
ar
X

iv
:1

90
5.

13
46

7v
1

 [
cs

.L
O

]
 3

1
M

ay
 2

01
9

Noname manuscript No.
(will be inserted by the editor)

Concurrency in Boolean networks

Thomas Chatain · Stefan Haar · Juraj
Kolčák · Löıc Paulevé · Aalok Thakkar

Received: date / Accepted: date

Abstract Boolean networks (BNs) are widely used to model the qualitative
dynamics of biological systems. Besides the logical rules determining the evolu-
tion of each component with respect to the state of its regulators, the schedul-
ing of component updates can have a dramatic impact on the predicted be-
haviours. In this paper, we explore the use of Read (contextual) Petri Nets
(RPNs) to study dynamics of BNs from a concurrency theory perspective. Af-
ter showing bi-directional translations between RPNs and BNs and analogies
between results on synchronism sensitivity, we illustrate that usual updating
modes for BNs can miss plausible behaviours, i.e., incorrectly conclude on the
absence/impossibility of reaching specific configurations. We propose an en-
coding of BNs capitalizing on the RPN semantics enabling more behaviour
than the generalized asynchronous updating mode. The proposed encoding
ensures a correct abstraction of any multivalued refinement, as one may ex-

T. Chatain, S. Haar, J. Kolčák, A. Thakkar
Inria Saclay-̂Ile-de-France
LSV, CNRS, & ENS Paris-Saclay
Université Paris-Saclay, France
E-mail: thomas.chatain@lsv.fr
E-mail: stefan.haar@lsv.fr
E-mail: juraj.kolcak@lsv.fr
Present address: of A. Thakkar
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
E-mail: athakkar@seas.upenn.edu

L. Paulevé
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800
F-33400 Talence, France
CNRS, LRI UMR 8623, Univ. Paris-Sud – CNRS
Université Paris-Saclay, France
E-mail: loic.pauleve@labri.fr

http://arxiv.org/abs/1905.13467v1

2 Chatain, Haar, Kolčák, Paulevé, Thakkar

pect to achieve when modelling biological systems with no assumption on its
time features.

Keywords Discrete dynamical systems · Models of concurrency · Synchro-
nism · Reachability

1 Introduction

Boolean networks (BNs) model dynamics of systems where several components
(nodes) interact. They specify for each node an update function to determine
its next value according to the configuration (global state) of the network. In
addition, an update mode for scheduling the application of functions has to be
specified to determine the set of reachable configurations.

BNs are increasingly used to model dynamics of biological interaction net-
works, such as gene networks and cellular signalling pathways. In these practi-
cal applications, it is usual to assess the accordance of a BN with the concrete
modeled system by checking if the observed behaviours are reproducible by the
abstract BN [37,43,18]. For instance, if one observes that the system can reach
a configuration y from configuration x, one may expect it is indeed the case
in the BN model. The designed Boolean functions typically do not model the
system correctly whenever it is not the case and should thus be fixed prior to
further analysis. With this perspective, the choice of the update mode is cru-
cial, as it is known to have a strong influence on the reachable configurations
of the network.

More fundamentally, the relationships between different updating modes
have been extensively studied for function-centered models such as cellular
automata [39,5] and Boolean networks [26,42,21,3,30,31], on which this article
is focused.

Interestingly, the study of updating mechanisms in networks and their ef-
fect on the emerging global dynamics has also been widely addressed in the
field of discrete and hybrid concurrent systems, especially with Petri nets [24,8,
9,45,46]. Petri nets are a classical formal framework for studying concurrency,
offering a fine-grained specification of the conditions (partial configurations)
for events (partial configuration changes). This decomposed view of causality
and effect of updates enables capturing events which can indifferently occur
sequentially or in parallel, and events having conflicts (triggering one would
pre-empt the application of the second).

In the literature, many variants of Petri nets have been employed to model
and simulate various biological processes (see [22,33] for examples and [10] for a
review paper), but little work considered the link between the theoretical work
on concurrency in Petri nets and the theoretical work in Boolean networks. In
[40,11,13], encodings of BNs and their multi-valued extension in certain classes
of Petri nets have been proposed, often as means to take advantage of existing
dynamical analysis already implemented for Petri nets, e.g., model-checking.

