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Abstract Image restoration is a research field that

attempts to recover a blurred and noisy image. Although

we have one-step algorithms that are often fast for image

restoration, iterative formulations allow a better control of

the trade-off between the enhancement of high frequencies

(image details) and noise amplification. Projections onto

convex sets (POCS) is an iterative—and parametric-based

approach that employs a priori knowledge about the blur-

red image to guide the restoration process, with promising

results in different application domains. However, a proper

choice of its parameters is a high computational burden

task, since they are continuous-valued and there are an

infinity of possible values to be checked. In this paper, we

propose to optimize POCS parameters by means of har-

mony search-based techniques, since they provide elegant

and simple formulations for optimization problems. The

proposed approach has been validated in synthetic and real

images, being able to select suitable parameters in a rea-

sonable amount of time.

Keywords Image restoration � Harmony search �
Projections onto convex sets

1 Introduction

Image processing techniques attempt at enhancing desired

properties of an image, with such techniques being widely

used for several applications such as preprocessing and post-

processing filters. While geometric techniques aim at cor-

recting distortions and perspective shortcomings, radiomet-

ric filters are often used to correct distortions in the image’s

grey-levels (Gonzalez and Woods 2006). During the

acquisition process, the image can get blurred due to the

sensor’s movement and physical limitations, and also it can

become noisy during its transmission. Therefore, the

degraded (blurred and noisy) image needs to be processed in

order to reduce the noise without loosing the details present

in high frequencies. The area of image processing that

addresses such issue is called image restoration.

In this context, some well-known image restoration

methods, such as the Richardson–Lucy algorithm (1972,

1974) and Wiener filter (1949), for instance, have been

widely employed for several applications. Dong et al.

(2013) focused on modelling the task of image restoration

as a sparse coding problem, and a Markov Random Field-

based approach was proposed by Chen et al. (2013). Some

recent works highlighted image restoration methods based

on Total Variation models (Liu et al. 2014; Lv et al. 2013),

which exhibit the solution of image denoising and deblur-

ring as minimizers of appropriately chosen functionals.

One of the main problems in one-step image restoration

techniques is to restore the image details smoothed by

the blurring process with the compromise of keeping the

noise in acceptable levels. This fact has motivated the
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development of iterative-based image restoration tech-

niques, in which the trade-off between details and noise

may be controlled by means of regularization and projec-

tion techniques (Katsaggelos 1991). Since the image

restoration problem can be modeled by a linear system, we

can employ different approaches to figure out this problem.

The Row-Action Projection method (RAP) handles such

problem by means of iterative projections onto the hyper-

planes defined in the image restoration model (Samaddar

and Mammone 1995). This technique belongs to a set of

projection-based algorithms commonly addressed by pro-

jections onto convex sets (POCS), which use a priori

knowledge about the imaging system in order to perform

the image restoration task. The key to effectively apply

POCS-based algorithms is to define the appropriate sets,

and then to compute the projections onto these sets until

some criterion be met (Stark et al. 1998).

However, the main limitations of RAP concerns with its

relaxation parameter and number of iterations for conver-

gence. The relaxation parameter controls the projections

onto the hyperplanes, and high values may turn the

restoration process faster, but it is more difficult to handle

the artefacts growing process, and low values can lead us to

a poorly restored image. The number of iterations strongly

affects the restoration process, which means a high value to

the relaxation parameter may not require a lot of iterations

to restore the image, while low values for that parameter

may require more iterations to obtain suitable results. As

such, the choice for ideal relaxation and iterations values is

extremely dependent on the blur and noise characteristics.

Papa et al. (2010) have modeled the task of finding the

relaxation parameter as an optimization problem, in which

the fitness function can be some image quality measure.

They employed a nature-inspired approach based on Par-

ticle Swarm Optimization (PSO) (Kennedy and Eberhart

2001) for such purpose, which has demonstrated a great

ability for finding near-optimal relaxation parameters.

Later on, Pires et al. (2013) addressed the same problem

using the harmony search (HS) technique (Geem 2009),

being the results comparable to the ones obtained by means

of PSO, but much faster. In this work, we extended both

studies with two more contributions: (1) we propose to

optimize both the relaxation parameter and number of

iterations, since they are strongly dependent on each other,

and (2) we evaluated a number of HS-based techniques to

find out suitable RAP parameters: harmony search

(HS) (Geem 2009), global-best harmony search (Omran

and Mahdavi 2008), Improved Harmony Search (Mahdavi

et al. 2007), Novel Global Harmony Search (Zou et al.

