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Abstract Spiking neural P systems (in short, SN P sys-

tems) are membrane computing models inspired by the

pulse coding of information in biological neurons. SN P

systems with standard rules have neurons that emit at most

one spike (the pulse) each step, and have either an input or

output neuron connected to the environment. A variant

known as SN P modules generalize SN P systems by using

extended rules (more than one spike can be emitted each

step) and a set of input and output neurons. In this work we

continue relating SN P modules and finite automata. In

particular, we amend and improve previous constructions

for the simulatons of deterministic finite automata and state

transducers. Our improvements reduce the number of

neurons from three down to one, so our results are optimal.

We also simulate finite automata with output, and we use

these simulations to generate automatic sequences.

Keywords Membrane computing � Spiking neural P

systems � Finite automata � Automatic sequence

1 Introduction

Spiking neural P systems (in short, SN P systems) introduced

in Ionescu et al. (2006), incorporated into membrane com-

puting the idea of pulse coding of information in computa-

tions using spiking neurons [see for example Maass 2002;

Maass and Bishop 1999 and references therein for more

information]. In pulse coding from neuroscience, pulses

known as spikes are not distinct, so information is instead

encoded in their multiplicity or the time they are emitted.

On the computing side, SN P systems have neurons pro-

cessing only one object (the spike symbol a), and neurons are

placed on nodes of a directed graph. Arcs between neurons

are called synapses. SN P systems are known to be universal

in both generative (an output is given, but not an input) and

accepting (an input is given, but not an output) modes. SN P

systems can also solve hard problems in feasible (polynomial

to constant) time. Another active line of investigation on the

computability and complexity of SN P systems is taking

mathematical and biological inspirations in order to create

new variants, e.g. asynchronous operation, weighted

synapses, rules on synapses, structural plasticity. We do not

go into details, and we refer to Cabarle et al. (2015), Ionescu

et al. (2006), Leporati et al. (2007), Pan et al. (2011), Păun

and Pérez-Jiménez (2009), Song and Pan (2015), Song et al.

(2015), Zeng et al. (2014), Zeng et al. (2013) and Zhang

et al. (2015) and references therein.

SN P systems with standard rules (as introduced in their

seminal paper) have neurons that can emit at most one

pulse (the spike) each step, and either an input or output

neuron connected to the environment, but not both. In Păun

et al. (2007), SN P systems were equipped with both an

input and output neuron, and were known as SN P trans-

ducers. Furthermore, extended rules were introduced in

Chen et al. (2008) and Păun and Păun (2007), so that a
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neuron can produce more than one spike each step. The

introduced SN P modules in Ibarra et al. (2010) can then be

seen as generalizations of SN P transducers: more than one

spike can enter or leave the system, and more than one

neuron can function as input or output neuron.

In this work we continue investigations on SN P mod-

ules. In particular we amend the problem introduced in the

construction of Ibarra et al. (2010), where SN P modules

were used to simulate deterministic finite automata and

state transducers. Our constructions also reduce the neu-

rons for such SN P modules: from three neurons down to

one. Our reduction relies on more involved superscripts,

similar to some of the constructions in Neary (2010).

We also provide constructions for SN P modules sim-

ulating DFA with output. Establishing simulations between

DFA with output and SN P modules, we are then able to

generate automatic sequences. Such class of sequences

contain, for example, a well known and useful automatic

sequence known as the Thue-Morse sequence. The Thue-

Morse sequence, among others, play important roles in

many areas of mathematics (e.g. number theory) and

computer science (e.g. automata theory). Aside from DFA

with output, another way to generate automatic sequences

is by iterating morphisms. We invite the interested reader

to Allouche and Shallit (2003) for further theories and

applications related to automatic sequences.

This paper is organized as follows: Sect. 2 provides our

preliminaries. In Sect. 3 themain results are presented. Lastly,

some final remarks are drawn and then provided in Sect. 4.

