any.

Moreover, the classification of different bloat control

approaches and measures for bloat and over-fitting are also

discussed. We believe that this work will be useful to GP

practitioners in following ways: (i) to better understand

concepts of generalization in GP (ii) comparing existing bloat

and over-fitting control techniques and (iii) selecting

appropriate approach to improve generalization ability of GP

evolved solutions.

Index Terms-- Genetic Programming, Symbolic Regression,

Generalization, Bloat, Over-fitting, Empirical Modeling.

I. INTRODUCTION

ifferent Machine Learning (ML) techniques try to

extract implicit relationship that may exist between

input variables and output variables of a system. Generally

only limited numbers of observations (input-output

mappings) is known or available to learner during training

phase. Developing a model (solution) from these limited

numbers of observations carries a risk of over-fitting. For

any ML technique to become trusted, the technique is

expected to generate a solution that could achieve same

generalization performance on unseen data as obtained on

the training data. By generalizing implicit relationship

learned during training phase, the success (scalability) of

developed solution can be improved. Non-evolutionary ML

techniques have realized the importance of generalization

and significant research has been done in this area. The issue

of generalization ability of evolved Genetic Programming

(GP) models has received attention recently and many

contributions dealing with the issue have appeared. This

paper reviews issues related to and efforts put by researchers

to improve generalization performance of GP evolved

solutions.

The Minimum Description Length (MDL) [24] approach

to improve generalization ability of solutions induced by GP

suggests promoting evolution of simpler solutions compare

to complex solutions. The approach suggests that it is more

likely that complex solutions may contain specific

information from training data and thus may overfit it

compared to simpler solutions. However, GP practitioners

noticed that average size of solutions increases very quickly

after a certain number of generations, not matched by any

corresponding gain in fitness. This phenomenon of increase

in solution size without significant gain in terms of fitness is

known as bloat. MDL principle suggests that over-fitting and

size of solution are related entities. However, recent

contribution [31] show that bloat and over-fitting are two

independent phenomena and eliminating one does not

necessarily eliminate other. Thus, bloat and over-fitting are

important issues while studying generalization ability of

evolved GP solutions.

The paper begins by reviewing issues of bloat and over-

fitting. The paper classifies different techniques to improve

generalization ability of solutions induced by GP into: (i)

techniques that minimize evolution of bloated solutions (ii)

techniques that minimize evolution of over-fitted solutions.

The next section of the paper discusses issue of bloat,

different approaches used by GP practitioners to avoid

evolution of bloated solutions and classification of these

approaches. Section III discusses issue of over-fitting,

different measures of over-fitting and techniques used by GP

practitioners to avoid evolution of over-fitted solutions.

Section IV presents conclusions.

II. BLOAT IN GP

The phenomenon of increase in model size without

significant gain in terms of fitness is known as bloat.

Evolved model with positive bloat means the model is larger

than it need to be while negative bloat implies that the model

is too small. Bloat has negative effect on performance of GP

as large models are computationally expensive to further

evolve and are hard to comprehend and have inadequate

generalization ability [33].

A Survey on Techniques of Improving

Generalization Ability of Genetic Programming

Solutions

Vipul K. Dabhi
1
 and Sanjay Chaudhary

2

1
Information Technology Department, Dharmsinh Desai University, Nadiad, INDIA.

2
DA-IICT, Gandhinagar, Gujarat, INDIA

D

Application of bloat control schemes give following

advantages: (i) produce smaller and interpretable solutions

(ii) reduce the search space to regions where good solutions

resides (iii) reduce resource consumption by reducing space

and time required for evolution and evaluation of solutions

(iv) generates more generalize solutions (generalization of

solutions tends to decrease as their size increases).While

bloat is well defined and can be easily observed there is no

common consensus among GP practitioners on why it occurs

in GP. Below we discuss five well known theories

concerning the reasons why bloat occurs in GP.

Replication Accuracy Theory [15] argues that bloated

solutions contain inactive genetic material, called introns.

During crossover, swapping can be performed on the

inactive genetic material, without affecting effective genetic

material of parents. So, fit solutions with more inactive

genetic material are less likely to be disrupted by crossover.