2010) and Self-adaptive Global best Harmony Search (Pan

et al. 2010), as well as we have compared the aforemen-

tioned techniques with Fletcher-Reeves Conjugate Method

(FR) (Fletcher and Powell 1963; Fletcher 1970), Polak-

Ribiere Conjugate Method (PR) (Polak and Ribiere 1969)

and the vanilla Gradient Descent (GD) (Cauchy 1847).

Additionally, another contribution of this paper is to

employ the Black Holes Algorithm (BHA) (Hatamlou

2013) to optimize HS and its variants in order to avoid an

empirical and biased configuration of parameters. How-

ever, in order to avoid a possible high computational load

concerning this meta-optimization step, we firstly reduced

the input image (phantom) by a factor of 4, and then this

new image is degraded with a known blurring and noise

models for further restoration using POCS with parameters

estimated by the meta-heuristic techniques employed in

this work. Soon after, the real degraded image can be

restored using the parameter learned with the previous

experiment.

The remainder of the paper is organized as follows.

Section 2 describes the image restoration problem and the

POCS model. Section 3 briefly describes the evolutionary

optimization techniques employed in this work. Sections 4

and 5 discuss the methodology and the experimental

results, respectively, and Sect. 6 states conclusions and

future works.

2 Image restoration by means of projections
onto convex sets

The image restoration can be understood as a technique

used to correct the distortions produced by the imaging

systems. The purpose is the restoration of the degraded

image using a priori knowledge of the degradation phe-

nomenon. Let fm�m be an uncorrupted image, gm�m its

degraded version and nm�m an additive noise. Since the

degradation process is linear and space-invariant, it can be

described as follows:

g ¼ Hf þ n; ð1Þ

where g, f and n stand for 1� m2-dimensional vectors

(lexicographical order) representing the images g, f and the

additive noise n, respectively. In addition, Hm2�m2 is the

convolutional degradation operator, denoted here as the

block-circulant matrix (Katsaggelos 1991), which models

the blurring effect. In the absence of noise, Eq. 1 can be

written as:

g ¼ Hf; ð2Þ

which can be solved using the well-known Kaczmarz’s

algorithm (1937) by means of iterative and alternated

orthogonal projections onto the hyperplanes defined by the

above linear system. Figure 1 illustrates Eq. 2 in order to

clarify its content.

Each element of g, say that gp, p ¼ 1; 2; . . .;M2, is

generated as follows:
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gp ¼ hHp; fi ¼
XM2

i¼1

Hpifi: ð3Þ

Since g denotes the lexicographical ordering of the

degraded image g, each element gp stands for a certain

pixel in g. Therefore, Eq. 3 states that the p-th degraded

pixel in g is generated through the inner product between

the p-th row of H and the original image in its lexico-

graphical ordering f.

The technique proposed by Kaczmarz to solve Eq. 2

employs the following projecting rule:

f̂
kþ1

p ¼ f̂
k

p þ k
gp � hhp; f̂

ki
hp

�� ��2 hp; ð4Þ

where k is the relaxation parameter, which controls the

amount of projection, hp is the p-th row of H, i.e.,

hp ¼ ðHp1;Hp2; . . .;Hpm2Þ, and f̂
k

p stands for the restored

image’s pixel p at iteration k, k ¼ 1; 2; . . .;K. Therefore,
the idea behind such formulation is to solve the linear

system, which means to restore the image. A visualization

of the Kaczmarz’s algorithm is depicted in Fig. 2, in which

we have an example of a linear system with two equations,

being the initial guess (‘‘green point’’) given by f̂
0
and the

final solution (‘‘blue point’’) represented by f̂
K
. Usually, we

employ f̂
0 ¼ g, which means the algorithm is initialized

with the degraded image.

The main problem of the Kaczmarz’s algorithm regards

to the presence of noise, since it has been modeled to solve

a linear system like the one described in Eq. 2. However, in

practice, we often face the degradation model presented in

Eq. 1, which may turn the liner system unstable and

without solution, i.e., we have no intersection among the

hyperplanes. This fact highlights the importance of

choosing proper values for k and the number of iterations

K, which thus control the trade-off between restoration and

noise amplification.

