
Staged Self-Assembly and
Polyomino Context-Free Grammars

Andrew Winslow?

Department of Computer Science, Tufts University,
awinslow@cs.tufts.edu

Abstract. Previous work by Demaine et al. (2012) developed a strong
connection between smallest context-free grammars and staged self-assembly
systems for one-dimensional strings and assemblies. We extend this work
to two-dimensional polyominoes and assemblies, comparing staged self-
assembly systems to a natural generalization of context-free grammars
we call polyomino context-free grammars (PCFGs).
We achieve nearly optimal bounds on the largest ratios of the smallest
PCFG and staged self-assembly system for a given polyomino with n
cells. For the ratio of PCFGs over assembly systems, we show that the
smallest PCFG can be an Ω(n/ log3 n)-factor larger than the smallest
staged assembly system, even when restricted to square polyominoes. For
the ratio of assembly systems over PCFGs, we show that the smallest
staged assembly system is never more than a O(logn)-factor larger than
the smallest PCFG and is sometimes an Ω(logn/ log log n)-factor larger.

1 Introduction

In the mid-1990s, the Ph.D. thesis of Erik Winfree [22] introduced a theoretical
model of self-assembling nanoparticles. In this model, which he called the abstract
tile assembly model (aTAM), square particles called tiles attach edgewise to each
other if their edges share a common glue and the bond strength is sufficient
to overcome the kinetic energy or temperature of the system. The products of
these systems are assemblies: aggregates of tiles forming via crystal-like growth
starting at a seed tile. Surprisingly, these tile systems have been shown to be
computationally universal [22,5], self-simulating [11,12], and capable of optimally
encoding arbitrary shapes [18,1,21].

In parallel with work on the aTAM, a number of variations on the model have
been proposed and investigated. These variations change a number of features
of the original aTAM, for instance allowing glues to repulse [10,17,19], or adding
labels to each tile to produce patterned assemblies [13,6,20]. For a more thorough
treament of the aTAM and its variants, see the recent surveys of Patitz [16] and
Doty [9].

One well-studied variant called the hierarchical [4] or two-handed assembly
model (2HAM) [7] eliminates the seed tile and allows tiles and assemblies to

? Supported in part by National Science Foundation grant CBET-0941538.

ar
X

iv
:1

30
4.

70
38

v3
 [

cs
.C

C
]

 2
9

Ju
n

20
13

awinslow@cs.tufts.edu

2 A. Winslow

attach in arbitrary order. This model was shown to be capable of (theoretically)
faster assembly of squares [4] and simulation of aTAM systems [2], including
capturing the seed-originated growth dynamics. A generalization of the 2HAM
model proposed by Demaine et al. [7] is the staged assembly model, which allows
the assemblies produced by one system to be used as reagents (in place of tiles)
for another system, yielding systems divided into sequential assembly stages.
They showed that such sequential assembly systems can replace the role of glues
in encoding complex assemblies, allowing the construction of arbitrary shapes
efficiently while only using a constant number of glue types, a result impossible
in the aTAM or 2HAM.

To understand the power of the staged assembly model, Demaine et al. [8]
studied the problem of finding the smallest system producing a one-dimensional
assembly with a given sequence of labels on its tiles, called a label string. They
proved that for systems with a constant number of glue types, this problem is
equivalent to the well-studied problem of finding the smallest context-free gram-
mar whose language is the given label string, also called the smallest grammar
problem (see [15,3]). For systems with unlimited glue types, they proved that the
ratio of the smallest context-free grammar over the smallest system producing
an assembly with a given label string of length n (which they call separation) is
Ω(

√
n/ log n) and O((n/ log n)2/3) in the worst case.

In this paper we consider the two-dimensional version of this problem: finding
the smallest staged assembly system producing an assembly with a given label
polyomino. For systems with constant glue types and no cooperative bonding, we
achieve separation of grammars over these systems of Ω(n/(log log n)2) for poly-
ominoes with n cells (Sect. 6.1), and Ω(n/ log3 n) when restricted to rectangular
(Sect. 6.2) or square (Sect. 6.3) polyominoes with a constant number of labels.
Adding the restriction that each step of the assembly process produces a single
product, we achieveΩ(n/ log3 n) separation for general polyominoes with a single
label (Sect. 6.1). For the separation of staged assembly systems over grammars,
we achieve bounds of Ω(log n/ log log n) (Sect. 4) and, constructively, O(log n)
(Sect. 5). For all of these results, we use a simple definition of context-free gram-
mars on polyominoes that generalizes the deterministic context-free grammars
(called RCFGs) of [8].

When taken together, these results give a nearly complete picture of how
smallest context-free grammars and staged assembly systems compare. For some
polyominoes, staged assembly systems are exponentially smaller than context-
free grammars (O(log n) vs. Ω(n/ log3 n)). On the other hand, given a polyomino
and grammar deriving it, one can construct a staged assembly system that is a
(nearly optimal) O(log n)-factor larger and produces an assembly with a label
polyomino replicating the polyomino.

2 Staged Self-Assembly

An instance of the staged tile assembly model is called a staged assembly system
or system, abbreviated SAS. A SAS S = (T,G, τ,M,B) is specified by five

Staged Self-Assembly and Polyomino Context-Free Grammars 3

parts: a tile set T of square tiles, a glue function G : Σ(G)2 → {0, 1, . . . , τ}, a
temperature τ ∈ N, a directed acyclic mix graph M = (V,E), and a start bin
function B : VL → T from the leaf vertices VL ⊆ V of M with no incoming
edges.

Each tile t ∈ T is specified by a 5-tuple (l, gn, ge, gs, gw) consisting of a label
l taken from an alphabet Σ(T) (denoted l(t)) and a set of four non-negative
integers in Σ(G) = {0, 1, . . . , k} specifying the glues on the sides of t with
normal vectors 〈0, 1〉 (north), 〈1, 0〉 (east), 〈0,−1, 〉 (south), and 〈−1, 0〉 (west),
respectively, denoted gu(t). In this work we only consider glue functions with
the constraints that if G(gi, gj) > 0 then gi = gj , and G(0, 0) = 0.

A configuration is a partial function C : Z2 → T mapping locations on
the integer lattice to tiles. Any two locations p1 = (x1, y1), p2 = (x2, y2) in
the domain of C (denoted dom(C)) are adjacent if ||p2 − p1|| = 1 and the
bond strength between any pair of tiles C(p1) and C(p2) at adjacent locations
is G(gp2−p1

(C(p1)), gp1−p2
(C(p2)). A configuration is a τ -stable assembly or an

assembly at temperature τ if dom(C) is connected on the lattice and, for any
partition of dom(C) into two subconfigurations C1, C2, the sum of the bond
strengths between tiles at pairs of locations p1 ∈ dom(C1), p2 ∈ dom(C2) is at
least τ . Any pair of configurations C1, C2 are equivalent if there exists a vector
v = 〈x, y〉 such that dom(C1) = {p + v | p ∈ dom(C2)} and C1(p) = C2(p + v)
for all p ∈ dom(C1). Two τ -stable assemblies A1, A2 are said to assemble into
a superassembly A3 if there exists a translation vector v = 〈x, y〉 such that
dom(A1)∩ {p+ v | p ∈ A2} = ∅ and A3 defined by the partial functions A1 and
A′2 with A′2(p) = A2(p+ v) is a τ -stable assembly.

Each vertex of the mix graph M describes a two-handed assembly process.
This process starts with a set of τ -stable input assemblies I. The set of assembled
assemblies Q is defined recursively as I ⊆ Q, and for any pair of assemblies
A1, A2 ∈ Q with superassembly A3, A3 ∈ Q. Finally, the set of products P ⊆ Q
is the set of assemblies A such that for any assembly A′, no superassembly of A
and A′ is in Q.

The mix graph M = (V,E) of S defines a set of two-handed assembly pro-
cesses (called mixings) for the non-leaf vertices of M (called bins). The input
assemblies of the mixing at vertex v is the union of all products of mixings at
vertices v′ with (v′, v) ∈ E. The start bin function B defines the lone single-tile
product of each mixings at a leaf bin. The system S is said to produce an as-
sembly A if some mixing of S has a single product, A. We define the size of S,
denoted S, to be |E|, the number of edges in M . If every mixing in a S has a
single product, then S is a singular self-assembly system (SSAS).

The results of Section 6.4 use the notion of a self-assembly system S ′ simu-
lating a system S by carrying out the same sequence of mixings and producing
a set of scaled assemblies. Formally, we say a system S ′ = (T ′, G′, τ,M ′, B′)
simulates a system S = (T,G, τ,M,B) at scale b if there exist two functions f ,
g with the following properties:

4 A. Winslow

a b c

a

b

a

b

c

c

cba

Fig. 1. A self-assembly system (SAS) consisting of a mix graph and tile types (left), and
the assemblies produced by carrying out the algorithmic process of staged self-assembly
(right).