Removal Bias Theory [25] observes that inactive genetic

material resides in lower portion of GP tree, thus residing in

smaller than average size sub-trees. Crossover operation

applied to inactive sub-trees generates offspring that has

same fitness as its parents. If size of inserted sub-tree is

larger than excised sub-tree, the produced offspring retains

fitness of parent but gets larger in size than its parent. Thus

average solution size of population is increased.

Modification Point Depth Theory [14] extends removal

bias theory by observing that there is a correlation between

the depth of the node a genetic operator modifies in parent

and fitness of produced offspring.

Nature of Program Search Space Theory [13] notes that

same solution can be represented by some long as well as

some short individuals. Number of ways to represent a

solution using long size individuals is high compare to short

size individuals. When crossover is unable to produce better

solutions, selection gets biased towards solutions that have

same fitness as their parents. Since there are more long

solutions for a given fitness than short solutions, over a

period of time GP drift towards longer solutions.

Crossover Bias Theory [18] explains bloat by assuming

that crossover operator on its own does not produce growth

or shrinkage in size of solutions. Repeated application of

crossover operations push the population towards a

particular distribution of tree sizes, where small size trees

have high frequency than longer ones. Since small size trees

are not useful in solving problem, larger size trees have a

selective advantage. Thus, average solution size of

population increases.

Different approaches used by GP researchers to overcome

the problem of bloat are classified into: (i) Code Editing (ii)

Size and Depth Limits (iii) Anti-bloat Genetic Operators (iv)

Anti-bloat Selection Schemes. These approaches are

presented in Fig. 1. Several bloat control techniques are

presented and discussed in [19].

A. Code Editing / Expression Simplification

GP community used code editing/expression

simplification [12] approach to simplify evolved solution by

removing redundant code. Code editing can be done before

or after evaluation of solution or it can be done at regular

interval (generation). However, GP practitioners found that

use of this approach can lead to premature convergence [7].

B. Size and Depth Limit

Koza [12], [33] suggested a method to control growth of

models by imposing size and depth limits on generated

offspring models. In this method, after application of a

genetic operator, the validity test is performed to check if the

generated offspring respects the size and depth limit. If the

offspring exceeds one of these limits, it is disposed and

genetic operation returns best of the selected parents as a

result. To estimate the size of a model, poli suggested two

steps process: (i) find out minimum possible solution,

achievable using given terminal and function sets (ii) add a

safety margin of 50%-200% to size of model obtained in

previous step A technique for dynamically adjusting depth

and size limits during GP run is proposed in [24]. Authors

[24] conclude by experiments that dynamic depth limits

produces accurate and smaller models compare to size limits.

Figure 1 Approaches to Avoid Evolution of Bloated Solutions

C. Anti-bloat Genetic Operators

Several efforts are made by GP research community in

design of genetic operators to control the bloat. For ex. a size

fair crossover approach proposed by Crawford et al. [2]. The

difference between size-fair crossover and normal crossover

lies in selection of second crossover point. The size of sub-

tree to be deleted from first parent is used in guiding

selection of crossover point in second parent. Thus, the

approach applies restriction on the selection of crossover

points to prevent the growth.

D. Anti-bloat Selection Schemes

Tarpeian technique [17] assigns a low fitness value to

portion P of individuals having above average size, without

evaluating fitness of such individuals. Having low fitness

value, selection probability of such individuals for genetic

operation will be reduced significantly. An important

property of this technique, minimizing the number of

evaluations required, differentiates it from other bloat control

techniques. Moreover, the technique does not require a priori

knowledge of the size of the potential solutions of a problem.

However, the technique becomes excessively aggressive in

situations where P is large. In this case, the technique rejects

a large size individual without considering how fit it is.

A well known approach suggested by Koza [12] to control

bloat is parsimony pressure. The approach targets to

minimize the rate at which average solution (model) size

increases. To achieve this, the approach penalizes fitness

(minimizes the selection probability) of solution based on its

size. Each solution k is assigned a new selection fitness

fsel(k) = f(k) – c*s(k), where f(k) is the original fitness, s(k)

is the size of solution k and c is the parsimony coefficient.