The Kaczmarz’s algorithm is also denoted as the

Algebraic Reconstruction Technique (ART) in the field of

image reconstruction, or even Row-Action Projection

(RAP) in the context of image restoration (Mammone

1992).1 The latter one belongs to a class of techniques

called projections onto convex sets, which basically aims at

projecting the possible solution onto convex sets until their

intersection (Stark et al. 1998). In the case of RAP, the

convex sets are represented by each hyperplane of the

linear system. Another commonly employed convex set is

called Limited Amplitude Restriction Set (LA), which

basically restricts the pixels’ brightness to a range of

acceptable values, usually within [0, 255]. Therefore, the

projection onto the set of hyperplanes given by Eq. 4 is

usually followed by a projection onto the LA set to correct

the grey value of each pixel. This is the procedure adopted

in this work.

3 Meta-heuristic optimization background

In this section, we briefly review the meta-heuristic opti-

mization techniques employed in this work.

3.1 Harmony search

Harmony search (HS) is a meta-heuristic algorithm

inspired by the improvisation process of music players.

Musicians often improvise the pitches of their instruments

searching for a perfect state of harmony (Geem 2009). The

main idea is to use the same process adopted by musicians

for creating new songs to obtain a near-optimal solution

according to some fitness function. Each possible solution

Fig. 1 Image degradation model as a linear and space-invariant

system

Fig. 2 Graphical representation of the Kaczmarz’s algorithm

1 Image restoration and reconstruction attempt at the same purpose,

they are just used under different names depending on the field of

knowledge.
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is modeled as a harmony and each musical note corre-

sponds to one decision variable.

The algorithm generates after each iteration a new har-

mony vector xnew ¼ ðx1new; x2new; . . .; xNnew) based on memory

considerations, pitch adjustments, and randomization

(music improvisation), being N the number of decision

variables. In regard to the memory consideration step, the

idea is to model the process of creating songs, in which the

musician can use his/her memories of good musical notes

to create a new song. This process is modeled by the

Harmony Memory Considering Rate (HMCR) parameter,

which is the probability of choosing one value from the

historic values stored in the harmony memory, and (1-

HMCR) is the probability of randomly choosing one fea-

sible value h from the range of values X j of variable j, as

follows:

xjnew ¼ x
j
A with probability HMCR

h 2 X j with probability (1-HMCR),

(
ð5Þ

where A�Uð1; 2; . . .;PÞ, being P the number of har-

monies. Further, every component j of the new harmony

vector xnew is examined to determine whether it should be

pitch-adjusted or not, which is controlled by the Pitch

Adjusting Rate (PAR) variable, according to Eq. 6:

Pitching adjusting decision for xjnew

¼
Yes with probability PAR,

No with probability (1-PAR).

� ð6Þ

The pitch adjustment for each instrument is often used to

improve solutions and to escape from local optima. This

mechanism concerns shifting the neighbouring values of

some decision variable in the harmony. As such, if the

pitch adjustment decision for the decision variable xjnew is

Yes, xjnew is replaced as follows:

xjnew ¼ xjnew � uj.; ð7Þ

where . is an arbitrary distance bandwidth for the contin-

uous design variable, and uj �Uð0; 1Þ. The next sections

describe the variants of harmony search employed in this

work.

3.1.1 Improved harmony search

The Improved harmony search (IHS) (Mahdavi et al. 2007)

differs from traditional HS by updating the PAR and .
(bandwidth) values dynamically. The PAR updating for-

mulation at time step t is given by:

PARt ¼ PARmin þ
PARmax � PARmin

T
t; ð8Þ

where T stands for the number of iterations, and PARmin

and PARmax denote the minimum and maximum number of

PAR values, respectively. In regard to the bandwidth value

at time step t, it is computed as follows:

.t ¼ .max exp
lnð.min=.maxÞ

T
t; ð9Þ

where .min and .max stand for the minimum and maximum

values of ., respectively.

3.1.2 Global-best harmony search

The Global-best Harmony Search (GHS) (Omran and Mah-

davi 2008) employs the same modification proposed by IHS

with respect to dynamic PAR values. However, it does not

employ the concept of bandwidth, being Eq. 7 replaced by:

xjnew ¼ x̂z; ð10Þ

where z�Uð1; 2; . . .;NÞ, and x̂ stands for the best harmony.

