
 

 

 

Abstract-- In the field of empirical modeling using Genetic 

Programming (GP), it is important to evolve solution with good 

generalization ability. Generalization ability of GP solutions get 

affected by two important issues: bloat and over-fitting. We 

surveyed and classified existing literature related to different 

techniques used by GP research community to deal with these 

issues. We also point out limitation of these techniques, if any. 

Moreover, the classification of different bloat control 

approaches and measures for bloat and over-fitting are also 

discussed. We believe that this work will be useful to GP 

practitioners in following ways: (i) to better understand 

concepts of generalization in GP (ii) comparing existing bloat 

and over-fitting control techniques and (iii) selecting 

appropriate approach to improve generalization ability of GP 

evolved solutions. 

Index Terms-- Genetic Programming, Symbolic Regression, 

Generalization, Bloat, Over-fitting, Empirical Modeling.  

I. INTRODUCTION 

ifferent Machine Learning (ML) techniques try to 

extract implicit relationship that may exist between 

input variables and output variables of a system. Generally 

only limited numbers of observations (input-output 

mappings) is known or available to learner during training 

phase. Developing a model (solution) from these limited 

numbers of observations carries a risk of over-fitting. For 

any ML technique to become trusted, the technique is 

expected to generate a solution that could achieve same 

generalization performance on unseen data as obtained on 

the training data. By generalizing implicit relationship 

learned during training phase, the success (scalability) of 

developed solution can be improved. Non-evolutionary ML 

techniques have realized the importance of generalization 

and significant research has been done in this area. The issue 

of generalization ability of evolved Genetic Programming 

(GP) models has received attention recently and many 

contributions dealing with the issue have appeared. This 

paper reviews issues related to and efforts put by researchers 

to improve generalization performance of GP evolved 

solutions.  

The Minimum Description Length (MDL) [24] approach 

to improve generalization ability of solutions induced by GP 

suggests promoting evolution of simpler solutions compare 

to complex solutions. The approach suggests that it is more 

likely that complex solutions may contain specific 

information from training data and thus may overfit it 

compared to simpler solutions. However, GP practitioners 

noticed that average size of solutions increases very quickly 

after a certain number of generations, not matched by any 

corresponding gain in fitness. This phenomenon of increase 

in solution size without significant gain in terms of fitness is 

known as bloat. MDL principle suggests that over-fitting and 

size of solution are related entities. However, recent 

contribution [31] show that bloat and over-fitting are two 

independent phenomena and eliminating one does not 

necessarily eliminate other. Thus, bloat and over-fitting are 

important issues while studying generalization ability of 

evolved GP solutions. 

The paper begins by reviewing issues of bloat and over-

fitting. The paper classifies different techniques to improve 

generalization ability of solutions induced by GP into: (i) 

techniques that minimize evolution of bloated solutions (ii) 

techniques that minimize evolution of over-fitted solutions. 

The next section of the paper discusses issue of bloat, 

different approaches used by GP practitioners to avoid 

evolution of bloated solutions and classification of these 

approaches. Section III discusses issue of over-fitting, 

different measures of over-fitting and techniques used by GP 

practitioners to avoid evolution of over-fitted solutions. 

Section IV presents conclusions. 

II. BLOAT IN GP 

The phenomenon of increase in model size without 

significant gain in terms of fitness is known as bloat. 

Evolved model with positive bloat means the model is larger 

than it need to be while negative bloat implies that the model 

is too small. Bloat has negative effect on performance of GP 

as large models are computationally expensive to further 

evolve and are hard to comprehend and have inadequate 

generalization ability [33]. 
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Application of bloat control schemes give following 

advantages: (i) produce smaller and interpretable solutions 

(ii) reduce the search space to regions where good solutions 

resides (iii) reduce resource consumption by reducing space 

and time required for evolution and evaluation of solutions 

(iv) generates more generalize solutions (generalization of 

solutions tends to decrease as their size increases).While 

bloat is well defined and can be easily observed there is no 

common consensus among GP practitioners on why it occurs 

in GP. Below we discuss five well known theories 

concerning the reasons why bloat occurs in GP.  

Replication Accuracy Theory [15] argues that bloated 

solutions contain inactive genetic material, called introns. 

During crossover, swapping can be performed on the 

inactive genetic material, without affecting effective genetic 

material of parents. So, fit solutions with more inactive 

genetic material are less likely to be disrupted by crossover.  