Selection of right value of parsimony coefficient is very

important as it decides the intensity with which the bloat is

controlled. If the coefficient is set to very low value then

there is no force to minimize the bloat. On the other end, if it

is set to large value then runs will evolve extremely small but

inaccurate solutions by neglecting the main goal of

optimization of fitness. Choosing right value of parsimony

coefficient is difficult and depends on problem to be solved.

Using constant value for parsimony coefficient can only

achieve partial control over average size of solution over a

period of time [20]. Co-variant parsimony pressure approach

sets value of parsimony coefficient dynamically during

evolutionary run, is proposed in [20]. [20] concludes that the

method achieves tight control over average size of solutions.

Parsimony pressure selection combines two objectives,

size and fitness, into a single objective, whereas multi-

objective selection keeps the two objectives separate. Multi-

objective selection approaches uses concept of pareto-

dominance optimization scheme. In pareto-dominance

optimization, an individual X is said to dominate individual

Y if X is as good as Y in all objectives and is better than Y

in at least one objective. Pareto-dominance selection scheme

generates a set of acceptable trade-off optimal solutions. This

set is referred as a Pareto set. A modified tournament

selection operator based on pareto dominance is proposed in

[4]. The operator selects a solution only if it is not dominated

by a set of randomly chosen solutions.

TABLE I CLASSIFICATION OF BLOAT CONTROL APPROACHES

E. Operator Equalisation

Operator equalisation technique [3] controls bloat by

biasing search towards smaller or larger individuals. User

has to specify solution length distribution that she wish GP

system should use while sampling solution space. The

technique controls sampling rates of specific solution lengths

by probabilistically accepting each newly produced

individual (solution) based on its length.

F. Bloat Measures

Amount of bloat is measured based on relationship

between average model length growth and average fitness

improvement at current generation compared to respective

values at generation zero in [30]. The measure hypothesize

that there is no bloat at generation zero. Amount of bloat is

computed by taking the difference of structural complexities

of evolved solution and target solution in. [22]

We classify different bloat control approaches into: (i)

Direct/Indirect [28]: Direct approaches control bloat by

simplifying the solutions using special operators. Code

editing approach is an example of direct bloat control

approach. Indirect approaches control bloat by accepting or

rejecting the solutions modified by genetic operators or

through selection. (ii) Parametric/Non-Parametric [23]:

Parametric parsimony pressure schemes evaluate final fitness

of an individual using a parametric model comprising of raw

fitness and size of an individual. Size/Depth limits and

tarpeian approaches are example of parametric bloat control

approach. (iii) Adaptive/Non-Adaptive [28]: Depending on

whether the intensity of parsimony pressure (value of

parsimony coefficient) is fixed or vary during the GP run,

bloat control approaches are classified into adaptive or non-

adaptive. Covariant parsimony pressure is an example of

non-adaptive bloat control approach. (iv) Phase of GP [23]:

Depending on the phase of GP at which bloat control method

applies, bloat control approaches can be classified.

Size/depth limit and anti-bloat genetic operators bloat

control approaches are applied at the breeding phase of GP.

Table I presents classification of bloat control approaches.

III. OVER-FITTING IN GP

Development of an unknown model from finite training

data carries a risk of excessively fitting model to data. This

phenomenon is known as over-fitting in the field of data

based modeling. The over-fitted model tries to model noise

present in training data rather than explaining the whole

training data. The over-fitted models have properties of low

training errors and high generalization errors.

Different approaches used by GP practitioners to avoid

evolution of over-fitted models are: (i) Interval Arithmetic

(ii) Partitioning Data (iii) Reducing Complexity of Models

(iv) Ensemble of Heterogeneous Models (v) Multi-objective

Optimization (vi) “Linear Scaling” with “No Same Mate”

selection. These approaches are presented in Fig. 2.

A. Interval Arithmetic

It is important to make sure that evolved models do not

have an undefined (asymptotic, infinity) behaviour in their

output for unseen input data points. Usually protected

operators are used in GP to avoid an undefined behaviour of

evolved model at unseen input data points. For ex. Division

by zero or taking square root of a negative number may

produce an undefined behaviour. Three different approaches

to avoid this situation: (i) use of ad-hoc values to avoid the

undefined behaviour, proposed by Koza [12] (ii) removal of

evolved model that has an undefined behaviour from

population (iii) restricting function set to contain only those

functions that do not produce any undefined behaviour.