3.1.3 Novel global harmony search

The Novel Global Harmony Search (NGHS) (Zou et al.

2010) differs from traditional HS in three aspects: (1) the

HMCR and PAR parameters are excluded, and a mutation

probability x is then used; (2) the NGHS always replaces

the worst harmony with the new one, and (3) the impro-

visation footsteps are also modified, as follows:

R ¼ 2x
j
best � xjworst; ð11Þ

xjnew ¼ xjworst þ ljðR� xjworstÞ; ð12Þ

where xworst and xbest stand for the worst and best har-

monies, respectively, and lj �Uð0; 1Þ. Further, other

modification with respect to the mutation probability is

performed in the new harmony:

xjnew ¼
Lj þ -jðUj � LjÞ if jj �x

xjnew otherwise,

(
ð13Þ

where jj;-j �Uð0; 1Þ, and Uj and Lj stand for the upper

and lower bounds of decision variable j, respectively

3.1.4 Self-adaptive global best harmony search

The SGHS algorithm (Pan et al. 2010) is a modification of

the aforementioned GHS, which employs a new improvi-

sation scheme and self-adaptive parameters. First of all,

Eq. 10 is rewritten as:

xjnew ¼ x̂j; ð14Þ

and Eq. 5 can be replaced by:

xjnew ¼ x
j
A � uj. with probability HMCR

h 2 X j with probability (1-HMCR),

(
ð15Þ

in which A�Uð1; 2; . . .;PÞ.
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4 Methodology

In this section we discuss the methodology employed in

our work. In short, the POCS-based image restoration

algorithm addressed in this paper, works as follows:

1. Set the initial guess as being the degraded image.

2. Project the current guess onto RAP set using Eq. 4.

3. After that, project the image obtained above onto LA

set in order to restrict (shrink) the image’s pixels

within the range [0, 255]. The obtained image is the

current guess.

4. Go to step 2 whether we stopping criterion has not

been reached; otherwise finish the algorithm.

The above algorithm gives us a broad idea of the POCS

procedure for image restoration: step 2 requires two

parameters: the relaxation k value (Eq. 4), which controls

the amount of projection onto the hyperplanes,2 and the

number of iterations K. In this work we model the task of

finding k and K as an optimization problem, since the

choice of both parameters is strongly related to the

restoration results. Nowadays, it is usual to have images

with thousands of hundreds pixels, even in standard cell

phones and personal digital cameras, thus being impracti-

cable to perform an exhaustive search for such parameters.

In order to guide the optimization algorithms through

the restoration process, Papa et al. (2010) proposed to use

some image quality measures as the fitness functions. In the

context of image restoration, we can evaluate whether an

algorithm achieved suitable results using the Improvement

Signal to Noise Ratio (ISNR) (Katsaggelos 1991) or the

Universal Image Quality Index (UIQI) (Wang and Bovik

2002), for instance. In this paper, we opted to employ

ISNR, since it is a well-accepted quality measure in the

image restoration scientific community:

ISNR ¼ 10 log10
ðg� f Þ2

ðf̂ � f Þ2

" #
; ð16Þ

in which f̂ stands for the restored image. Therefore, the

better is the restoration process, the higher is the ISNR.3

Let H ¼ ðk�;K�Þ be the set of parameters that maxi-

mized ISNR over the restored image, which has been

degraded using some specific degradation process.4 Given

a real image with similar degradation modeling, we can

thus employ H to restore such an image. Figure 3 depicts

this procedure. Finally, in order to allow a more robust

statistical analysis via Wilcoxon signed-rank test (Wil-

coxon 1945), we have executed all techniques 10 times,

being the initial solutions of GD, FR and PR generated at

random. Notice we used the value of 0.05 as the signifi-

cance level for the statistical test. The statistical analysis

considers, for each optimization technique, the ISNR val-

ues obtained during the 10 evaluations as the population,

being the null hypothesis the one that cogitates that two

different optimization techniques achieve the same ISNR

value.