2 Preliminaries

It is assumed that the readers are familiar with the basics of

membrane computing (a good introduction is Păun (2002)

with recent results and information in the P systems web-

page in http://ppage.psystems.eu/ and a recent handbook in

Păun et al. (2010) ) and formal language theory (available

in many monographs). We only briefly mention notions

and notations which will be useful throughout the paper.

2.1 Language theory and string notations

We denote the set of natural numbers as N ¼ f0; 1; 2; . . .g.
Let V be an alphabet, V� is the set of all finite strings over V
with respect to concatenation and the identity element k (the
empty string). The set of all non-empty strings over V is

denoted as Vþ so Vþ ¼ V� � fkg. We call V a singleton if

V ¼ fag and simply write a� and aþ instead of fag� and

fagþ. If a is a symbol inV, then a0 ¼ k, A regular expression

over an alphabet V is constructed starting from k and the

symbols of V using the operations union, concatenation, and

þ. Specifically, (i) k and each a 2 V are regular expressions,

(ii) if E1 and E2 are regular expressions over V then

ðE1 [ E2Þ, E1E2, and E
þ
1 are regular expressions over V, and

(iii) nothing else is a regular expression overV. The length of

a string w 2 V� is denoted by |w|. Unnecessary parentheses

are omitted when writing regular expressions, and Eþ [ fkg
is written as E�. We write the language associated with a

regular expression E as L(E). If V has k symbols, then ½w�k ¼
n is the base-k representation of n 2 N.

2.2 Deterministic finite automata

Definition 1 A deterministic finite automaton (in short, a

DFA) D, is a 5-tuple D ¼ ðQ;R; q1; d;FÞ, where:

– Q ¼ fq1; . . .; qng is a finite set of states,

– R ¼ fb1; . . .; bmg is the input alphabet,

– d : Q� R ! Q is the transition function,

– q1 2 Q is the initial state,

– F � Q is a set of final states.

Definition 2 A deterministic finite state transducer (in

short, a DFST) with accepting states T, is a 6-tuple

T ¼ ðQ;R;D; q1; d0;FÞ, where Q, R, q1, and F are as

above, and D ¼ fc1; . . .; ctg is the output alphabet, while

d0 : Q� R ! Q� D is the transition function.

Definition 3 A deterministic finite automaton with output

(in short, a DFAO) M, is a 6-tuple M ¼ ðQ;R; d; q1;D; sÞ,
where Q; d;R; q1, and D are as above, and s : Q ! D is the

output function.

A given DFAO M defines a function from R� to D,
denoted as fMðwÞ ¼ sðdðq1;wÞÞ for w 2 R�. If

R ¼ f1; :::; kg, denoted as Rk, then M is a k-DFAO.

Definition 4 A sequence a ¼ ðanÞn� 0, is k-automatic if

there exists a k-DFAO, M, such that given w 2 R�
k ,

an ¼ fMðwÞ ¼ sðdðq1;wÞÞ, where ½w�k ¼ n.

Example 1 (Thue-Morse sequence) The Thue-Morse

sequence t ¼ ðtnÞn� 0 counts the number of 1’s (mod 2) in

the base-2 representation of n. The 2-DFAO for t is given

in Fig. 1. In order to generate t, the 2-DFAO is in state q1
with output 0, if the input bits seen so far sum to 0 (mod 2).

In state q2 with output 1, the 2-DFAO has so far seen input

bits that sum to 1 (mod 2). For example, we have t0 ¼ 0,

t1 ¼ t2 ¼ 1, and t3 ¼ 0.

2.3 Spiking neural P systems

Definition 5 A spiking neural P system (in short, an SN P

system) of degree m� 1, is a tuple of the form

P ¼ ðfag; r1; . . .; rm; syn; in; outÞ
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where:

– fag is the singleton alphabet (a is called spike);

– r1; . . .; rm are neurons of the form ri ¼
ðni;RiÞ; 1	 i	m; where:

– ni � 0 is the initial number of spikes inside ri;
– Ri is a finite set of rules of the general form:

E=ac ! ap, where E is a regular expression over

fag, c� 1, with p� 0, and c� p;

– syn � f1; . . .;mg � f1; . . .;mg, with ði; iÞ 62 syn for

1	 i	m (synapses);

– in; out 2 f1; . . .;mg indicate the input and output

neurons, respectively.