Use of first two approaches ensures evolution of well-

behaved models on the training dataset, but it is still possible

that the evolved models may have undefined behaviour on

data-points that are not covered by the training dataset. Use

of interval arithmetic is proposed in [10], [11] to evolve

reliable models that do not have undefined behaviour in their

output range. The method calculates output bound

recursively for every node of the model, given the bounds of

the input arguments. The models comprising nodes having

undefined values for output bound are identified and can be

removed from the population. Interval arithmetic is used in

[27], to ensure robustness of evolved models using symbolic

regression through simulated annealing.

B. Partitioning Data

Hold-out Method divides the available data into two

disjoint data sets – training data set and test data set [6],

[33]. Training data set is used to evolve the model and the

test data set is used to approximate the generalization ability

of the evolved model. The over-fitted models can be easily

identified by the fact that they reveal very good fitness on

training data set but poor fitness on test data set.

N-Fold Cross Validation method divides available data

into N disjoint parts. Model training will be done N times,

each time using N−1 parts as training data and remaining

part as test data [33]. N-fold cross validation is not suited for

empirical modeling using GP because for each of N training

run, the algorithm can induce a different model.

To use GP for data based modeling, a preferable approach

is to divide the available data into three parts – training data

set, validation data set and test data set. Training data set is

used to evaluate the fitness of the models, where as the

validation data set is used to find out the over-fitted models

from the evolved models. The validation data set is useful in

selecting models, where as the test data set is used to

estimate the generalization error of selected models on

unseen data. Validation data set is used in [6], [22], [33] to

distinguish between over-fit solutions and exact solutions.

A measure that computes over-fitting of a model by

obtaining relationship between model's fitness on the

training set and test set is proposed in [30]. The proposed

idea is based on following rules: (i) if model's fitness on test

set is better than it's fitness on training set then there is no

over-fitting. (ii) if model's fitness on test set is better than

fitness of best model, found so far, on test set then there is no

over-fitting. (iii) otherwise, amount of over-fitting is

computed by taking difference of model's fitnesses on

training set and test set at current generation and difference

of training and test fitnesses of best models found so far. The

drawback of this measure is that it depends on how training

and test data set are selected.

Figure 2 Approaches to Avoid Evolution of Over-Fitted Solutions

C. Reducing Complexity of Models

A large size (complex) model than required is of little

practical use and hard to interpret. This fact is reflected in

Occam’s Razor principle that tells that between models of

comparable quality, simpler model is preferred over complex

one. To reduce over-fitting and to improve interpretability of

models, evolutionary process must control complexity of

models and favour simpler models during evolution.

Complexity of an evolved GP model can be measured in

genotype space or in phenotype space. In general, measuring

complexity in one space is equivalent to measuring it in

other space. However, for some problem classes this is not

true and for such problems measuring phenotypic complexity

is preferred in research community. Different kinds of

complexities associated with every model are: (i) structural

complexity of model which emphasis on compactness of

genotype (ii) behavioral complexity of model which

emphasis on smoothness of phenotype [31].

1) Structural Complexity

Different measures used to measure structural complexity

of solution are: (i) Number of nodes in a tree (ii) Number of

levels in a tree (iii) Minimum description length (iv)

Expressional complexity of a model, determined by sum of

number of nodes in all sub-trees of a given model.

2) Behavioral Complexity

Many GP researchers believe that issue of over-fitting is

linked with the functional complexity of the solution.

Functional complexity of a model is measured by computing

model's behaviour (output) over possible input space. A new

complexity measure, called, order of nonlinearity of a model,

to favour smooth behaviour of response surface and to deject

highly nonlinear (unstable) behaviour is proposed in [31].

The order of nonlinearity of a model is measured by

approximating minimal degree of polynomial necessary to

approximate the model. The concept behind the proposed

measure is that over-fitted models are approximated by

polynomial of high degree due to high oscillation in their

behaviour [27]. Parsimony pressure approach is suggested in

[6] to reduce the complexity of models and thus to improve

the generalization ability of models.