In order to avoid possible biases during the parameter

setting up, we proposed to meta-optimize HS-based tech-

niques using BHA, which is a parameterless meta-heuristic

technique that works similarly to swarm-based techniques,

i.e., it updates the whole swarm at all iterations. Therefore,

the fitness function used for BHA is the ISNR value

obtained through each HS configuration of parameters.5

The BHA technique is based on the power of attraction of

the black holes, in which each one models a possible

solution to the problem. Each black hole has a mass and an

amount of charge associated to it, and the gravity force is

used for the global search, while the electrical force is used

for the local search.

In order to avoid a high computational load during the

meta-optimization step, we first reduce the original image

by a factor of 4, for further application of the meta-

Fig. 3 Proposed pipeline for image restoration

2 Under-projections refer to RAP constrained to k\1, and over-

projections refer to RAP constrained to k[ 1.

3 The better is the quality of the restored image f̂ , we have that

ðf̂ � f Þ2 ! 0. Thus,
ðg�f Þ2

ðf̂�f Þ2 ! 1, which means that high ISNR values

stand for better restored images.
4 The original (uncorrupted) image that has been degraded is the so-

called ‘‘phantom image’’.

5 We have used 60 agents and 30 iterations for both BHA and HS

techniques.
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optimization step. Therefore, all fitness evaluations are

performed over the reduced image, and the learned set of

parameters are then used to restore the original image. This

procedure is depicted in Fig. 4.

5 Experimental results

In this section we present the experiments conducted to

show the effectiveness and efficiency of the meta-heuristic

techniques for choosing proper k and K values. The

experiments were carried out using the well-known Lena

(Fig. 5a) and one remote sensing image (Fig. 6a) in two

different situations: the original images have been degra-

ded with a Gaussian blur—GB (Figs. 5b, 6b), as well as

with Gaussian blur and additive Gaussian noise—GB?N

(Figs. 5c, 6c). In regard to the Gaussian blur, we have

employed a 3� 3 kernel filter with r ¼ 1:8. In case ofFig. 4 Proposed pipeline for the meta-optimization step

Fig. 5 Lena image with 256 � 256 and 8 bits/pixel: a original, b Gaussian blur and c Gaussian blur with additive Gaussian noise

Fig. 6 Remote sensing image 2 with 256 � 256 and 8 bits/pixel: a original, b Gaussian blur and c Gaussian blur with additive Gaussian noise
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additive noise, we used with a Gaussian distribution with

zero mean and r ¼ 0:0005.

For each image, we conducted two rounds of experi-

ments: (1) in the first one, a near-exhaustive grid-search has

been executed in order to find the optimal values of k 2
½0; 2	 and K 2 ½1; 20	 that lead to the best ISNR values; (2)

further, the effectiveness of the meta-heuristic techniques

in finding suitable k and K values is assessed, since we are

interested to know how close the results are to the ones

obtained by the near-exhaustive (baseline) search.6 Table 1

presents the parameters used for the meta-heuristic tech-

niques, which have been empirically chosen. Notice these

parameters are the same for all images.

5.1 Lena experiments

This first round of experiments aims at executing the POCS

algorithm described in Sect. 4 with k and K obtained by

means of a grid-search. Figure 7 displays the ISNR surface

obtained by different configurations of ðk;KÞ concerning

corrupted Lena Images (Fig. 5b, c). A slower restoration

process (Fig. 7b) can be observed with respect to the image

corrupted by blurring and noise, since original RAP for-

mulation does not consider the noise effect (Eq. 2). The

reader can observe the surface on Fig. 7b has a larger area

composed by low ISNR values, which are represented by

‘‘cold’’ colors, such as ‘‘purple’’ and ‘‘pink’’.

Further, we employed HS, IHS, GHS, NGHS, SGHS,

GD, FR and PR to find out near-optimal values for k and

K. Table 2 presents the quantitative results with respect to

ISNR obtained over reduced Lena image, being the best

results according to Wilcoxon signed-rank test in bold. We

can observe HS-based techniques and PR obtained the best

results considering the image with Gaussian blur only

(GB), and IHS outperformed all techniques considering the

presence of both blurring and noise (GB?N) (Table 3).

In regard to the computational load, Table 4 displays

the average number of evaluations to the fitness function

(image restoration algorithm) for each approach consid-

ered in this work. Since the best results over original

Lena image are obtained by means of NGHS and HS,

respectively, we may conclude the best trade-off between

efficiency and effectiveness is devoted to such techniques.