(1) The function f : (Σ(T ′) ∪ {∅})b2 → Σ(T) ∪ {∅} maps the labels of b × b
regions of tiles (called blocks) to a label of a tile in T . The empty label ∅
denotes no tile.

(2) The function g : S′ → V maps a subset S′ of the vertices of the mix graph
M ′ to vertices of the mix graph M such that g is an isomorphism between
the subgraph induced by S′ in M ′ and the graph M .

(3) Let P (v) be the set of products of the bin corresponding to vertex v in a
mix graph. Then for each vertex v ∈ M with v′ = g−1(v), P (v) = {f(p) |
p ∈ P (v′)}.

Intuitively, f defines a correspondence between the b-scaled macrotiles in S ′
simulating tiles in S, and g defines a correspondence between bins in the systems.
Property (3) requires that f and g do, in fact, define correspondence between
what the systems produce.

The self-assembly systems constructed in Sections 5 and 6 produce only
mismatch-free assemblies: assemblies in which every pair of incident sides of two
tiles in the assembly have the same glue. A system is defined to be mismatch-free
if every product of the system is mismatch-free.

3 Polyomino Context-Free Grammars

Here we describe polyominoes, a generalization of strings, and polyomino context-
free grammars, a generalization of deterministic context-free grammars. These
objects replace the strings and restricted context-free grammars (RCFGs) of
Demaine et al. [8].

A labeled polyomino or polyomino P = (S,L) is defined by a connected set of
points S on the square lattice (called cells) containing (0, 0) and a label function

Staged Self-Assembly and Polyomino Context-Free Grammars 5

L : S → Σ(P) mapping each cell of P to a label contained in an alphabet
Σ(P). The size of P is the number of cells P contains and is denoted |P |.
The label of the cell at lattice point (x, y) is denoted L((x, y)) and we define
P (x, y) = L((x, y)) for notational convenience. We refer to the label or color of
a cell interchangeably.

Define a polyomino context-free grammar (PCFG) to be a quadruple G =
(Σ,Γ, S,∆). The set Σ is a set of terminal symbols and the set Γ is a set of non-
terminal symbols. The symbol S ∈ Γ is a special start symbol. Finally, the set ∆
consists of production rules, each of the form N → (R1, (x1, y1)) . . . (Rj , (xj , yj))
where N ∈ Γ and is the left-hand side symbol of only this rule, Ri ∈ N ∪T , and
each (xi, yi) is a pair of integers. The size of G is defined to be the total number
of symbols on the right-hand sides of the rules of ∆.

A polyomino P can be derived by starting with S, the start symbol of G,
and repeatedly replacing a non-terminal symbol with a set of non-terminal and
terminal symbols. The set of valid replacements is ∆, the production rules of G,
where a non-terminal symbol N with lower-leftmost cell at (x, y) can be replaced
with a set of symbols R1 at (x+x1, y+y1), R2 at (x+x2, y+y2), . . . , Rj at (x+
xj , y+ yj) if there exists a rule N → (R1, (x1, y1))(R2, (x2, y2)) . . . (Rj , (xj , yj)).
Additionally, the set of terminal symbol cells derivable starting with S must be
connected and pairwise disjoint.

The polyomino P derived by the start symbol of a grammar G is called the
language of G, denoted L(G), and G is said to derive P . In the remainder of
the paper we assume that each production rule has at most two right-hand side
symbols (equivalent to binary normal form for 1D CFGs), as any PCFG can be
converted to this form with only a factor-2 increase in size. Such a conversion
is done by iteratively replacing two right-hand side symbols Ri, Ri′ with a new
non-terminal symbol Q, and adding a new rule replacing Q with Ri and Ri′ .

Intuitively, a polyomino context-free grammar is a recursive decomposition
of a polyomino into smaller polyominoes. Because each non-terminal symbol is
the left-hand side symbol of at most one rule, each non-terminal corresponds
to a subpolyomino of the derived polyomino. Then each production rule is a
decomposition of a subpolyomino into smaller subpolyominoes (see Figure 2).

⇒

N → (R, (0, 0))(R, (3, 0))

a b c

c

b c

c

a a b c

c

a b c

c

Fig. 2. Each production rule in a PCFG generating a single shape is a decomposition of
the left-hand side non-terminal symbol’s polyomino into the right-hand side symbols’
polyominoes.

6 A. Winslow

In this interpretation, the smallest grammar deriving a given polyomino is
equivalent to a decomposition using the fewest distinct subpolyominoes in the
decomposition. As for the smallest CFG for a given string, the smallest PCFG
for a given polyomino is deterministic and finding such a grammar is NP-hard.
Moreover, even approximating the smallest grammar is NP-hard [3], and achiev-
ing optimal approximation algorithms remains open [14].

In Section 5 we construct self-assembly systems that produce assemblies
whose label polyominoes are scaled versions of other polyominoes, with some
amount of “fuzz” in each scaled cell. A polyomino P ′ = (S′, L′) is said to be
a (c, d)-fuzzy replica of a polyomino P = (S,L) if there exists a vector 〈xt, yt〉
with the following properties:

1. For each block of cells S ′(i,j) = {(x, y) | xt + di ≤ x < xt + d(i+ 1), yt + dj ≤
y < yt +d(j+1)} (called a supercell), S ′(i,j)∩S′ 6= ∅ if and only if (i, j) ⊆ S.

2. For each supercell S ′(i,j) containing a cell of P ′, the subset of label cells

{(x, y) | xt+di+(d−c)/2 ≤ x < xt+d(i+1)+(d−c)/2, yt+dj+(d−c)/2 ≤
y < yt + d(j + 1) + (d− c)/2} consists of c2 cells of P ′, with all cells having
identical label, called the label of the supercell and denoted L(i,j).

3. For each supercell S ′(i,j), any cell that is not a label cell of S ′(i,j) has a common

fuzz label in L′.
4. For each supercell S ′(i,j), the label of the supercell L′(i,j) = P (i, j).

Properties (1) and (2) define how sets of cells in P ′ replicate individual cells in
P , and the labels of these sets of cells and individual cells. Property (3) restricts
the region of each supercell not in the label region to contain only cells with a
common fuzz label. Property (4) requires that each supercell’s label matches the
label of the corresponding cell in P .

4 SAS over PCFG Separation Lower Bound

This result uses a set of shapes we call n-stagglers, an example is seen in Figure 3.
The shapes consist of log n bars of dimensions n/ log n × 1 stacked vertically
atop each other, with each bar horizontally offset from the bar below it by some
amount in the range −(n/ log n − 1), . . . , n/ log n − 1. We use the shorthand
that log n = blog nc for conciseness. Every sequence of log n − 1 integers, each
in the range [−(n/ log n − 1), n/ log n − 1], encodes a unique staggler and by
the pidgeonhole principle, some n-staggler requires log((2n/ log n − 1)logn−1 =
Ω(log2 n) bits to specify.

Lemma 1. Any n-staggler can be derived by a PCFG of size O(log n).

Proof. A set of O(log n) production rules deriving a bar (of size Θ(n/ log n)×1)
can be constructed by repeatedly doubling the length of the bar, using an addi-
tional log n rules to form the bar’s exact length. The result of these production
rules is a single non-terminal B deriving a complete bar.

Staged Self-Assembly and Polyomino Context-Free Grammars 7

log 28 = 8

n/ log n = 28/8

Fig. 3. The 28-staggler specified by the sequence −18, 13, 9,−17,−4, 12,−10.

Using the non-terminal B, a stack of k bars can be described using a produc-
tion rule N → (B, (x1, 0))(B, (x2, 1)) . . . (B, (xk, k−1)), where the x-coordinates
x1, x2, . . . , xk encode the offsets of each bar relative to the bar below it. An equiv-
alent set of k − 1 production rules in binary normal form can be produced by
creating a distinct non-terminal for Ti each stack of the first i bars, and a pro-
duction rule Ti → (Ti−1, (0, 0))(B, (xi, i)) encoding the offset of the topmost bar
relative to the stack of bars beneath it.

In total, O(log n) rules are used to create B, the non-terminal deriving a bar,
and O(log n) are used to create the stack of bars, one per bar. So the n-staggler
can be constructed using a PCFG of size O(log n).

Lemma 2. For every n, there exists an n-staggler P such that any SAS or SSAS
producing an assembly with label polyomino P has size Ω(log2 n/ log log n).

Proof. The proof is information-theoretic. Recall that more than half of all n-
stagglers require Ω(log2 n) bits to specify. Now consider the number of bits
contained in a SAS S. Recall that |S| is the number of edges in the mix graph
of S. Any SAS can be encoded naively using O(|S| log |S|) bits to specify the
mix graph, O(|T | log |T |) bits to specify the tile set, and O(|S| log |T |) bits to
specify the tile type at each leaf node of the mix graph. Because the number
of tile types cannot exceed the size of the mix graph, |T | ≤ |S|. So the total
number of bits needed to specify S (and thus the number of bits of information
contained in S) is O(|S| log |S| + |T | log |T | + |S| log |S|) = O(|S| log |S|). So
some n-staggler requires a SAS S such that O(|S| log |S|) = Ω(log2 n) and thus
|S| = Ω(log2 n/ log log n).