Removal Bias Theory [25] observes that inactive genetic 

material resides in lower portion of GP tree, thus residing in 

smaller than average size sub-trees. Crossover operation 

applied to inactive sub-trees generates offspring that has 

same fitness as its parents. If size of inserted sub-tree is 

larger than excised sub-tree, the produced offspring retains 

fitness of parent but gets larger in size than its parent. Thus 

average solution size of population is increased. 

Modification Point Depth Theory [14] extends removal 

bias theory by observing that there is a correlation between 

the depth of the node a genetic operator modifies in parent 

and fitness of produced offspring. 

Nature of Program Search Space Theory [13] notes that 

same solution can be represented by some long as well as 

some short individuals. Number of ways to represent a 

solution using long size individuals is high compare to short 

size individuals. When crossover is unable to produce better 

solutions, selection gets biased towards solutions that have 

same fitness as their parents. Since there are more long 

solutions for a given fitness than short solutions, over a 

period of time GP drift towards longer solutions. 

Crossover Bias Theory [18] explains bloat by assuming 

that crossover operator on its own does not produce growth 

or shrinkage in size of solutions. Repeated application of 

crossover operations push the population towards a 

particular distribution of tree sizes, where small size trees 

have high frequency than longer ones. Since small size trees 

are not useful in solving problem, larger size trees have a 

selective advantage. Thus, average solution size of 

population increases. 

Different approaches used by GP researchers to overcome 

the problem of bloat are classified into: (i) Code Editing (ii) 

Size and Depth Limits (iii) Anti-bloat Genetic Operators (iv) 

Anti-bloat Selection Schemes. These approaches are 

presented in Fig. 1. Several bloat control techniques are 

presented and discussed in [19]. 

A. Code Editing / Expression Simplification 

GP community used code editing/expression 

simplification [12] approach to simplify evolved solution by 

removing redundant code.  Code editing can be done before 

or after evaluation of solution or it can be done at regular 

interval (generation). However, GP practitioners found that 

use of this approach can lead to premature convergence [7]. 

B. Size and Depth Limit 

Koza [12], [33] suggested a method to control growth of 

models by imposing size and depth limits on generated 

offspring models. In this method, after application of a 

genetic operator, the validity test is performed to check if the 

generated offspring respects the size and depth limit. If the 

offspring exceeds one of these limits, it is disposed and 

genetic operation returns best of the selected parents as a 

result. To estimate the size of a model, poli suggested two 

steps process: (i) find out minimum possible solution, 

achievable using given terminal and function sets (ii) add a 

safety margin of 50%-200% to size of model obtained in 

previous step  A technique for dynamically adjusting depth 

and size limits during GP run is proposed in [24]. Authors 

[24] conclude by experiments that dynamic depth limits 

produces accurate and smaller models compare to size limits. 

 
Figure 1 Approaches to Avoid Evolution of Bloated Solutions 

C. Anti-bloat Genetic Operators 

Several efforts are made by GP research community in 

design of genetic operators to control the bloat. For ex. a size 

fair crossover approach proposed by Crawford et al. [2]. The 

difference between size-fair crossover and normal crossover 

lies in selection of second crossover point. The size of sub-

tree to be deleted from first parent is used in guiding 

selection of crossover point in second parent. Thus, the 

approach applies restriction on the selection of crossover 

points to prevent the growth. 

D. Anti-bloat Selection Schemes 

Tarpeian technique [17] assigns a low fitness value to 

portion P of individuals having above average size, without 

evaluating fitness of such individuals. Having low fitness 

value, selection probability of such individuals for genetic 

operation will be reduced significantly. An important 

property of this technique, minimizing the number of 



 

 

evaluations required, differentiates it from other bloat control 

techniques. Moreover, the technique does not require a priori 

knowledge of the size of the potential solutions of a problem. 

However, the technique becomes excessively aggressive in 

situations where P is large. In this case, the technique rejects 

a large size individual without considering how fit it is. 

A well known approach suggested by Koza [12] to control 

bloat is parsimony pressure. The approach targets to 

minimize the rate at which average solution (model) size 

increases. To achieve this, the approach penalizes fitness 

(minimizes the selection probability) of solution based on its 

size. Each solution k is assigned a new selection fitness 

fsel(k) = f(k) – c*s(k), where f(k) is the original fitness, s(k) 

is the size of solution k and c is the parsimony coefficient. 

Selection of right value of parsimony coefficient is very 

important as it decides the intensity with which the bloat is 

controlled. If the coefficient is set to very low value then 

there is no force to minimize the bloat. On the other end, if it 

is set to large value then runs will evolve extremely small but 

inaccurate solutions by neglecting the main goal of 

optimization of fitness. Choosing right value of parsimony 

coefficient is difficult and depends on problem to be solved.  