A rule E=ac ! ap; d in neuron ri (we also say neuron i

or simply ri if there is no confusion) is called a spiking rule
if p� 1. If p ¼ 0, the rule is written simply as ac ! k,
known as a forgetting rule. If a spiking rule has LðEÞ ¼
facg; we simply write it as ac ! ap.

The rules are applied as follows: If ri contains k spikes,
ak 2 LðEÞ and k� c, then the rule E=ac ! ap 2 Ri with

p� 1; is enabled and can be applied. Rule application

means consuming c spikes, so only k � c spikes remain in

ri. The neuron produces p spikes (also referred to as

spiking) to every rj where ði; jÞ 2 syn. Applying a forget-

ting rule means producing no spikes.

SN P systems operate under a global clock, i.e. they are

synchronous. At every step, every neuron that can apply a

rule must do so. It is possible that at least two rules

E1=a
c1 ! ap1 and E2=a

c2 ! ap2 , with LðE1Þ \ LðE2Þ 6¼ ;,
can be applied at the same step. The system nondeter-

ministically chooses exactly one rule to apply. The system

is globally parallel (each neuron can apply a rule) but is

locally sequential (a neuron can apply at most one rule).

A configuration or state of the system at time t can be

described by Ct ¼ hr1; . . .; rmi for 1	 i	m, where neuron

i contains ri � 0 spikes. The initial configuration of the

system is therefore C0 ¼ hn1; . . .; nmi. Rule application

provides us a transition from one configuration to another.

A computation is any (finite or infinite) sequence of con-

figurations such that: (a) the first term is the initial con-

figuration C0; (b) for each n� 2, the nth configuration of

the sequence is obtained from the previous configuration in

one transition step; and (c) if the sequence is finite (called

halting computation) then the last term is a halting con-

figuration, i.e. a configuration where all neurons are open

and no rule can be applied.

If rout produces i spikes in a step, we associate the

symbol bi to that step. In particular, the system (using rules

in its output neuron) generates strings over R ¼
fp1; . . .; pmg; for every rule r‘ ¼ E‘=a

j‘ ! ap‘ ; 1	 ‘	m;

in rout. From Chen et al. (2008) we can have two cases:

associating b0 (when no spikes are produced) with a

symbol, or as k. In this work and as in Ibarra et al. (2010),

we only consider the latter.

Definition 6 A spiking neural P module (in short, an SN

P module) of degree m� 1, is a tuple of the form P ¼
ðfag; r1; . . .; rm; syn;Nin;NoutÞ where fag; r1; . . .; rm; syn
are as above and Nin;Nout � f1; 2; . . .;mg indicate the sets

of input and output neurons, respectively.

SN P transducers in Păun et al. (2007) operated on

strings over a binary alphabet as well considering b0 as a

symbol. SN P modules in Ibarra et al. (2010) are a special

type of SN P systems with extended rules and they gen-

eralize SN P transducers. SN P modules behave in the usual

way as SN P systems, except that spiking and forgetting

rules now both contain no delays. In contrast to SN P

systems, SN P modules have the following distinguishing

feature: at each step, each input neuron ri; i 2 Nin; takes as

input multiple copies of a from the environment; Each

output neuron ro; o 2 Nout; produces p spikes to the envi-

roment, if a rule E=ac ! ap is applied in ro; Note that

Nin \ Nout is not necessarily empty.

3 Main results

In this section we amend and improve constructions given

in Ibarra et al. (2010) to simulate DFA and DFST using SN

P modules. Then, k-DFAO are also simulated with SN P

modules. Lastly, SN P modules are related to k-automatic

sequences.