Theorem 1. The separation of SASs and SSASs over PCFGs is Ω(log n/ log log n).

Proof. By the previous two lemmas, more than half of all n-stagglers require
SASs and SSASs of size Ω(log2 n/ log log n) and all n-stagglers have PCFGs of
size O(log n). So the separation is Ω(log n/ log log n).

We also note that scaling the n-staggler by a c-factor produces a shape which
is derivable by a CFG of size O(log n + log c). That is, the result still holds for
n-stagglers scaled by any amount polynomial in n. For instance, the O(n)-factor
of the construction of Theorem 2.

At first it may not be clear how PCFGs achieve smaller encodings. After all,
each rule in a PCFG G or mixing in SAS S specifies either a set of right-hand
side symbols or set of input bins to use and so has up to O(log |G|) or O(log |S|)

8 A. Winslow

bits of information. The key is the coordinate describing the location of each
right-hand side symbol. These offsets have up to O(log n) bits of information
and in the case that G is small, say O(log n), each rule has a number of bits
linear in the size of the PCFG!

5 SAS over PCFG Separation Upper Bound

Next we show that the separation lower bound of the last section is nearly large
as possible by giving an algorithm for converting any PCFG G into a SSAS S
with system size O(|G| log n) such that S produces an assembly that is a fuzzy
replica of the polyomino derived by G. Before describing the full construction,
we present approaches for efficiently constructing general binary counters and
for simulating glues using geometry.

0

1

1

0

10

00

Increment 0011b by 1, yielding 0100b.

Fig. 4. A binary counter row constructed using single-bit constant-sized assemblies.
Dark blue and green glues indicate 1-valued carry bits, light blue and green glues
indicate 0-valued carry bits.

The binary counter row assemblies used here are a generalization of those by
Demaine et al. [7] consisting of constant-sized bit assemblies, and an example is
seen in Figure 4. Our construction achieves O(log n) construction of arbitrary
ranges of rows and increment values, in contrast to the contruction of [7] that
only produces row sets of the form 0, 1, . . . , 22

m − 1 that increment by 1. To do
so, we show how to construct two special cases from which the generalization
follows easily.

Lemma 3. Let i, j, n be integers such that 0 ≤ i ≤ j < n. There exists a SSAS
of size O(log n) with a set of bins that, when mixed, assemble a set of j − i+ 1
binary counter rows with values i, i+ 1, . . . , j incremented by 1.

Proof. Representing integers as binary strings, consider the prefix tree induced
by the binary string representations of the integers i through j, which we denote
T(i,j). The prefix tree T(0,2m−1) is a complete tree of height m, and the prefix
tree T(i,j) with 0 ≤ i ≤ j ≤ 2m − 1 is a subtree of T(0,2m−1) with j − i + 1 leaf
nodes See Figure 5 for an example with m = 4.

Now let n = 2m − 1. If T(0,n) is drawn with leaves in left-to-right order by
increasing integer values, then the leaves of the subtree T(i,j) appear contiguously.

Staged Self-Assembly and Polyomino Context-Free Grammars 9

So the subtree T(i,j) has at most 2 log n internal nodes with one child forming
the leftmost and rightmost paths in T(i,j). Furthermore, if one removes these
two paths from T(i,j), the remainder of T(i,j) is a forest of complete trees with
at most two trees of each height and 2 log n trees total.

0

0 0 0

0

1

1 1

1 1 1

1

0101

0 1

0100 0101

0 1

1000 1001

0 1

1010 1011

0 1

1100 1101

0

1110

0

0

1

0 1

0001

0 1

0010 0011

1

1111

0

01000000

Fig. 5. The prefix tree T(0,15) for integers 0 to 24 − 1 represented in binary. The bold
subtree is the prefix subtree T(5,14) for integers 5 to 14.

Note that a complete subtree of the prefix tree corresponds to a set of all
possible 2h suffixes of length h, where h is the height of the subtree. The leaves
of such a subtree then correspond to the set of strings of length l with a specific
prefix of length l − h and any suffix of length h. For the assemblies we use the
same geometry-based encoding of each bit as [7], and a distinct set of glues used
for each bit of the assembly encoding both the bit index and carry bit value from
the previous bit.

Left and right bins. We build a mix graph (seen in Figure 6) consisting
of two disjoint paths of bins (called left bins and right bins) that are used to
iteratively assemble partial counter rows i and j by the addition of distinct
constant-sized assemblies for each bit. The partial rows are used to produce the
assemblies in the subtree and missing bit bins (described next). In the suffix
trees, the bit strings of these assemblies are progressively longer subpaths of the
leftmost and rightmost paths in the subtree of binary strings of the integers i to
j.

Subtree bins. Assemblies in subtree bins correspond to assemblies encoding
prefixes of binary counter row values. However, unlike left and right bins that
encode prefixes of only a single value, subtree bins encode prefixes of many
binary counter values between i the j – namely a set of values forming a maximal
complete subtree of the subtree of binary strings of integers from i to j, hence
the name subtree bins. For example, if i = 12 and j = 16, then the set of binary
strings for values 12 (01100b) to 15 (01111b) have a common prefix 011b. In this
case a subtree bin containing an assembly encoding the three bits 011 would
be created. Since there are at most 2 log n such complete subtrees, the number
of subtree bins is at most this many. Creating each bin only requires a single

10 A. Winslow

mixing step of combining an assembly from a left or right bin with a single bit
assembly, for example adding a 1-bit assembly to the left bin assembly encoding
the prefix 01b.

Missing bit bins. To add the bits not encoded by the assemblies in the
subtree bins, we create sets of four constant-sized assemblies in individual miss-
ing bit bins. Since the assemblies in subtree bins encode bit string prefixes of
sets of values forming complete subtrees, completing these prefixes with any
suffix forms a bit string whose value is between i and j. This allows complete
non-determinism in the bit assemblies that attach to complete the counter row,
provided they properly handle carry bits. For every bit index missing in some
subtree bin assembly, the four assemblies encoding the four possibilities for the
input and carry values are assembled and placed into separate bins. When all
bins are mixed, subtree assemblies mix non-deterministically with all possible as-
semblies from missing bit bins, producing all counter rows whose binary strings
are found in the subtree. In total, up to 4 log n missing bit bins are created,
and each contains a constant-sized assembly and so requires constant work to
produce.

The total number of total bins is clearly O(log n). Consider mixing the left
and right bins containing completed counter rows for i and j, all subtree bins, and
all missing bit bins. Any assembly produced by the system must be a complete
binary counter row, as all assemblies are either already complete rows (left and
right bins) or are partial assemblies (subtree bins and missing bit bins) that can
be extended towards the end of the bit string by missing bit bin assemblies, or
towards the start of the bit string by missing bit and then subtree bin assemblies.

The second counter generalization is incrementing by non-unitary values:

Lemma 4. Let k, n be integers such that 0 ≤ k ≤ n and n = 2m. There exists a
SSAS of size O(log n) with a set of bins that, when mixed, assemble a set of 2m

binary counter rows with values 0, 1, . . . , 2m − 1 incremented by k.

Proof. For each row, the incremented value of the bth bit of the row depends on
three values: the previous value of the bth bit, the carry bit from the (b − 1)st
addition, and the bth bit of k. The resulting output is a pair of bits: the resulting
value of the bth bit and the bth carry bit (seen in Table 1).

Create a set of four O(1)-tile subassemblies for each bit of the counter, se-
lecting from the first or second half of the combinations in Table 1, resulting in
4 log n assemblies total. Each subassembly handles a distinct combination of the
bth bit value of the previous row, (b − 1)st carry bit, and bth bit value of k by
encoding each possibility as a distinct glue. When mixed in a single bin, these
subassemblies combine in all possible combinations and producing all counter
rows from 0 to 2m − 1.

Lemma 5. Let i, j, k, n be integers such that 0 ≤ i ≤ j < n and 0 ≤ k ≤ n.
There exists a SSAS of size O(log n) with a set of bins that, when mixed, assemble
a set of j− i+ 1 binary counter rows with values i, i+ 1, . . . , j incremented by k.

Staged Self-Assembly and Polyomino Context-Free Grammars 11

{0}
0

0

0

1
or

{1}

or
0

11

1

0

0

0

1

{0, 1}
1

1 0

1
and and and

Left bins Right bins

Bit 0

Bit 1

Bit 2

Bit 3

{1}

{0}

{1}

{1}

{0} {1}

{0} {1}

{0}

Subtree bins

Missing bit bins

{0, 1}

{0, 1}

Row counters

{0} {1}

Fig. 6. The mix graph constructed for the prefix subtree T(5,14) seen in Figure 5.