A complexity measure based on slope of line segments is

proposed in [29]. The slope-based functional complexity

(SFC) is computed by taking sum of differences of slope of

consecutive line segments. However, authors [29] calculated

SFC measure for each problem dimensions separately in case

of multi-dimensional problems. To overcome limitations of

SFC, a new measure based on concept of measuring amount

of variation in output is presented in [29].

D. Ensemble of Heterogeneous Models

Averaging the output of diverse models to improve

prediction accuracy and using their consensus to assess the

trust is proposed in [11]. Different strategies to generate

robust and diverse models [11] are: (i) using different

function sets (ii) executing independent runs (iii) using

different subsets for each generation within a single

evolution. Advantage of these strategies is that the whole

available dataset is used for model development compared to

traditional approach of dividing the dataset into training, test

and validation subsets to mitigate risk of over-fitting.

E. Multi-Objective Optimization

Real world problems frequently demands to satisfy

multiple and conflicting objectives. For ex. finding vehicle

that can travel maximum distance in a day while consuming

least energy is a multi-objective optimization problem [16].

The aim of multi-objective optimization is to produce set of

acceptable trade-off optimal solutions. Two different

approaches to solve multi-objective optimization problems

are: (i) classical approaches (ii) intelligent approaches.

1) Classical Approaches

Solving multi-objective optimization problems using

classical approaches convert multiple objectives into a single

objective. The conversion of multiple objectives into single

objective is done either by aggregating all objectives in a

weighted function or optimizing one objective and

considering others as constraints. The approach has

following limitations: (i) requires a priori preferential

information about objectives (ii) the aggregated function

produces a single solution (iii) trade-offs between objectives

cannot be assessed easily [16]. One approach, weighted

aggregation, converts multi-objective optimization problem

into a single objective optimization problem by applying a

weighted function to objective vector. It requires a priori

knowledge of relative importance of different objectives. In

absence of such knowledge, selection of weights can be

problematic. Dynamic Weighted Aggregation [9] solves the

problem by changing the weights incrementally.

2) Intelligent Approaches

These approaches seek for simultaneous optimization of

individual objectives compared to single objective

optimization of aggregation-based techniques. Intelligent

approaches are classified into: (i) Non-pareto based

approaches (ii) Pareto based approaches. Difference between

two lies in the fact that later approach use pareto-ranking of

models to find out the probability of replication of a model.

Vector Evaluated Genetic Algorithm (VEGA) [21] is a

Non-pareto based approach. The selection scheme of VEGA

partitions whole population into as many equal size sub-parts

as there are objectives. Then selection of fittest individuals

for each objective from these sub-parts is performed. The

drawback of VEGA is that it generates models those are

optimal in one of the objectives and not truly pareto optimal.

Pareto based approaches use sorting of non-dominated

solutions along with a niching mechanism to avoid

premature convergence. The fitness of a solution is

determined by its dominance in the population. The niching

mechanism is used to maintain diversity among solutions.

The way fitness value of a solution is calculated is used to

differentiate between these approaches. These techniques

are: (a) Multi Objective Genetic Algorithm [5] calculates

fitness of a solution based on the number of other solutions it

dominates. (b) Non-dominated Sorting Genetic Algorithm

[26] classifies population on basis of non-dominance before

applying selection step. (c) Niched Pareto Genetic Algorithm

[8] applies tournament selection based on pareto dominance.

(d) Strength Pareto Evolutionary Algorithm [32] uses an

external archive to maintain non-dominated solutions found

in previous generations. Fitness of a solution depends on the

solutions stored in the external archive.

F. “Linear Scaling” with “No Same Mate” Selection

Costelloe and Ryan [1] experimentally concluded that GP

with linear scaling may perform better compared to standard

GP on training data, but the technique does not generalize

well on test data. They proposed to combine "No Same

Mate" selection with linear scaling to improve generalization

ability of evolved GP solutions.

IV. CONCLUSIONS

This paper discussed problem of generalization ability of

GP solutions. The paper presents two issues: bloat and over-

fitting related to generalization ability of GP solutions. The

paper summarized state of the art approaches used by GP

practitioners to control evolution of bloated solutions and

classifies them into: Direct/Indirect, Parametric/Non-

Parametric, Adaptive/Non-Adaptive. The paper also

reviewed different approaches to reduce evolution of over-

fitted models. The paper presents advantage and

disadvantage of different generalization approaches with

which GP practitioners must be aware of. This will help

them in selection of better generalization approach suited for

solving specific empirical modeling problem using GP.