3.1 DFA and DFST simulations

We briefly recall the constructions from Theorems 8 and 9

of Ibarra et al. (2010) for SN P modules simulating DFAs

and DFSTs. The constructions for both DFAs and DFSTs

have a similar structure, which is shown in Fig. 2. Let

D ¼ ðQ;R; d; q1;FÞ be a DFA, where R ¼ fb1; . . .; bmg,
Q ¼ fq1; . . .; qng. The construction for Theorem 8 of Ibarra

et al. (2010) for an SN P Module PD simulating D is as

follows:

PD ¼ ðfag; r1; r2; r3; syn; f3g; f3gÞ;

q1/0start q2/1

0

1

1

0

Fig. 1 2-DFAO generating the Thue-Morse sequence
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where

– r1 ¼ r2 ¼ ðn; fan ! angÞ;
– r3 ¼ ðn; fa2nþiþk=a2nþiþk�j ! aj j dðqi; bkÞ ¼ qjgÞ;
– syn ¼ fð1; 2Þ; ð2; 1Þ; ð1; 3Þg:

The structure forPD is shown in Fig. 2. Note that n;m 2
N; are fixed numbers, and each state qi 2 Q is represented

as ai spikes in r3, for 1	 i	 n. For each symbol bk 2 R,
the representation is anþk. The operation of PD is as fol-

lows: r1 and r2 interchange an spikes at every step, while

r1 also sends an spikes to r3.
Suppose that D is in state qi and will receive input bk, so

that r3 of PD has ai spikes and will receive anþk spikes. In

the next step, r3 will collect an spikes from r1, anþk spikes

from the enviroment, so that the total spikes in r3 is

a2nþiþk. A rule in r3 with LðEÞ ¼ fa2nþiþkg is applied, and

the rule consumes 2nþ iþ k � j spikes, therefore leaving

only aj spikes. A single state transition dðqi; bkÞ ¼ qj is

therefore simulated.

With a 1-step delay, PD receives a given input w ¼
bi1 ; . . .; bir in R� and produces a sequence of states z ¼
qi1 ; . . .; qir (represented by ai1 ; . . .; air ) such that

dðqi‘ ; bi‘Þ ¼ qi‘þ1
; for each ‘ ¼ 1; . . .; r where qi1 ¼ q1.

Then, w is accepted by D (i.e. dðq1;wÞ 2 F) iff z ¼ PDðwÞ
ends with a state in F (i.e. qir 2 F). Let the language

accepted by PD be defined as:

LðPDÞ ¼ fw 2 R� j PDðwÞ 2 Q�Fg:

Then, the following is Theorem 8 from Ibarra et al. (2010)

Theorem 1 (Ibarra et al. 2010) Any regular language L

can be expressed as L ¼ LðPDÞ for some SN P module PD.

The simulation of DFSTs requires a slight modification

of the DFA construction. Let T ¼ ðQ;R;D; d0; q1;FÞ be a

DFST, where R ¼ fb1; . . .; bkg;D ¼ fc1; . . .; ctg;Q ¼
fq1; . . .; qng. We construct the following SN P module

simulating T:

PT ¼ ðfag; r1; r2; r3; syn; f3g; f3gÞ;

where:

– r1 ¼ r2 ¼ ðn; fan ! angÞ;
– r3 ¼ ðn; fa2nþiþkþt=a2nþiþkþt�j ! anþs j d0ðqi; bkÞ ¼

ðqj; csÞgÞ;
– syn ¼ fð1; 2Þ; ð2; 1Þ; ð1; 3Þg:

The structure for PT is shown in Fig. 2. Note that

n;m; t 2 N are fixed numbers. For 1	 i	 n;

1	 k	m; 1	 s	 t: each state qi 2 Q, each input symbol

bk 2 R, and each output symbol cs 2 D, is represented by

ai, anþtþk, and anþs, respectively.