Proof. Combine the constructions used in the proofs of Lemmas 3 and 4 by using
mixing sequences as in the proof of Lemma 3 and sets of four subassemblies
encoding input, carry, and increment bit values as in the proof of Lemma 4.

Theorem 8 of Demaine et al. [7] describes how to reduce the number of glues
used in a system by replacing each tile with a large macrotile assembly, and
encoding the tile’s glues via unique geometry on the macrotile’s sides. We prove
a similar result for labeled tiles, used for proving Theorems 2, 3, and 7.

Lemma 6. Any mismatch-free τ = 1 SAS (or SSAS) S = (T,G, τ,M) can
be simulated by a SAS (or SSAS) S ′ at τ = 1 with O(1) glues, system size
O(Σ(T)|T |+ |S|), and O(log |G|) scale.

Proof. The proof is constructive. Produce a set of north macroglue assemblies
for the glue set: O(log |G|)×O(1) assemblies, each encoding the integer label of
a glue i via a sequence of bumps and dents along the north side of the assembly

12 A. Winslow

Input bits Output bits

bth bit of k bth bit (b− 1)st carry bit bth bit bth carry bit

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 1. All bit combinations for a binary adder incrementing n by k.

representing the binary sequence of bits for i, as seen in Figure 7. All north
macroglue assemblies share a pair of common glues: an inner glue on the west
end of the south side of the assembly (green in Figure 7) and an outer glue on
the west end of the north side of the assembly (blue in Figure 7). The null glue
also has the sequence of bumps and dents (encoding 0), but lacking the outer
glue. Repeating this process three more times yields sets of east, west, and south
macroglue assemblies.

For each label l ∈ Σ(T), repeat the process of producing the macroglue
assemblies once using a tile set exclusively labeled l. Also produce a square
Θ(log |G|) × Θ(log |G|) core assembly, with a single copy of the inner glue on
the counterclockwise end of each face. Use the macroglue and core assemblies
to produce a set of macrotiles, one for each t ∈ T , consisting of a core assembly
whose tiles have the label of t, and four glue assemblies encode the four glues of
t and whose tiles have the label of t. Extend the mix graph M ′ of S ′ by carrying
out the mixings of M but starting with the equivalent macrotiles. Define the
simulation function f to map each macrotile to the label found on the macrotile,
and the function g to take the portion of M ′ and g to be the portion of the mix
graph carrying out the mixings of S.

The work done to produce the glue assemblies is O(Σ(T)|G|), to produce the
core assemblies is O(Σ(T) log log |G|), and to produce the macrotiles is O(|T |).
Carrying out the mixings of S requires O(|S|) work. Since each macrotile is
used in at least one mixing simulating a mixing in S, |T | ≤ |S|. Additionally,
|G| ≤ 4|T |. So the total system size is O(Σ(T)|G|+Σ(T) log log |G|+|T |+|S|) =
O(Σ(T)|T |+ |S|).

Armed with these tools, we are ready to convert PCFGs into SSASs. Recall
that in Section 4 we showed that in the worst case, converting a PCFG into a
SSAS (or SAS) must incur an Ω(log n/ log log n)-factor increase in system size.
Here we achieve a O(log n)-factor increase.

Theorem 2. For any polyomino P with |P | = n derived by a PCFG G, there
exists a SSAS S with |S| = O(|G| log n) producing an assembly with label poly-
omino P ′, where P ′ is a (O(log n), O(n))-fuzzy replica of P .

Staged Self-Assembly and Polyomino Context-Free Grammars 13

Glue 1 (01b)

Glue 1 (01b)

Glue 2 (10b)

Glue 3 (11b)

0

00

1

1 1

1

11

1

11

0

00

1

11

0

0 0

1

1

1

Fig. 7. Converting a tile in a system with 7 glues to a macrotile with O(log |G|) scale
and 3 glues. The gray label of the tile is used as a label for all tiles in the core and
macroglue assemblies, with the 1 and 0 markings for illustration of the glue bit encod-
ing.

Proof. We combine the macrotile construction of Lemma 6, the generalized coun-
ters of Lemma 5, and a macrotile assembly invariant that together enable efficient
simulation of each production rule in a PCFG by a set of O(log n) mixing steps.

Macrotiles. The macrotiles used are extended versions of the macrotiles
in Lemma 6 with two modifications: a secondary, resevoir macroglue assembly

14 A. Winslow

on each side of the tile in addition to a primary bonding macroglue, and a thin
cage of dimensions Θ(n) × Θ(log n) surrounding each resevoir macroglue (see
Figure 8).

Resevoir
macroglue

Bonding
macroglue

Cage

Core

Macroglue
activator

Counter row

Fig. 8. A macrotile used in converting a PCFG to a SAS, and examples of value
maintenance and offset preparation.

Mixing a macrotile with a set of bins containing counter row assemblies con-
structed by Lemma 5 causes completed (and incomplete) counter rows to attach
to the macrotile’s macroglues. Because each macroglue’s geometry matches the
geometry of exactly one counter row, a partially completed counter row that
attaches can only be completed with bit assemblies that match the macroglue’s
value. As a result, mixing the bin sets of Lemma 5 with an assembly consisting
of macrotiles produces the same set of products as mixing a completed set of
binary counter rows with the assembly.

An attached counter row effectively causes the macroglue’s value to change,
as it presents geometry encoding a new value and covers the macroglue’s previous
value. The cage is constructed to have height sufficient to accomodate up to n
counter rows attached to the reservoir macroglue, but no more.

Because of the cage, no two macrotiles can attach by their bonding macroglues
unless the macroglue has more than n counter rows attached. Alternatively, one

Staged Self-Assembly and Polyomino Context-Free Grammars 15

can produce a thickened counter row with thickness sufficient to extend beyond
the cage. We call such an assembly a macroglue activator, as it “activates” a
bonding macroglue to being able to attach to another promoted macroglue on
another macrotile. Notice that a macroglue activator will never attach to a bond-
ing macroglue’s resevoir twin, as the cage is too small to contain the activator.

An invariant. Counter rows and activators allow precise control of two
properties of a macrotile: the identities of the macroglues on each side, and
whether these glues are activated. In a large assembly containing many macroglues,
the ability to change and activate glues allows precise encoding of how an as-
sembly can attach to others. In the remainder of the construction we maintain
the invariant that every macrotile has the same glue identity on all four sides,
and any macrotile assembly consists of macrotiles with glue identities forming a
contiguous interval, e.g. 4, 5, 6, 7. Intervals are denoted [i, i′], e.g. [g4, g7].

By Lemma 5, a set of row counters incrementing the glue identities of all glues
on a macrotile can be produced using O(log n) work. Activators, by virtue of
being nearly rectangular with O(log n) cells of bit geometry can also be produced
using O(log n) work.

Production rule simulation. Consider a PCFG with non-terminal N
and production rule N → (R1, (x1, y1))(R2, (x2, y2)) and a SSAS with two bins
containing assemblies A1, A2 with the label polyominoes of A1 and A2 being
fuzzy replicas of the polyominoes derived by R1 and R2. Also assume A1 and A2

are assembled from the macrotiles just described, including the invariant that
the identities of the glues on A1 and A2 are identical on all sides of a macrotile
and contiguous across the assembly, i.e. the identities of the glues are [i1, j1] and
[i2, j2] on assemblies A1 and A2, respectively.

Select two cells cR1
, cR2

, in the polyominoes derived by R1 and R2 adjacent in
polyomino derived by N . Define the glue identities of the two macrotiles forming
the supercells mapped to cR1 and cR2 to be g1 and g2. Then the glue sets on A1

and A2 can be decomposed into three subsets [i1, g1 − 1], [g1], [g1 + 1, j1] and
[i2, g2 − 1], [g2], [g2 + 1, j2], respectively. We change these glue values in three
steps:

1. Construct two sets of row counters that increment i1 through g1 by j1−i1+1
and i2 through g2 by g2−i2+1, and mix them in separate bins with A1 and A2

to produce two new assemblies A′1 and A′2. Assemblies A′1 and A′2 have glues
[g1 +1, g1 + j1− i1 +1] and [g2, g2 + j2− i2], respectively, and the macroglues
with values g1 and g2 now have values g′1 = g1+(g1−i1)+j1+1 and g′2 = g2,
i.e. the glues of A′1 and A′2 are [g′1 − (j1 − i1), g′1] and [g′2, g

′
2 + j2 − i2].

2. Construct a set of row counters that increment the values of all glues on
A′2 by g′2 − g′1 + 1 if this value is positive, and mix the counters with A′2 to
produce A′′2 . Then the macroglue with value g′2 now has value g′′2 = g′1 + 1
and the glue values of A′1 and A′′2 are [g′1− (j1− i1), g′1] and [g′′2 , g

′′
2 + j2− i2].