Although we have a slight difference between NGHS and

GD in terms of ISNR considering GB experiment, for

instance, such difference may rely on dozens of pixels,

which may be located at high-frequency regions, thus

being of great importance for the perception of detail in

images.

Additionally, Table 5 displays the mean computational

load for each technique (we are not considering the meta-

optimization step for HS, NGHS, SGHS, GHS and IHS). In

regard to FR, GD and PR techniques, we also consider a

near-exhaustive search to find out the best set of their

parameters, i.e., step size (½1; 10�1; 10�2; . . .; 10�10	) and

the number of iterations (½100; . . .; 10;000	). The best value
found for the step size was 10�4, and all techniques con-

verged before 10,000 iterations.

Another interesting point to be considered is related to

the meta-optimization step performed by BHA. Since we

have 60 agents and 30 iterations for HS-based techniques,

they need only 60þ 30 ¼ 90 evaluations of the fitness

function. However, as we are using 60 agents for BHA and

30 iterations, it means we need 60� 30� 90 ¼ 16;200

evaluations of the fitness function, which might be time-

consuming (Fig. 8).

5.2 Remote sensing image experiments

In this section, we present the experimental results con-

cerning the remote sensing image (Fig. 6). As aforemen-

tioned, the main idea is to use the same set of parameters

learned over the Lena image to restore this new image,

since they are degraded with the same blur and noise

models. Table 6 displays the ISNR values for each tech-

nique. Considering the blur model only, we can observe the

grid-search has obtained the best value, followed by IHS.

In regard to both blur and noise degradation, we can

observe SGHS as the best technique. Additionally, if we

consider this latter model, i.e., blur and noise, HS-based

techniques have been consistently better than classical

Table 1 Parameters used for each optimization approach: the number

of agents for all techniques was set to 60, being the number of iter-

ations 30

Technique Parameters

HS HMCR = 0.9, PAR = 0.3, BW = 0.01

GHS HMCR = 0.9, PARmin = 0.01, PARmax = 0.99

IHS HMCR = 0.9, PARmin = 0.01, PARmax = 0.99

BWmin = 0.0001, BWmax = 0.2

NGHS pm = 0.033

SGHS HMCRm = 0.98, PARm = 0.9, BWmin = 0.0005

BWmax = 0.4, LP = 2

Although we have the same variables for different approaches, we

decided to keep their original formulation

6 The search range for k was executed within [0, 2] with steps of

0.05, and the search range of K was executed within the range [1, 20]

with steps of 1. This means we have 800 evaluations of the fitness

function considering the near-exhaustive search. Although one could

meta-optimize the step of grid-search, we do not recommend that,

since it might be too costly.

Projections onto convex sets parameter estimation through harmony search and its application… 499

123



optimization techniques. PR, for instance, obtained a very

good result over the blurring model only, but a far from

suitable result considering blurring and noise. Figure 9

shows the degraded and restored images according to the

best techniques in Table 6.

6 Conclusions

Image restoration considers recovering an image degraded

by blurring and noise effects. Since it can be modelled as a

linear system, several approaches have been proposed to

solve the set of equations that leads to suitable restored

images. One of such approach is based on projections onto

Fig. 7 Grid-search landscape results considering reduced Lena image corrupted by a Gaussian blur (Fig. 5b) and b Gaussian blur and additive

noise (Fig. 5c)

Table 2 Restoration results for

reduced Lena image considering

ISNR for GB and GB?N

experiments

Technique ISNR

GB GB?N

Grid-search 8.9000 (0.20) [7] 7.8622 (0.25) [3]

HS 8.9003 ± 0.007 (0.26) [5] 7.8112 ± 0.011 (0.14) [5]

NGHS 8.8920 ± 0.022 (0.29) [5] 7.7785 ± 0.050 (0.15) [6]

SGHS 8.8960 ± 0.014 (0.34) [4] 7.8260 ± 0.022 (0.16) [5]

GHS 8.8978 ± 0.039 (0.28) [5] 7.8196 ± 0.028 (0.26) [3]

IHS 8.8613 ± 0.028 (0.24) [8] 7.8443 (0.17) [5]

GD 8.1277 ± 0.829 (0.13) [12] 5.6344 ± 2.061 (0.26) [3]

FR 8.8535 ± 0.058 (0.25) [6] 7.4951 ± 0.653 (0.11) [8]