The operation of PT given an input w 2 R� is in parallel

to the operation of PD; the difference is that the former

produces a cs 2 D, while the latter produces a qi 2 Q. From

the construction of PT and the claim in Theorem 1, the

following is Theorem 9 from Ibarra et al. (2010):

Theorem 2 (Ibarra et al. 2010) Any finite transducer T

can be simulated by some SN P module PT .

The previous constructions from Ibarra et al. (2010) on

simulating DFAs and DFSTs have however, the following

technical problem:

Suppose we are to simulate DFA D with at least two

transitions, (1) dðqi; bkÞ ¼ qj; and (2) dðqi0 ; bk0 Þ ¼ qj0 . Let

j 6¼ j0; i ¼ k0; and k ¼ i0. The SN P module PD simulating

D then has at least two rules in r3: r1 ¼
a2nþiþk=a2nþiþk�j ! aj; (simulating (1)) and r2 ¼
a2nþi0þk0=a2nþi0þk0�j0 ! aj

0
(simulating (2)).

Observe that 2nþ iþ k ¼ 2nþ i0 þ k0; so that in r3, the
regular expression for r1 is exactly the regular expression

for r2. We therefore have a nondeterministic rule selection

in r3. However, D being a DFA, transitions to two different

states qj and qj0 should be deterministic. Therefore, PD is a

nondeterministic SN P module that can, at certain steps,

incorrectly simulate the DFA D. This nondeterminism also

occurs in the DFST simulation.

Next, we amend the problem and modify the construc-

tions for simulating DFAs and DFSTs in SN P modules.

Given a DFA D, we construct an SN P module P0
D simu-

lating D as follows:

P0
D ¼ ðfag; r1; syn; f1g; f1gÞ;

where

– r1 ¼ ð1; fakðnþ1Þþi=akðnþ1Þþi�j ! aj j dðqi; bkÞ ¼ qjgÞ;
– syn ¼ ;:
We have PD containing only 1 neuron, which is both the

input and output neuron. Again, n;m 2 N are fixed num-

bers. Each state qi is again represented as ai spikes, for

1	 i	 n. Each symbol bk 2 R is now represented as akðnþ1Þ

12 12

3

Fig. 2 Structure of SN P modules from Ibarra et al. (2010) simulating

DFAs and DFSTs
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spikes. The operation of P0
D is as follows: neuron 1 starts

with a1 spike, representing q1 in D. Suppose that D is in

some state qi, receives input bk, and transitions to qj in the

next step. We then have P0
D combining akðnþ1Þ spikes from

the enviroment with ai spikes, so that a rule with regular

expression akðnþ1Þþi is applied, producing aj spikes to the

enviroment. After applying such rule, aj spikes remain in

r1; and a single transition of D is simulated.

Note that the construction for P0
D does not involve

nondeterminism, and hence the previous technical prob-

lem: Let D have at least two transitions, (1) dðqi; bkÞ ¼ qj;

and (2) dðqi0 ; bk0 Þ ¼ qj0 . We again let j 6¼ j0; i ¼ k0; and

k ¼ i0. Note that being a DFA, we have i 6¼ k. Observe that

kðnþ 1Þ þ i 6¼ k0ðnþ 1Þ þ i0: Therefore, P0
D is determin-

istic, and has two rules r1 and r2 correctly simulating (1)

and (2), respectively. We now have the following result.

Theorem 3 Any regular language L can be expressed as

L ¼ LðP0
DÞ for some 1-neuron SN P module P0

D

For a given DFST T, we construct an SN P module P0
T

simulating T as follows:

P0
T ¼ ðfag; r1; syn; f1g; f1gÞ;

where

– r1 ¼ ð1; fakðnþ1Þþiþt=akðnþ1Þþiþt�j ! anþs j d0ðqi; bkÞ ¼
ðqj; csÞgÞ;

– syn ¼ ;.
We also have P0

T as a 1-neuron SN P module similar to

P0
D. Again, n;m; t 2 N are fixed numbers, and for each

1	 i	 n; 1	 k	m; and 1	 s	 t: each state qi 2 Q, each

input symbol bk 2 R, and each output symbol cs 2 D, is

represented as ai; akðnþ1Þþt; and anþs spikes, respectively.