3. Construct a pair of macroglue activators with values g′1 and g′′2 that attach
to the pair of macroglue sides matching the two adjacent sides of cells cR1

and cR2 . Mix each activator with the corresponding assembly A′1 or A′′2 .

16 A. Winslow

Mixing A′1 and A′′2 with the pair of activated macroglues causes them to
bond in exactly one way to form a superassembly A3 whose label polyomino is
a fuzzy replica of the polyomino derived by N . Moreover, the glue values of the
macrotiles in A3 are [g′1−(j1−i1), g′′2 +j2−i2], maintaining the invariant. Because
each macrotile has a resevoir macroglue on each side, any bonding macroglue
with an activator already attached has a resevoir macroglue that accepts the
matching row counter, so each mixing has a single product and specifically no
row counter products.

System scale The PCFG P contains at most n production rules. Also,
each step shifts glue identities by at most n (the number of distinct glues on the
macrotile), so the largest glue identity on the final macrotile assembly is n2. So
we produce macrotiles with core assemblies of size O(log n)×O(log n) and cages
of size O(n). Assembling the core assemblies, cages, and initial macroglue assem-
blies of the macrotiles takes O(|P | log n+log n+log n) = O(|P | log n) work, dom-
inated by the core assembly production. Simulating each production rule of the
grammar takes O(log n) work spread across a constant number of O(log n)-sized
sequences of mixings to produce sets of row counters and macroglue activators.

Applying Lemma 6 to the construction (creating macrotiles of macrotiles)
gives a constant-glue version of Theorem 2:

Theorem 3. For any polyomino P with |P | = n derived by a PCFG G, there
exists a SSAS S ′ using O(1) glues with |S ′| = O(|G| log n) producing an assembly
with label polyomino P ′, where P ′ is a (O(log n log log n), O(n log log n))-fuzzy
replica of P .

Proof. The construction of Theorem 2 usesO(log n) glues, namely for the counter
row subconstruction of Lemma 5. With the exception of the core assemblies, all
tiles of S have a common fuzz (gray) label, so creating macrotile versions of these
tiles and carrying out all mixings involving these macrotiles and completed core
assemblies is possible with O(1·|T |+|S|) = O(|S|) mixings and scale O(log log n).
Scaled core assemblies of size Θ(n log log n)× Θ(n log log n) can be constructed
using constant glues and O(log(n log log n)) = O(log n) mixings, the same num-
ber of mixings as the unscaled Θ(n) × Θ(n) core assemblies of Theorem 2. So
in total, this modified construction has system size O(|S|) = O(|G| log n) and
scale O(log log n). Thus it produces an assembly with label polyomino that is a
(O(log n log log n), O(n log log n))-fuzzy replica of P .

The results in this section and Section 4 achieve a “one-sided” correspondence
between the smallest PCFG and SSAS encoding a polyomino, i.e. the smallest
PCFG is approximately an upper bound for the smallest SSAS (or SAS). Since
the separation upper bound proof (Theorem 2) is constructive, the bound also
yields an algorithm for converting a a PCFG into a SSAS.

6 PCFG over SAS and SSAS Separation Lower Bound

Here we develop a sequence of PCFGs over SAS and SSAS separation results, all
within a polylogarithmic factor of optimal. The results also hold for polynomially

Staged Self-Assembly and Polyomino Context-Free Grammars 17

scaled versions of the polyominoes, which is used to prove Theorem 7 at the end
of the section. This scale invariance also surpasses the scaling of the fuzzy replicas
in Theorems 2 and 3, implying that this relaxation of the problem statement in
these theorems was not unfair.

Fig. 9. Two-bit examples of the weak (left), end-to-end (upper right), and block (lower
right) binary counters used to achieve separation of PCFGs over SASs and SSASs in
Section 6.

6.1 General shapes

In this section we describe an efficient system for assembling a set of shapes we
call weak counters. An example of a rows in the original counter and macrotile
weak counter are shown in Figure 10. These shapes are macrotile versions of the
doubly-exponential counters found in [7] with three modifications:

1. Each row is a single path of tiles, and any path through an entire row
uniquely identifies the row.

2. Adjacent rows do not have adjacent pairs of tiles, i.e. they do not touch.
3. Consecutive rows attach at alternating (east, west, east, etc.) ends.

Figure 11 shows three consecutive counter rows attached in the final assembly.
Each row of the doubly-exponential counter consists of small, constant-sized

18 A. Winslow

0

0

1

0

0 0

1 1

0

0 1

1

1

10

0

Fig. 10. Zoomed views of increment (top) and copy (bottom) counter rows described
in [7] and the equivalent rows of a weak counter.

assemblies corresponding to 0 or 1 values, along with a 0 or 1 carry bit. We
implement each assembly as a unique path of tiles and assemble the counter as
in [7], but using these path-based assemblies in place of the original assemblies.
We also modify the glue attachments to alternate on east and west ends of each
row. Because the rows alternate between incrementing a bit string, and simply
encoding it, alternating the attachment end is trivial. Finally, note that adjacent
rows only touch at their attachment, but the geometry encoded into the row’s
path prevents non-consecutive rows from attaching.

Lemma 7. There exists a τ = 1 SAS of size O(b) that produces a 2b-bit weak
counter.

Proof. The counter is an O(1)-scaled version of the counter of Demaine et al [7].
They show that such an assembly is producible by a system of size O(b).

Lemma 8. For any PCFG G deriving a 2b-bit weak counter, |G| = Ω(22
b

).

Staged Self-Assembly and Polyomino Context-Free Grammars 19

Fig. 11. Adjacent attached rows of the counter described in [7] (top) and the equivalent
rows in the weak counter (bottom).

Proof. Define a minimal row spanner of row Ri to be a non-terminal symbol N
of G with production rule N → (B, (x1, y1))(C, (x2, y2)) such that the polyomino
derived by N contains a path between a pair of easternmost and westernmost
tiles of the row and the polyominoes derived by B and C do not. We claim that
each row (trivially) has at least one minimal row spanner and each non-terminal
of G is a minimal row spanner of at most one unique row.

First, suppose by contradiction that a non-terminal N is a minimal row
spanner for two distinct rows. Because N is connected and two non-adjacent
rows are only connected to each other via an intermediate row, N must be a
minimal row spanner for two adjacent rows Ri and Ri+1. Then the polyominoes
of B and C each contain tiles in both Ri and Ri+1, as otherwise either C or B
is a minimal row spanner for Ri or Ri+1.

Without loss of generality, assume B contains a tile at the end of Ri not
adjacent to Ri+1. But B also contains a tile in Ri+1 and (by definition) is
connected. So B contains a path between the east and west ends of row Ri, and
thus N is a not a minimal row spanner for ri. So N is a minimal row spanner
for at most one row.

Next, note that the necessarily-serpentine path between a pair of easternmost
and westernmost tiles of a row in a minimal row spanner uniquely encodes the
row it spans. So the row spanned by a minimal row spanner is unique.

Because each non-terminal of G is a minimal row spanner for at most one

unique row, G must have at least 22
b

non-terminal symbols and total size Ω(22
b

).

Theorem 4. The separation of PCFGs over τ = 1 SASs for single-label poly-
omines is Ω(n/(log log n)2).

20 A. Winslow

Proof. By the previous two lemmas, there exists a SAS of size O(b) producing

a b-bit weak counter, and any PCFG deriving this shape has size Ω(22
b

). The

assembly itself has size n = Θ(22
b

b), as it consists of 22
b

rows, each with b sub-
assemblies of constant size. So the separation is Ω((n/b)/b) = Ω(n/(log log n)2).

In [7], the O(log log n)-sized SAS constructing a log n-bit binary counter re-
peatedly doubles the length of each row (i.e. number of bits in the counter)
using O(1) mixings per doubling. Achieving such a technique in a SSAS seems
impossible, but a simpler construction producing a b-bit counter with O(b) work
can be done by using a unique set of O(1) glues for each bit of the counter. In
this case, mixing these reusable elements along with a previously-constructed
pair of first and last counter rows creates a single mixing assembling the entire
counter at once. Modifying the proof of Theorem 4 to use this construction gives
a similar separation for SSASs:

Corollary 1. The separation of PCFGs over τ = 1 SSASs for single-label poly-
ominoes is Ω(n/ log2 n).

6.2 Rectangles

For the weak counter construction, the lower bound in Lemma 8 depended on
the poor connectivity of the weak counter polyomino. This dependancy suggests
that such strong separation ratios may only be achievable for special classes
of “weakly connected” or “serpentine” shapes. Restricting the set of shapes to
rectangles or squares while keeping an alphabet size of 1 gives separation of at
most O(log n), as any rectangle of area n can be derived by a PCFG of size
O(log n).