PR 8.8792 ± 0.034 (0.29) [5] 7.7522 ± 0.131 (0.25) [8]

The values in parenthesis stand for the best k, and the values in brackets stand for the best K. Notice the best
value is the one provided by the running that obtained the higher ISNR. The best ISNR values considering

the statistical analysis are in bold. The results are displayed in the following format: x� y, in which x stands

for the mean ISNR, and y its standard deviation

Table 3 Restoration results

(mean ISNR value) for original

Lena image considering ISNR

for GB and GB?N experiments

Technique ISNR

GB GB?N

Grid-search 9.5330 6.6309

HS 9.5099 6.7634

NGHS 9.5725 6.4514

SGHS 9.5226 6.6101

GHS 9.4651 6.6679

IHS 9.2633 6.5245

GD 9.5006 6.5694

FR 9.4290 6.4946

PR 9.4228 4.4213

The best ISNR values are in

bold

Table 4 Average number of function calls for each technique

Technique #Calls

GB GB?N

Grid-search 800 800

HS-based 90 90

GD 47 56

FR 124.4 128

PR 138.6 145.2

BHA 162,000 162,000
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convex sets, which employs successive projections in order

to iteratively restore the image. The main concern that

raises is related to the parameters that control the projec-

tion onto the sets: low values may lead us to poorly

restored images, and high values can enhance the

noise.Therefore, in this paper we propose to find out near-

optimal parameters to guide the projections using several

evolutionary optimization techniques. Roughly speaking,

the main questions related to this work are oriented to

evaluate whether it is reasonable to employ meta-heuristics

for optimizing POCS parameters. The answer is positive,

but we need to consider the computational load of the

meta-optimization process. Our experience shows the

meta-optimization procedure conducted over a lower res-

olution image can suggest parameters to be used in a higher

resolution image with similar degradation process.

We conducted two experiments using two images and

nine techniques, being a near-exhaustive search (grid-

search), five variants based on the harmony search algo-

rithm, as well as three classical optimization algorithms. In

order to fine-tune HS-based approaches, we proposed a

meta-optimization schema based on the Black Holes Algo-

rithm, which is a simple and parameterless formulation.

The experiments have shown some important aspects

related to the proposed approach: (1) it is possible to learn

restoration parameters from one image and then to apply

them to restore another image with similar statistics, blur

and noise models; (2) HS-based algorithms can obtain

similar or even better results than classical optimization

algorithms and the grid-search with fewer evaluations of

Table 5 Mean computational load for learning the POCS parameter

Technique ISNR

GB GB?N

Grid-search 22.48 h 22.49 h

HS 26.83 h 24.93 h

NGHS 17.13 h 19.21 h

SGHS 25.22 h 27.38 h

GHS 28.49 h 28.39 h

IHS 28.42 h 29.58 h

FR 49.1 min 59.1 min

GD 36 min 38.5 min

PR 56 min 59.1 min

Fig. 8 Degraded Lena images a GB and c GB?N, and their restored

versions using b NGHS for GB and d HS for GB?N

Table 6 Restoration results for Remote Sensing image considering

ISNR for GB and GB?N experiments

Technique ISNR

GB GB?N

Grid-search 8.6314 (0.25) [13] 5.3875 (0.15) [2]

HS 7.9301 (0.26) [5] 6.0014 (0.14) [5]

NGHS 7.7007 (0.21) [5] 6.0106 (0.15) [6]

SGHS 8.0941 (0.15) [10] 6.0165 (0.16) [5]

GHS 8.0000 (0.28) [5] 6.0152 (0.11) [7]

IHS 8.3195 (0.24) [8] 6.0127 (0.17) [5]

GD 8.1383 (0.13) [12] 5.9651 (0.26) [3]

FR 8.1197 (0.25) [6] 6.015 (0.11) [8]

PR 8.0464 (0.29) [5] 5.1909 (0.25) [8]

The best ISNR values are in bold

Fig. 9 Degraded remote sensing image a GB and c GB?N, and their

restored versions using b grid-search for GB and d SGHS for GB?N
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the fitness function (in most cases); (3) the proposed meta-

optimization approach used in this paper might be used

carefully, since it can be time-consuming. In regard to

future works, we aim at evaluating different versions of the

harmony search algorithm to the context of this work.
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