V. REFERENCES

[1] Dan Costelloe and Conor Ryan. On improving generalisation in genetic

programming. In Proceedings of the 12th European Conference on

Genetic Programming, EuroGP ’09, pages 61–72, Berlin, Heidelberg,

2009. Springer-Verlag.

[2] Raphael Crawford-marks. Size control via size fair genetic operators in

the pushgp genetic programming system. In In, pages 733–739. Morgan

Kaufmann Publishers, 2002.

[3] Stephen Dignum and Riccardo Poli. Operator equalisation and bloat free

gp. In Proceedings of the 11th European conference on Genetic

programming, EuroGP’08, pages 110–121, Berlin, Heidelberg, 2008.

Springer-Verlag.

[4] Anikó Ekárt and S. Z. Németh. Selection based on the pareto

nondomination criterion for controlling code growth in genetic

programming. Genetic Programming and Evolvable Machines,

2(1):61–73, March 2001.

[5] Carlos M. Fonseca and Peter J. Fleming. Genetic algorithms for

multiobjective optimization: Formulation, discussion and generalization,

1993.

[6] Christian Gagné, Marc Schoenauer, Marc Parizeau, and Marco

Tomassini. Genetic programming, validation sets, and parsimony

pressure. In Pierre Collet, Marco Tomassini, Marc Ebner, Steven

Gustafson, and Anikó Ekárt, editors, Proceedings of the 9th European

Conference on Genetic Programming, volume 3905 of Lecture Notes in

Computer Science, pages 109–120, Budapest, Hungary, 10 - 12 April

2006. Springer.

[7] Thomas Haynes. Collective adaptation: The exchange of coding

segments. Evol. Comput., 6(4):311–338, December 1998.

[8] J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched pareto genetic

algorithm for multiobjective optimization. In In Proceedings of the First

IEEE Conference on Evolutionary Computation, IEEE World Congress

on Computational Intelligence, pages 82–87, 1994.

[9] Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. Dynamic Weighted

Aggregation for Evolutionary Multi-Objective Optimization: Why Does

It Work and How? In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO’2001), pages 1042–1049, San

Francisco, California, 2001. Morgan Kaufmann Publishers.

[10] Maarten Keijzer. Improving symbolic regression with interval arithmetic

and linear scaling. In Proceedings of the 6th European conference on

Genetic programming, EuroGP’03, pages 70–82, Berlin, Heidelberg,

2003. Springer-Verlag.

[11] Mark Kotanchek, Guido Smits, and Ekaterina Vladislavleva. Trustable

Symbolic Regression Models: Using ensembles, interval arithmetic and

Pareto fronts to develop robust and trust-aware models. In Rick L. Riolo,

Terence Soule, and Bill Worzel, editors, Genetic Programming Theory

and Practice V, pages 201–220. Springer. Genetic and Evolutionary

Computation Vol. 5, Ann Arbor, May 2007.

[12] John R. Koza. Genetic programming: on the programming of

computers by means of natural selection. MIT Press, Cambridge, MA,

USA, 1992.

[13] W. B. Langdon and R. Poli. Fitness Causes Bloat. In P. K. Chawdhry,

R. Roy, and R. K. Pan, editors, Second On-line World Conference on

Soft Computing in Engineering Design and Manufacturing, pages 13–

22. Springer-Verlag London, FebMar-FebJul 1997.

[14] Sean Luke. Modification point depth and genome growth in genetic

programming. Evol. Comput., 11(1):67–106, March 2003.

[15] Nicholas Freitag McPhee and Justin Darwin Miller. Accurate replication

in genetic programming. In Proceedings of the 6th International

Conference on Genetic Algorithms, pages 303–309, San Francisco, CA,

USA, 1995. Morgan Kaufmann Publishers Inc.

[16] Patrick Ngatchou, Anahita Zarei, and M. A. El-Sharkawi. Pareto multi

objective optimization. In Proceedings of the 13th International

Conference on Intelligent Systems Application to Power Systems, pages

84–91, Arlington, VA, 2005.