The functioning of P0
T is in parallel to P0

D. Unlike PT , P
0
T

is deterministic and correctly simulates T. We now have

the next result.

Theorem 4 Any finite transducer T can be simulated by

some 1-neuron SN P module P0
T .

3.2 k-DFAO simulation and generating automatic

sequences

Next, we modify the construction from Theorem 4

specifically for k-DFAOs by: (a) adding a second neuron r2
to handle the spikes from r1 until end of input is reached,

and (b) using r2 to output a symbol once the end of input is

reached. Also note that in k-DFAOs we have t	 n, since

each state must have exactly one output symbol associated

with it. Observing k-DFAOs from Definition 3 and DFSTs

from Definition 2, we find a subtle but interesting distinc-

tion as follows:

The output of the state after reading the last symbol in

the input is the requirement from a k-DFAO, i.e. for every

w over some Rk, the k-DFAO produces only one c 2 D
(recall the output function s); In contrast, the output of

DFSTs is a sequence of Q� D (states and symbols), since

dðqi; bkÞ ¼ ðqj; csÞ. Therefore, if we use the construction in

Theorem 4 for DFST in order to simulate k-DFAOs, we

must ignore the first jwj � 1 symbols in the output of the

system in order to obtain the single symbol we require.

For a given k-DFAO M ¼ ðQ;R;D; d; q1; sÞ, we have

1	 i; j	 n, 1	 s	 t, and 1	 k	m. Construction of an SN

P module PM simulating M, is as follows:

P ¼ ðfag; r1; r2; syn; f1g; f2gÞ;

where

– r1 ¼ ð1;R1Þ; r2 ¼ ð0;R2Þ;
– R1 ¼ fakðnþ1Þþiþt=akðnþ1Þþiþt�j ! anþs j dðqi; bkÞ ¼

qj; sðqjÞ ¼ csg
[famðnþ1Þþnþtþi ! amðnþ1Þþnþtþi j 1	 i	 ng;

– R2 ¼ fanþs ! kjsðqiÞ ¼ csg [ famðnþ1Þþnþtþi !
anþs j sðqiÞ ¼ csg;

– syn ¼ fð1; 2Þg:
We havePM as a 2-neuron SN Pmodule, and n;m; t 2 N are

fixed numbers. Each state qi 2 Q, each input symbol bk 2 R;

and each output symbol cs 2 D, is represented as ai, akðnþ1Þþt,

and anþs spikes, respectively. In this case however,we add an

end-of-input symbol $ (represented as amðnþ1Þþnþt spikes) to

the input string, i.e. if w 2 R�, the input for PM is w$.

For any bk 2 R, r1 ofPM functions in parallel to r1 ofP
0
D

and P0
T , i.e. every transition dðqi; bkÞ ¼ qj is correctly sim-

ulated by r1. The difference however lies during the step

when $ enters r1, indicating the end of the input. Suppose

during this step r1 has ai spikes, then those spikes are com-

binedwith the amðnþ1Þþnþt spikes from the enviroment. Then,

one of the n rules in r1 with regular expression amðnþ1Þþnþtþi

is applied, sending amðnþ1Þþnþtþi spikes to r2.
The first function of r2 is to erase, using forgetting rules,

all anþs spikes it receives from r1. Once r2 receives

amðnþ1Þþnþtþi spikes from r1, this means that the end of the

input has been reached. The second function of r2 is to

produce anþs spikes exactly once, by using one rule of

the form amðnþ1Þþnþtþi ! anþs: The output function

sðdðq1;w$ÞÞ is therefore correctly simulated. We can then

have the following result.

Theorem 5 Any k-DFAO M can be simulated by some 2-

neuron SN P module PM .
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Next, we establish the relationship of SN P modules and

automatic sequences.