But what about rectangles with a constant-sized alphabet? In this section
we achieve surprisingly strong separation of PCFGs over SASs and SSASs for
rectangular constant-label polyominoes, nearly matching the separation achieved
for single-label general polyominoes.

The construction The polyominoes constructed resemble binary counters whose
rows have been arranged in sequence horizontally, and we call them b-bit end-
to-end counters. Each row of the counter is assembled from tall, thin macrotiles
(called bars), each containing a color strip of orange, purple, or green. The color
strip is coated on its east and west faces with gray geometry tiles that encode
the bar’s location within the counter.

Each row of the counter has a sequence of green and purple display bars
encoding a binary representation of the row’s value and flanked by orange reset
bars (see Figure 13). An example for b = 2 bits can be seen in Figure 12.

Each bar has dimensions O(1)× 3(log2 b+ b+ 2), sufficient for encoding two
pieces of information specifying the location of the bar within the assembly. The
row bits specify which row the bar lies in (e.g. the 7th row). The subrow bits
specify where within the row the bar lies (e.g. the 4th bit). The subrow value
starts at 0 on the east side of a reset bar, and increments through the display

Staged Self-Assembly and Polyomino Context-Free Grammars 21

Fig. 12. The rectangular polyomino used to show separation of PCFGs over SASs
when constrained to constant-label rectangular polyominoes. The green and purple
color strips denote 0 and 1 bits in the counter.

Subrow bits

Row bits 1 1

1 2

1 1

2 3

Display Reset

1 2

3 0

1 bit 0 bit

Fig. 13. The implementation of the vertical bars in row 2 (01b) of an end-to-end
counter.

bars until reaching b+ 1 on the west end of the next reset bar. Bars of all three
types with row bits ranging from 0 to 2b − 1 are produced.

Efficient assembly The counter is constructed using a SAS of size O(b) in two
phases. First, sequences of O(b) mixings are used to construct five families of
bars: 1. reset bars, 2. 0-bit display bars resulting from a carry, 3. 0-bit display
bars without a carry, 4. 1-bit display bars resulting from a carry, 5. 1-bit display
bars without a carry, The mixings product five bins, each containing all of the
bars in the family. These five bins are then combined into a final bin where the
bars attach to form the Θ(2b)×Θ(b) rectangular assembly. The five families are
seen in Figure 14.

Efficient O(b) assembly is achieved by careful use of the known approach of
non-deterministic assembly of single-bit assemblies as done in [7]. Assemblies
encoding possible input bit and carry bit value combinations for each row bit
and subrow bit are constructed and mixed together, and the resulting products
are every valid set of input and output bit strings, i.e. every row of a binary
counter assembly.

As a warmup, consider the assembly of all reset bars. For these bars, the west
subrow bits encode b and the east subrow bits encode 0. The row bits encode a
value i on the west side, and i+1 on the east side, for all i between 0 and 2b−1.

22 A. Winslow

For all 0 ≤ j ≤ b, 0 ≤ m < 2b−j − 1, 0 ≤ p < 2j−1.

3j

3(b− j)

1 0 0 1

p p+ 1

0 0

p

m m+ 1 1’s 0’s

p p

1 1

m m+ 1

p p

1’s 0’s

p

j j j j3(log2 b+ 1)

3

j j j j

Display

Reset

i i+ 1

b 0

For all 0 ≤ i < 2b

3(b+ 1)

3(log2 b+ 1)

Fig. 14. The decomposition of bars used assemble a b-bit end-to-end counter.

Constructing all such bars using O(b) work is straightforward. For each of the
log2 b+1 subrow bits, create an assembly where the west and east bits are 1 and
0 respectively, except for the most significant bit (bit log2 b+ 1), where the west
and east bits are both 0.

For the row bits we use the same technique as in [7] and extended in Lemma 4:
create a constant-sized set of assemblies for each bit that encode input and output
value and carry bits. For bits 1 through b−1 (zero-indexed) create four assemblies
corresponding to the four combinations of value and carry bits, for bit 0 create
two assemblies corresponding to value bits (the carry bit is always 1), for bit
b create three assemblies corresponding to all combinations except both value
and carry bits valued 1, and for bit b + 1 create a single assembly with both
bits valued 0. Give each bit assembly a unique south and north glue encoding its
location within the bar and carry bit value, and give all bit assemblies a common
orange color strip. Mixing these assemblies produces all reset bars, with subrow

Staged Self-Assembly and Polyomino Context-Free Grammars 23

west and east values of b and 0, and row values i and i + 1 for all i from 0 to
2b − 1.

In contrast to producing reset bars, producing display bars is more difficult.
The challenge is achieving the correct color strip relative to the subrow and row
values. Recall that the row value i locates the bar’s row and the subrow value
j locates the bar within this row. So the correct color strip for a bar is green if
the jth bit of i is 0, and purple if the jth bit of i is 1.

We produce four families of display bars, two for each value of the jth bit
of of i. Each subfamily is produced by mixing a subrow assembly encoding j
on both east and west ends with three component assemblies of the row value:
the least significant bits (LSB) assembly encoding bits 1 through j − 1 of i, the
most significant bits (MSB) assembly encoding bits j+ 1 through b of i, and the
constant-sized jth bit assembly. This decomposition is seen in the bottom half
of Figure 14.

The four families correspond to the four input and carry bit values of the jth
bit. These values determine what collections of subassemblies should appear in
the other two components of the row value. For instance, if the input and carry
bit values are both 1, then the LSB assembly must have all 1’s on its west side
(to set the jth carry bit to 1) and all 0’s on its east side. Similarly, the MSB
assembly must have some value p encoded on its west side and the value p + 1
encoded on its east side, since the jth bit and and jth carry bit were both 1, so
the (j + 1)st carry bit is also 1.

Notice that each of the four families has b subfamilies, one for each value
of j. Producing all subfamilies of each family is possible in O(b) work by first
recursively producing a set of b bins containing successively larger sets of MSB
and LSB assemblies for the family. Then each subfamily can be produced using
O(1) amortized work, mixing one of b sets of LSB assembly subfamilies, one of
b sets of MSB assemblies, and the jth bit assembly together. For instance, one
can produce the set of b sets of MSB assemblies encoding pairs of values p and
p+ 1 on bits b− 1 through b, b− 2 through b, etc. by producing the set on bits k
through b, then adding four assemblies to this bin (those encoding possible pairs
of inputs to the (k − 1)st bit) to produce a similar set on bits k − 1 through b.

Lemma 9. There exists a τ = 1 SAS of size O(b) that produces a b-bit end-to-
end counter.

Proof. This follows from the description of the system. The five families of bars
can each be produced with O(b) work and the bars can be combined together in
a single mixing to produce the counter. So the system has total size O(b).

Lemma 10. For any PCFG G deriving a b-bit end-to-end counter, |G| = Ω(2b).

Proof. Let G be a PCFG deriving a b-bit end-to-end counter. Define a mini-
mal row spanner to be a non-terminal symbol N with production rule N →
(B, (x1, y1))(C, (x2, y2)) such that the polyomino derived by N (denoted pN)
horizontally spans the color strips of all bars in row Ri including the reset bar
at the end of the row, while the polyominoes derived by B and C (denoted

24 A. Winslow

pB and pC) do not. Consider the bounding box D of these color strips (see
Figure 15).

pB

pC

D D

0 1 R

pN

Fig. 15. A schematic of the proof that a non-terminal is a minimal row spanner for
at most one unique row. (Left) Since pB and pC can only touch in D, their union
non-terminal N must be a minimal row spanner for the row in D. (Right) The row’s
color strip sequence uniquely determines the row spanned by N (01b).

Without loss of generality, pB intersects the west boundary of D but does
not reach the east boundary, while pC intersects the east boundary but does not
reach the west boundary, so any location at which pB and pC touch must lie in
D. Then any row spanned by pN and not spanned by pB or pC must lie in D,
since spanning it requires cells from both pB and pC . So pN is a minimal row
spanner for at most one row: row Ri.

Because the sequence of green and purple display bars found in D is distinct
and separated by display bars in other rows by orange reset bars, each minimal
row spanner spans a unique rowRi. Then since each non-terminal is a spanner for
at most one unique row, G must have 2b non-terminal symbols and |G| = Ω(2b).

Theorem 5. The separation of PCFGs over τ = 1 SASs for constant-label rect-
angles is Ω(n/ log3 n).

Proof. By construction, a b-bit end-to-end counter has dimensions Θ(2bb)×Θ(b).
So n = Θ(2bb2) and b = Θ(log n). Then by the previous two lemmas, the sepa-
ration is Ω((n/b2)/b) = Ω(n/ log3 n).

We also note that a simple replacement of orange, green, and purple color
strips with distinct horizontal sequences of black/white color substrips yields the
same result but using fewer distinct labels.