[17] Riccardo Poli. A simple but theoretically-motivated method to control

bloat in genetic programming. In Proceedings of the 6th European

conference on Genetic programming, EuroGP’03, pages 204–217,

Berlin, Heidelberg, 2003. Springer-Verlag.

[18] Riccardo Poli, William B. Langdon, and Stephen Dignum. On the

limiting distribution of program sizes in tree-based genetic programming.

In Proceedings of the 10th European conference on Genetic

programming, EuroGP’07, pages 193–204, Berlin, Heidelberg, 2007.

Springer-Verlag.

[19] Riccardo Poli, William B. Langdon, and Nicholas F. McPhee. A Field

Guide to Genetic Programming. Lulu Enterprises, UK Ltd, March 2008.

[20] Riccardo Poli and Nicholas Freitag McPhee. Parsimony pressure made

easy. In Proceedings of the 10th annual conference on Genetic and

evolutionary computation, GECCO ’08, pages 1267–1274, New York,

NY, USA, 2008. ACM.

[21] J. David Schaffer. Multiple objective optimization with vector evaluated

genetic algorithms. In Proceedings of the 1st International Conference

on Genetic Algorithms, pages 93–100, Hillsdale, NJ, USA, 1985. L.

Erlbaum Associates Inc.

[22] Michael D. Schmidt and Hod Lipson. Incorporating expert knowledge in

evolutionary search: a study of seeding methods. In Proceedings of the

11th Annual conference on Genetic and evolutionary computation,

GECCO ’09, pages 1091–1098, New York, NY, USA, 2009. ACM.

[23] S Silva. Controlling bloat: individual and population based

approaches in genetic programming. PhD thesis, Departamento de

Engenharia Informatica, Universidade de Coimbra, 2008.

[24] Sara Silva and Ernesto Costa. Dynamic limits for bloat control in genetic

programming and a review of past and current bloat theories. Genetic

Programming and Evolvable Machines, 10(2):141–179, June 2009.

[25] Terence Soule and James A. Foster. Removal bias: a new cause of code

growth in tree based evolutionary programming. In In 1998 IEEE

International Conference on Evolutionary Computation, pages 781–

186. IEEE Press, 1998.

[26] N. Srinivas and Kalyanmoy Deb. Muiltiobjective optimization using

nondominated sorting in genetic algorithms. Evol. Comput., 2(3):221–

248, September 1994.

[27] Erwin Stinstra, Gijs Rennen, and Geert Teeuwen. Meta-modeling by

symbolic regression and pareto simulated annealing. Internal report No.

2006-15, Tilburg University, Holland, March 2006.

[28] Byoung tak Zhang. A taxonomy of control schemes for genetic code

growth. In Michigan State University, East Lansing, Michigan, 1997.

[29] Leonardo Trujillo, Sara Silva, Pierrick Legrand, and Leonardo

Vanneschi. An empirical study of functional complexity as an indicator of

overfitting in genetic programming. In Proceedings of the 14th

European conference on Genetic programming, EuroGP’11, pages

262–273, Berlin, Heidelberg, 2011. Springer-Verlag.

[30] Leonardo Vanneschi, Mauro Castelli, and Sara Silva. Measuring bloat,

overfitting and functional complexity in genetic programming. In

Proceedings of the 12th annual conference on Genetic and

evolutionary computation, GECCO ’10, pages 877–884, New York,

NY, USA, 2010. ACM.

[31] Ekaterina J. Vladislavleva, Guido F. Smits, and Dick Den Hertog. Order

of nonlinearity as a complexity measure for models generated by symbolic

regression via pareto genetic programming. Trans. Evol. Comp, 13:333–

349, April 2009.

[32] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A

Comparative Case Study and the Strength Pareto Approach. IEEE

Transactions on Evolutionary Computation, 3(4):257–271, 1999.

[33] Alexandru-Ciprian Zăvoianu. Towards solution parsimony in an

enhanced genetic programming process. Master’s thesis, International

School Informatics: Engineering & Management, ISI-Hagenberg,

Johannes Kepler University, Linz, 2010.