Using constant value for parsimony coefficient can only 

achieve partial control over average size of solution over a 

period of time [20]. Co-variant parsimony pressure approach 

sets value of parsimony coefficient dynamically during 

evolutionary run, is proposed in [20]. [20] concludes that the 

method achieves tight control over average size of solutions. 

Parsimony pressure selection combines two objectives, 

size and fitness, into a single objective, whereas multi-

objective selection keeps the two objectives separate. Multi-

objective selection approaches uses concept of pareto-

dominance optimization scheme. In pareto-dominance 

optimization, an individual X is said to dominate individual 

Y if X is as good as Y in all objectives and is better than Y 

in at least one objective. Pareto-dominance selection scheme 

generates a set of acceptable trade-off optimal solutions. This 

set is referred as a Pareto set. A modified tournament 

selection operator based on pareto dominance is proposed in 

[4]. The operator selects a solution only if it is not dominated 

by a set of randomly chosen solutions. 

TABLE I CLASSIFICATION OF BLOAT CONTROL APPROACHES 

 
 

E. Operator Equalisation 

Operator equalisation technique [3] controls bloat by 

biasing search towards smaller or larger individuals. User 

has to specify solution length distribution that she wish GP 

system should use while sampling solution space. The 

technique controls sampling rates of specific solution lengths 

by probabilistically accepting each newly produced 

individual (solution) based on its length. 

F. Bloat Measures 

Amount of bloat is measured based on relationship 

between average model length growth and average fitness 

improvement at current generation compared to respective 

values at generation zero in [30]. The measure hypothesize 

that there is no bloat at generation zero. Amount of bloat is 

computed by taking the difference of structural complexities 

of evolved solution and target solution in. [22]  

We classify different bloat control approaches into: (i) 

Direct/Indirect [28]: Direct approaches control bloat by 

simplifying the solutions using special operators. Code 

editing approach is an example of direct bloat control 

approach. Indirect approaches control bloat by accepting or 

rejecting the solutions modified by genetic operators or 

through selection. (ii) Parametric/Non-Parametric [23]: 

Parametric parsimony pressure schemes evaluate final fitness 

of an individual using a parametric model comprising of raw 

fitness and size of an individual. Size/Depth limits and 

tarpeian approaches are example of parametric bloat control 

approach. (iii) Adaptive/Non-Adaptive [28]: Depending on 

whether the intensity of parsimony pressure (value of 

parsimony coefficient) is fixed or vary during the GP run, 

bloat control approaches are classified into adaptive or non-

adaptive. Covariant parsimony pressure is an example of 

non-adaptive bloat control approach. (iv) Phase of GP [23]: 

Depending on the phase of GP at which bloat control method 

applies, bloat control approaches can be classified. 

Size/depth limit and anti-bloat genetic operators bloat 

control approaches are applied at the breeding phase of GP. 

Table I presents classification of bloat control approaches. 

III. OVER-FITTING IN GP 

Development of an unknown model from finite training 

data carries a risk of excessively fitting model to data. This 

phenomenon is known as over-fitting in the field of data 

based modeling.  The over-fitted model tries to model noise 

present in training data rather than explaining the whole 

training data. The over-fitted models have properties of low 

training errors and high generalization errors. 



 

 

Different approaches used by GP practitioners to avoid 

evolution of over-fitted models are: (i) Interval Arithmetic 

(ii) Partitioning Data (iii) Reducing Complexity of Models 

(iv) Ensemble of Heterogeneous Models (v) Multi-objective 

Optimization (vi) “Linear Scaling” with “No Same Mate” 

selection. These approaches are presented in Fig. 2. 

A. Interval Arithmetic 

It is important to make sure that evolved models do not 

have an undefined (asymptotic, infinity) behaviour in their 

output for unseen input data points. Usually protected 

operators are used in GP to avoid an undefined behaviour of 

evolved model at unseen input data points. For ex. Division 

by zero or taking square root of a negative number may 

produce an undefined behaviour. Three different approaches 

to avoid this situation: (i) use of ad-hoc values to avoid the 

undefined behaviour, proposed by Koza [12] (ii) removal of 

evolved model that has an undefined behaviour from 

population (iii) restricting function set to contain only those 

functions that do not produce any undefined behaviour. 