6.3 Squares

The rectangular polyomino of the last section has exponential aspect ratio, sug-
gesting that this shape requires a large PCFG because it approximates a pat-
terned one-dimensional assemblies reminiscent of those in [8]. Creating a poly-
omino with better aspect ratio but significant separation is possible by extending
the polyomino’s labels vertically. For a square this approach gives a separation of
PCFGs over SASs of Ω(

√
n/ log n), non-trivial but far worse than the rectangle.

Staged Self-Assembly and Polyomino Context-Free Grammars 25

The construction In this section we describe a polyomino that is square but
contains an exponential number of distinct subpolyominoes such that each sub-
polyomino has a distinct “minimal spanner”, using the language of the proof of
Lemma 10. These subpolyominoes use circular versions of the vertical bars of
the construction in Section 6.2 arranged concentrically rather than adjacently.
We call the polyomino a b-bit block counter, and an example for b = 2 is seen in
Figure 16.

Each block of the counter is a Θ(b2)×Θ(b2) square subpolyomino encoding
a sequence of b bits via a sequence of concentric rectangular rings of increasing
size. Each ring has a color loop encoding the value of a bit, or the start or end
of the bit sequence (the interior or exterior of the block, respectively). The color
loop actually has three subloops, with the center loop’s color (green, purple, light
blue, or dark blue in Fig. 16) indicating the bit value or sequence information,
and two surrounding loops (light or dark orange in Fig. 16) indicating the interior
and exterior sides of the loop.

Fig. 16. The square polyomino used to show separation of PCFGs over SASs when
constrained to constant-label square polyominoes. The green and purple color subloops
denote 0 and 1 bits in the counter, while the light and dark blue color subloops denote
the start and end of the bit string. The light and dark orange color subloops indicate
the interior and exterior of the other subloops.

26 A. Winslow

Efficient assembly of blocks Though each counter block is square, they are con-
structed similarly to the end-to-end counter rows of Section 6.2 by assembling
the vertical bars of each ring together into horizontal stacks of assemblies. Hor-
izontal slabs are added to “fill in” the remaining portions of each block.

Subrow bits

Row bits

Color bits

Color bits

End StartDisplay Display End

0

21

1

1

0

1

3

1

2

1

0

1

1

1

2

Fig. 17. The implementation of rings in each block of the block counter.

The bars are identical to those found in Section 6.2 with three modifications
(seen in Figure 17). First, each bar has additional height according to the value
of the subrow bits (8 tiles for every increment of the bits). Second, each bar has
four additional layers of tiles on the side (east or west) facing the interior of the
block, with color bits at the north and south ends of the side encoding three
values: 11b (if the center color subloop is purple, a 1-bit), 00b (if the center color
subloop is green, a 0-bit), or 01b (if the center color subloop is dark blue, the
end of the bit sequence). The additional layers are used to fill in gaps between
adjacent rings left by protruding geometry, and the bit values are used to control
the attachment of the horizontal slabs of each ring.

Third, the reset bars used in Section 6.2 are replaced with two kinds of bars:
start bars and end bars, seein in Figure 19. End bars form the outermost rings
of each block, and the start bars form the square cores of each block. Both start
and end bars “reset” the subrow counters, and the east end bars increment the
row value.

Staged Self-Assembly and Polyomino Context-Free Grammars 27

3j

3(b− j)

1 0 0 1

p p+ 1

1’s 0’s

p p

1’s 0’s

j j j j3(log2 b+ 1)

3

For all 0 ≤ j ≤ b, 0 ≤ m < 2b−j − 1, 0 ≤ p < 2j−1.

8(b− j + 1)

8(b− j + 1)

0 0

p

m m+ 1

p

j j

1 1

m m+ 1

p p

j j

Fig. 18. The decomposition of vertical display bars used to assemble blocks in the b-bit
block counter. Only the west bars are shown, with east bars identical but color bits
and color loops reflected.

Recall that the vertical bars of the end-to-end counter in Section 6.2 were
constructed using O(b) total work by amortizing the constructing subfamilies of
MSB and LSB assemblies for each subrow value j. We use the same trick here
for these assemblies as well as the new assemblies on the north and south ends
of each bar containing the color bits. In total there are twelve families of vertical
bar assemblies (four families of west display bars, four families of east display
bars, and two families each of start and end bars), and each is assembled using
O(b) work.

Finally, the horizontal slabs of each ring are constructed as six families, each
using O(b) work, as seen in Figure 20.

Efficient assembly of the counter Once the families of vertical bars and horizontal
slabs are assembled into blocks, we are ready to arrange them into a completed
counter. Each row of the counter has

√
2b = 2b/2 blocks. So assuming b is even,

the b/2 least significant bits of the westmost block of each row are 0’s, and of
the eastmost block are 1’s. Before mixing the vertical bar families together, we
“cap” the east end bar of each block at the east end of a row by constructing a
set of thin assemblies (right part of Figure 21) and mixing them with the family
of east end bars.

After this modification to the east end bar family, mixing all vertical bar
families results in 2b/2 assemblies, each forming most of a row of the block

28 A. Winslow

8(b+ 1) + 2

10

i i

End

8(b+ 1) + 2

3(log2 b+ 1)

3(b+ 1)

b 0

i i+ 1 i i

b 0

3(log2 b+ b+ 1)

Start

For all 0 ≤ i < 2b

Fig. 19. The decomposition of vertical start and end bars used to assemble blocks in
the b-bit block counter.

counter. Mixing these assemblies with the families of horizontal slabs results in a
completed set of block counter rows, each containing 2b/2 square assemblies with
dimensions Θ(b2)×Θ(b2), forming 2b/2 rectangles with dimensions Θ(2b/2b2)×
Θ(b2).

To arrange the rows vertically into a complete block counter, a vertically-
oriented version of the end-to-end counter of Section 6.2 with geometry instead
of color strips (left part of Fig. 21) is assembled and used as a “backbone” for
the rows to attach into a combined assembly. This modified end-to-end counter
(see Figure 22) has subrow values from 0 to b/2, for the b/2 most signficant bits
of the row value of each block, and row values from 0 to 2b/2. Modified versions
of reset bars with height (width in the horizontal end-to-end counter) Θ(b2) are
used to bridge across the geometry-less portions of the west sides of the blocks,
as well as the always-zero b/2 least significant bits of the block’s row value and
subrow log2 b bits.

This modified end-to-end counter can be assembled using O(b) work as
done for the original end-to-end counter, since the longer reset bars only add
O(log(b2)) = O(log b) work to the assembly process. After the vertical end-to-
end counter has been combined with the blocks to form a complete block counter,
a horizontal end-to-end counter is attached to the top of the assembly to produce
a square assembly.

Staged Self-Assembly and Polyomino Context-Free Grammars 29

Display

End

16b+ 3(log2 b+ b+ 2)

16j + 3(log2 b+ b+ 2)

For all 0 ≤ j < b

Fig. 20. The decomposition of horizontal slabs of each ring the b-bit block counter.

Lemma 11. For even b, there exists a τ = 1 SAS of size O(b) that produces a
b-bit block counter.

Proof. The construction described builds families of vertical bars and horizontal
slabs that are used to assemble each the rings forming all blocks in the counter.
There are a constant number of families, and each family can be assembled
using O(b) work. The vertical and horizontal end-to-end counters can also be
assembled using O(b) work each by Lemma 9. Then the b-bit block counter can
be assembled by a SAS os size O(b).

We now consider a lower bound for any PCFG G deriving the counter, using
a similar approach as Lemma 10.

Lemma 12. For any PCFG G deriving a b-bit block counter, |G| = Ω(2b).

Proof. Define a minimal block spanner as to be a non-terminal symbol N in
G with production rule N → (B, (x1, y1))(C, (x2, y2)) such that the polyomino
derived by N (denoted pN) contains a path from a gray cell outside the color
loop of the end ring of the counter to a gray cell inside the start color loop of
the counter, and the polyominoes derived by B and C (denoted pB and pC) do
not.

First we show that any minimal block spanner is a spanner for at most one
block. Assume by contradiction and that N is a minimal block spanner for two
blocks Bi and Bj and that pB contains a gray cell inside the start color loop of
Bi. Then B must be entirely contained in the color loop of the end ring of Bi, as

30 A. Winslow

0 3(log2 b+ 1)

i

1’s1’s

i

0

. . .

Cap

0’s

i

0

End-to-end counter

For all 0 ≤ i < 2b/2

3(b/2 + 1)

3(b/2)

8(b+ 1) + 2

8(b+ 1) + 2

Fig. 21. (Left) The interaction of a vertical end-to-end counter with the westernmost
block in each row. (Right) The cap assemblies built to attach to the easternmost block
in each row.

otherwise N is not a minimal block spanner for Bi. Similarly, C must then be
entirely contained in the color loop of the end ring of Bj . Since no pair of color
loops from distinct blocks have adjacent cells, pN is not a connected polyomino
and so G is not a valid PCFG.