Theorem 6 Let a sequence a ¼ ðanÞn� 0 be k-automatic,

then it can be generated by some 2-neuron SN P moduleP.

k-automatic sequences have several interesting robust-

ness properties. One property is the capability to produce

the same output sequence given that the input string is read

in reverse, i.e. for some finite string w ¼ a1a2. . .an, we

have wR ¼ anan�1. . .a2a1. It is known [e.g. Allouche and

Shallit (2003)] that if ðanÞn� 0 is a k-automatic sequence,

then there exists a k-DFAO M such that an ¼ sðdðq0;wRÞÞ
for all n� 0, and all w 2 R�

k ; where ½w�k ¼ n. Since the

construction of Theorem 5 simulates both d and s, we can

include robustness properties as the following result shows.

Theorem 7 Let a ¼ ðanÞn� 0 be a k-automatic sequence.

Then, there is some 2-neuron SN P module P where

PðwR$Þ ¼ an;w 2 R�
k ; ½w�k ¼ n; and n� 0.

4 Final remarks

We have shown that a single neuron in an SN P module is

enough to simulate a DFA or DFST, and this is the optimal

result in terms of the number of neurons per module (im-

proving and amending some constructions in Ibarra et al.

(2010)). In this simulating SN P module with one neuron, a

rule simulates a transition in the simulated finite automata,

i.e. given a simulated DFA or DFST with m number of

transitions, the simulating SN P module with neuron i has

jRij ¼ m. The SN P module simulating a k-DFAO contains

two neurons: the general idea is that the first neuron simulates

d while the second neuron simulates s of the simulated k-

DFAO. We were then able to generate automatic sequences

using SN P modules, as well as transfer some robustness

properties of k-DFAOs to the simulating module.

In Chen et al. (2008), strict inclusions for the types of

languages characterized by SN P systems with extended rules

having one, two, and three neurons were given. Then in Păun

et al. (2007), it was shown that there is noSNP transducer that

can compute nonerasing and nonlength preserving mor-

phisms: for all a 2 R, the former is a morphism h such that

hðaÞ 6¼ k, while the latter is a morphism hwhere jhðaÞj � 2. It

is known [e.g. in Allouche and Shallit (2003)] that the Thue-

Morse morphism is given by lð0Þ ¼ 01 and lð1Þ ¼ 10. It is

interesting to further investigate SNPmodules with respect to

other classes of sequences, morphisms, and finite transition

systems. Another technical note is that in Păun et al. (2007) a

time step without a spike entering or leaving the system was

considered as a symbol of the alphabet, while in Ibarra et al.

(2010) (and in this work) it was considered as k.

We also leave as an open problem a more systematic

analysis of input/output encoding size and system com-

plexity: in the constructions for Theorems 3–4, SN P

modules consist of only one neuron for each module,

compared to three neurons in the constructions of Ibarra

et al. (2010). However, the encoding used in our results is

more involved, i.e. with multiplication and addition of

indices (instead of simply addition of indices in Ibarra

et al. (2010)). On the practical side, SN P modules might

also be used for computing functions, as well as other tasks

involving (streams of) input-output transformations. Prac-

tical applications might include image modification or

recognition, sequence analyses, online algorithms, et al.

For example, perhaps improving or extending the work

done in Dı́az-Pernil et al. (2013).

Some preliminary work on SN P modules and mor-

phisms was given in Cabarle et al. (2012). From finite

sequences, it is interesting to extend SN P modules to

infinite sequences. In Freund and Oswald (2008), extended

SN P systems1 were used as acceptors of x-languages. SN
P modules could also be a way to ‘‘go beyond Turing’’ by

way of interactive computations, as in interactive compo-

nents or transducers given in Goldin et al. (2006). While

the syntax of SN P modules may prove sufficient for these

‘‘interactive tasks’’, or at least requiring only minor mod-

ifications, a (major) change in the semantics is probably

necessary.
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