Use of first two approaches ensures evolution of well-

behaved models on the training dataset, but it is still possible 

that the evolved models may have undefined behaviour on 

data-points that are not covered by the training dataset. Use 

of interval arithmetic is proposed in [10], [11] to evolve 

reliable models that do not have undefined behaviour in their 

output range. The method calculates output bound 

recursively for every node of the model, given the bounds of 

the input arguments. The models comprising nodes having 

undefined values for output bound are identified and can be 

removed from the population. Interval arithmetic is used in 

[27], to ensure robustness of evolved models using symbolic 

regression through simulated annealing. 

B. Partitioning Data 

Hold-out Method divides the available data into two 

disjoint data sets – training data set and test data set [6], 

[33]. Training data set is used to evolve the model and the 

test data set is used to approximate the generalization ability 

of the evolved model. The over-fitted models can be easily 

identified by the fact that they reveal very good fitness on 

training data set but poor fitness on test data set. 

N-Fold Cross Validation method divides available data 

into N disjoint parts. Model training will be done N times, 

each time using N−1 parts as training data and remaining 

part as test data [33]. N-fold cross validation is not suited for 

empirical modeling using GP because for each of N training 

run, the algorithm can induce a different model. 

To use GP for data based modeling, a preferable approach 

is to divide the available data into three parts – training data 

set, validation data set and test data set. Training data set is 

used to evaluate the fitness of the models, where as the 

validation data set is used to find out the over-fitted models 

from the evolved models. The validation data set is useful in 

selecting models, where as the test data set is used to 

estimate the generalization error of selected models on 

unseen data. Validation data set is used in [6], [22], [33] to 

distinguish between over-fit solutions and exact solutions. 

A measure that computes over-fitting of a model by 

obtaining relationship between model's fitness on the 

training set and test set is proposed in [30]. The proposed 

idea is based on following rules: (i) if model's fitness on test 

set is better than it's fitness on training set then there is no 

over-fitting. (ii) if model's fitness on test set is better than 

fitness of best model, found so far, on test set then there is no 

over-fitting. (iii) otherwise, amount of over-fitting is 

computed by taking difference of model's fitnesses on 

training set and test set at current generation and difference 

of training and test fitnesses of best models found so far. The 

drawback of this measure is that it depends on how training 

and test data set are selected. 

 
Figure 2 Approaches to Avoid Evolution of Over-Fitted Solutions 

C. Reducing Complexity of Models 

A large size (complex) model than required is of little 

practical use and hard to interpret. This fact is reflected in 

Occam’s Razor principle that tells that between models of 

comparable quality, simpler model is preferred over complex 

one. To reduce over-fitting and to improve interpretability of 

models, evolutionary process must control complexity of 

models and favour simpler models during evolution. 

Complexity of an evolved GP model can be measured in 

genotype space or in phenotype space. In general, measuring 

complexity in one space is equivalent to measuring it in 

other space. However, for some problem classes this is not 

true and for such problems measuring phenotypic complexity 

is preferred in research community. Different kinds of 

complexities associated with every model are: (i) structural 

complexity of model which emphasis on compactness of 

genotype (ii) behavioral complexity of model which 



 

 

emphasis on smoothness of phenotype [31]. 

1) Structural Complexity 

Different measures used to measure structural complexity 

of solution are: (i) Number of nodes in a tree (ii) Number of 

levels in a tree (iii) Minimum description length (iv) 

Expressional complexity of a model, determined by sum of 

number of nodes in all sub-trees of a given model. 

2) Behavioral Complexity 

Many GP researchers believe that issue of over-fitting is 

linked with the functional complexity of the solution. 

Functional complexity of a model is measured by computing 

model's behaviour (output) over possible input space. A new 

complexity measure, called, order of nonlinearity of a model, 

to favour smooth behaviour of response surface and to deject 

highly nonlinear (unstable) behaviour is proposed in [31]. 

The order of nonlinearity of a model is measured by 

approximating minimal degree of polynomial necessary to 

approximate the model. The concept behind the proposed 

measure is that over-fitted models are approximated by 

polynomial of high degree due to high oscillation in their 

behaviour [27]. Parsimony pressure approach is suggested in 

[6] to reduce the complexity of models and thus to improve 

the generalization ability of models.  

A complexity measure based on slope of line segments is 

proposed in [29]. The slope-based functional complexity 

(SFC) is computed by taking sum of differences of slope of 

consecutive line segments. However, authors [29] calculated 

SFC measure for each problem dimensions separately in case 

of multi-dimensional problems. To overcome limitations of 

SFC, a new measure based on concept of measuring amount 

of variation in output is presented in [29].  