Next we show that the block spanned by N is unique, i.e. N cannot be reused
as a minimal spanner for multiple blocks. See Figure 23. Let N be a minimal
spanner for a block Bi and p be a path of cells in pN starting at a gray cell
contained in the start ring of Bi and ending at a gray cell outside the end ring
of Bi. Consider a traversal of p, maintaining a stack containing the color loops
crossed during the traversal. Crossing a color loop from interior to exterior (a
sequence of dark orange, then green, purple, or blue, then light orange cells) adds
the center subloop’s color to the stack, and traversing from exterior to interior
removes the topmost element of the stack.

We claim that the sequence of subloop colors found in the stack after travers-
ing an end ring from interior to exterior encodes a unique sequence of display
rings and thus a unique block. To see why, first consider that the color loop of
every ring forms a simple closed curve. Then the Jordan curve theorem implies

Staged Self-Assembly and Polyomino Context-Free Grammars 31

j

j

p

p+ 1

1

0

1’s

0’s

jp0m

0m+ 1 p j

j

j

j

j

p

p

p

p

0

1

1

1

1’s

0’s

m

m+ 1

3(b/2− j) 3 3j 3(log2 b+ 2)

Display

b

3(log2 b+ 2)

Reset

3(b/2 + 1)

0

i

i+ 1

3(b/2)

3(b/2)

19b+ 3 log2 b+ 23

For all 0 ≤ i < 2b/2

For all 0 ≤ j ≤ b, 0 ≤ m < 2b/2−j − 1, 0 ≤ p < 2j − 1

Fig. 22. The decomposition of the bars of a vertically-oriented end-to-end counter used
to combine rows of blocks in a block counter.

that entering or leaving each region of gray cells between adjacent color loops
requires traversing the color loop. Then by induction on the steps of p, the stack
contains the set of rings not containing the current location on p in innermost
to outermost order. So the stack state after exiting the exterior of the end ring
uniquely identifies the block containing p and N is a minimal spanner for this
unique block.

Since there are 2b distinct blocks in a b-bit block counter, any PCFG that
generates a counter has at least 2b non-terminal symbols and size Ω(2b).

Theorem 6. The separation of PCFGs over τ = 1 SASs for constant-label
squares is Ω(n/ log3 n).

Proof. By construction, a b-bit block counter has size Θ(2bb2) = n and so
b = Θ(log n). By the previous two lemmas, the separation is Ω((n/b2)/b) =
Ω(n/ log3 n).

Unlike the previous rectangle construction, it does not immediately follow
that a similar separation holds for 2-label squares. Finding a construction that

32 A. Winslow

[∅][start]

[start, 0]

[start]

[start, 0]

[start, 0, 1]

[start, 0]

[start, 0, 1]

[start, 0, 1, end]

Fig. 23. A schematic of the proof that the block spanned by a minimal row spanner is
unique. Maintaining a stack while traversing a path from the interior of the start ring
to the exterior of the end ring uniquely determines the block spanned by any minimal
block spanner containing the path.

achieves nearly-linear separation but only uses two labels remains an open prob-
lem.

6.4 Constant-glue constructions

Lemma 6 proved that any system S can be converted to a slightly larger system
(both in system size and scale) that simulates S. Applying this lemma to the
constructions of Section 6 yields identical results for constant-glue systems:

Theorem 7. All results in Section 6 hold for systems with O(1) glues.

Proof. Lemma 6 describes how to convert any SAS or SSAS S = (T,G, τ,M)
into a macrotile version of the system S ′ that uses a constant number of glues,
has system size O(Σ(T)|T |+ |S|), and scale factor O(log |G|). Additionally, the
construction achieves matching labels on all tiles of each macrotile, including
the glue assemblies. Because the labels are preserved, the polyominoes produced
by each macrotile system S ′ simulating an assembly system S in Section 6

Staged Self-Assembly and Polyomino Context-Free Grammars 33

preserves the lower bounds for PCFGs (Lemmas 8, 10, and 12) of each con-
struction. Moreover, the number of labels in the polyomino is constant and so
|S ′| = O(|T |+|S|) = O(|S|) and the system size of each construction remains the
same. Finally, the scale of the macrotiles is O(log |G|) = O(log |S| = O(log b), so
n is increased by a O(log2 b)-factor, but since n was already exponential in b, it is
still the case that b = Θ(log n) and so the separation factors remain unchanged.

7 Conclusion

As the results of this work show, efficient staged assembly systems may use a
number of techniques including, but not limited to, those described by local com-
bination of subassemblies as captured by PCFGs. It remains an open problem
to understand how the efficient assembly techniques of Section 5 and Section 6
relate to the general problem of optimally assembling arbitrary shapes.

Acknowledgements

We thank Benjamin Hescott and anonymous reviewers for helpful comments and
feedback that greatly improved the presentation of the paper.

References

1. L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang. Running time and program size
for self-assembled squares. In Proceedings of Symposium on Theory of Computing
(STOC), 2001.

2. S. Cannon, E. D. Demaine, M. L. Demaine, S. Eisenstat, M. J. Patitz, R. T.
Schweller, S. M. Summers, and A. Winslow. Two hands are better than one (up
to constant factors): Self-assembly in the 2HAM vs. aTAM. In Proceedings of
International Symposium on Theoretical Aspects of Computer Science (STACS),
volume 20 of LIPIcs, pages 172–184, 2013.

3. M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran,
A. Sahai, and a. shelat. The smallest grammar problem. IEEE Transactions on
Information Theory, 51(7):2554–2576, 2005.

4. H.L. Chen and D. Doty. Parallelism and time in hierarchical self-assembly. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), 2012.

5. M. Cook, Y. Fu, and R. Schweller. Temperature 1 self-assembly: determinstic
assembly in 3D and probabilistic assembly in 2D. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2011.

6. E. Czeizler and A. Popa. Synthesizing minimal tile sets for complex patterns in the
framework of patterned DNA self-assembly. In D. Stefanovic and A. Turberfield,
editors, DNA 18, volume 7433 of LNCS, pages 58–72. 2012.

7. E. D. Demaine, M. L. Demaine, S. Fekete, M. Ishaque, E. Rafalin, R. Schweller,
and D. Souvaine. Staged self-assembly: nanomanufacture of arbitrary shapes with
O(1) glues. Natural Computing, 7(3):347–370, 2008.

8. E. D. Demaine, S. Eisenstat, M. Ishaque, and A. Winslow. One-dimensional staged
self-assembly. Natural Computing, 2012.

34 A. Winslow

9. D. Doty. Theory of algorithmic self-assembly. Communications of the ACM,
55(12):78–88, 2012.

10. D. Doty, L. Kari, and B. Masson. Negative interactions in irreversible self-assembly.
In Y. Sakakibara and Y. Mi, editors, DNA 16, volume 6518 of LNCS, pages 37–48.
2011.

11. D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M. Summers, and D. Woods.
Intrinsic universality in self-assembly. In Proceedings of Symposium on Theoretical
Aspects of Computer Science (STACS), volume 5 of LIPIcs, pages 275–286, 2010.

12. D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M. Summers, and D. Woods.
The tile assembly model is intrinsically universal. In Proceedings of Foundations
of Computer Science (FOCS), pages 302–310, 2012.

13. M. Göös and P. Orponen. Synthesizing minimal tile sets for patterned dna self-
assembly. In Y. Sakakibara and Y. Mi, editors, DNA 16, volume 6518 of LNCS,
pages 71–82. 2011.

14. A. Jeż. Approximation of grammar-based compression via recompression. Techni-
cal report, arXiv, 2013.

15. E. Lehman. Approximation Algorithms for Grammar-Based Data Compression.
PhD thesis, MIT, 2002.

16. M. J. Patitz. An introduction to tile-based self-assembly. In J. Durand-Lose and
N. Jonoska, editors, UCNC 2012, volume 7445 of LNCS, pages 34–62. 2012.

17. M. J. Patitz, R. T. Schweller, and S. M. Summers. Exact shapes and turing uni-
versality at temperature 1 with a single negative glue. In L. Cardelli and W. Shih,
editors, DNA 17, volume 6937 of LNCS, pages 175–189. 2011.

18. P. W. K. Rothemund and E. Winfree. The program-size complexity of self-
assembled squares. In Proceedings of Symposium on Theory of Computing (STOC),
pages 459–468, 2000.

19. R. T. Schweller and M. Sherman. Fuel efficient computation in passive self-
assembly. Technical report, arXiv, 2012.

20. S. Seki. Combinatorial optimization in pattern assembly. Technical report, arXiv,
2013.

21. D. Soloveichik and E. Winfree. Complexity of self-assembled shapes. In Claudio
Ferretti, Giancarlo Mauri, and Claudio Zandron, editors, DNA 11, volume 3384 of
LNCS, pages 344–354. 2005.

22. E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, Caltech, 1998.

	Staged Self-Assembly andPolyomino Context-Free Grammars