D. Ensemble of Heterogeneous Models 

Averaging the output of diverse models to improve 

prediction accuracy and using their consensus to assess the 

trust is proposed in [11]. Different strategies to generate 

robust and diverse models [11] are: (i) using different 

function sets (ii) executing independent runs (iii) using 

different subsets for each generation within a single 

evolution. Advantage of these strategies is that the whole 

available dataset is used for model development compared to 

traditional approach of dividing the dataset into training, test 

and validation subsets to mitigate risk of over-fitting.  

E. Multi-Objective Optimization 

Real world problems frequently demands to satisfy 

multiple and conflicting objectives. For ex. finding vehicle 

that can travel maximum distance in a day while consuming 

least energy is a multi-objective optimization problem [16]. 

The aim of multi-objective optimization is to produce set of 

acceptable trade-off optimal solutions. Two different 

approaches to solve multi-objective optimization problems 

are: (i) classical approaches (ii) intelligent approaches. 

1) Classical Approaches 

Solving multi-objective optimization problems using 

classical approaches convert multiple objectives into a single 

objective. The conversion of multiple objectives into single 

objective is done either by aggregating all objectives in a 

weighted function or optimizing one objective and 

considering others as constraints. The approach has 

following limitations: (i) requires a priori preferential 

information about objectives (ii) the aggregated function 

produces a single solution (iii) trade-offs between objectives 

cannot be assessed easily [16]. One approach, weighted 

aggregation, converts multi-objective optimization problem 

into a single objective optimization problem by applying a 

weighted function to objective vector. It requires a priori 

knowledge of relative importance of different objectives. In 

absence of such knowledge, selection of weights can be 

problematic. Dynamic Weighted Aggregation [9] solves the 

problem by changing the weights incrementally. 

2) Intelligent Approaches 

These approaches seek for simultaneous optimization of 

individual objectives compared to single objective 

optimization of aggregation-based techniques. Intelligent 

approaches are classified into: (i) Non-pareto based 

approaches (ii) Pareto based approaches. Difference between 

two lies in the fact that later approach use pareto-ranking of 

models to find out the probability of replication of a model. 

Vector Evaluated Genetic Algorithm (VEGA) [21] is a 

Non-pareto based approach. The selection scheme of VEGA 

partitions whole population into as many equal size sub-parts 

as there are objectives. Then selection of fittest individuals 

for each objective from these sub-parts is performed. The 

drawback of VEGA is that it generates models those are 

optimal in one of the objectives and not truly pareto optimal. 

Pareto based approaches use sorting of non-dominated 

solutions along with a niching mechanism to avoid 

premature convergence. The fitness of a solution is 

determined by its dominance in the population. The niching 

mechanism is used to maintain diversity among solutions. 

The way fitness value of a solution is calculated is used to 

differentiate between these approaches. These techniques 

are: (a) Multi Objective Genetic Algorithm [5] calculates 

fitness of a solution based on the number of other solutions it 

dominates. (b) Non-dominated Sorting Genetic Algorithm 

[26] classifies population on basis of non-dominance before 

applying selection step. (c) Niched Pareto Genetic Algorithm 

[8] applies tournament selection based on pareto dominance. 

(d) Strength Pareto Evolutionary Algorithm [32] uses an 

external archive to maintain non-dominated solutions found 

in previous generations. Fitness of a solution depends on the 

solutions stored in the external archive. 

F. “Linear Scaling” with “No Same Mate” Selection 

Costelloe and Ryan [1] experimentally concluded that GP 

with linear scaling may perform better compared to standard 

GP on training data, but the technique does not generalize 

well on test data. They proposed to combine "No Same 



 

 

Mate" selection with linear scaling to improve generalization 

ability of evolved GP solutions. 

IV. CONCLUSIONS 

This paper discussed problem of generalization ability of 

GP solutions. The paper presents two issues: bloat and over-

fitting related to generalization ability of GP solutions. The 

paper summarized state of the art approaches used by GP 

practitioners to control evolution of bloated solutions and 

classifies them into: Direct/Indirect, Parametric/Non-

Parametric, Adaptive/Non-Adaptive. The paper also 

reviewed different approaches to reduce evolution of over-

fitted models. The paper presents advantage and 

disadvantage of different generalization approaches with 

which GP practitioners must be aware of. This will help 

them in selection of better generalization approach suited for 

solving specific empirical modeling problem using GP. 
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