This paper aims at building a bridge between the theoretical work in BNs
on the one hand and Read Petri Nets (RPNs), also known as contextual Petri

Concurrency in Boolean networks 3

•

p1

•

p1

•

p1

•

p2

•

p2

•

p2

• p3 • p3 • p3

p4 p4 p4

p
p p′ p′′

p5 p5p5

p6 p6 p6

a a ab b b

c c c

d d d

Fig. 1 A Read Petri net R (left) and two different interpretations N1 and N2 (center,
right) of R as ordinary Petri nets; following [7].

nets, on the other. RPNs augment ordinary Petri Nets (PNs) with read arcs to
model read-only access to resources. It is always possible to simulate a RPN
by an ordinary PN, see Figure 1 and the discussion below. Our choice of using
RPN is motivated by the fact that the connection between BNs and RPNs
is more intuitive; but there is also an important technical advantage in using
RPNs directly, rather than equivalent ordinary models.

Let us examine Figure 1 more closely. In the read net R on the left hand
side, transitions a and b will be enabled while p is marked, i.e. between the
firings of c and d; once a token is available on p, both a and b can fire inde-
pendently and jointly, because the read arcs linking them to p do not require
removal of the token from p. In N1 in the middle, the firing of a and b in any
order is still possible, however their synchronous firing is prohibited by the con-
flict over the token on p. Only Petri net N2 is equivalent to R; synchronous
firing of a and b is obtained at the expense of duplicating p by creating p′ and
p′′. In other words, faithful rendering of read net behaviour by ordinary nets
requires the creation of multiple places for each place ’read’ by several transi-
tions, in order to pass from a read net to an ordinary net model. As will be
seen, the constructions required for translation between read nets and BN in
their turn also multiply place elements ; putting these constructions together
is possible, but makes the resulting nets still larger and a lot less intuitive to
apprehend and analyze.

In this paper, we consider the class of safe (or 1-bounded) RPNs where each
place can be marked by at most one token, which makes it a natural choice for
linking with Boolean networks. This class has been extensively studied in the
literature and enables fine-grained definitions of different concurrent semantics
as it is detailed in Sect. 3 and on which results of this article are built upon.

Below, we will give bi-directional equivalent connections between the two
formalisms of BNs and RPNs; this allows to we use a classical result from Petri
net theory to show the PSPACE-completeness of reachability in asynchronous
BNs. Then, we exhibit analogies of results on update mode comparisons. Im-
portantly, we show how the concurrent view of updates brings new updating
modes for BNs, enabling new behaviours and meeting with a correct abstrac-

4 Chatain, Haar, Kolčák, Paulevé, Thakkar

tion of multi-level systems. This result is illustrated on a small BN which
occurs in different models of actual biological networks, and for which the
usual updating modes fail to capture behaviours existing in refined models
(Sect. 7.1; Fig. 9).

Outline. Sect. 2 gives basic definitions of BNs, their asynchronous, syn-
chronous, and generalized asynchronous update mode, and their influence
graph. Sect. 3 defines safe RPNs and their atomic, step, and interval seman-
tics. Sect. 4 brings encodings of BNs into safe RPNs and vice-versa, the lat-
ter allowing to derive that reachability in BNs is PSPACE-complete. Sect. 5
establishes an analogy between the results on synchronism sensitivity in BNs
and RPNs. Sect. 6 provides an encoding of the interval semantics of RPNs into
asynchronous BNs, initially published in the conference paper [15]. Sect. 7 first
illustrates the benefits of the interval semantics on a simple BN showing that
usual BN semantics can miss plausible behaviours. Then, an extension of the
interval semantics is proposed in order to meet with a correct abstraction of
behaviours achievable in a multivalued refinement. Finally, Sect. 8 summarizes
the contributions and discusses further work.

Notations. If S is a finite set, |S| denotes its cardinality. B = {0, 1}, and
we write ∧, ∨, ¬ for logic operators and, or, not ; given a set of literals L =
{l1, . . . , lk},

∧

L ≡ l1∧· · ·∧lk with
∧

∅ = 1, and
∨

L ≡ l1∨· · ·∨lk with
∨

∅ = 0.

2 Boolean networks with function-centered specification

Given a configuration x ∈ Bn and i ∈ {1, . . . , n}, we denote xi the ith com-
ponent of x, so that x = x1 . . . xn. Given two configurations x, y ∈ Bn, the

components that differ are noted ∆(x, y)
∆
= {i ∈ {1, . . . , n} | xi 6= yi}.

Definition 1 (Boolean network) A Boolean network (BN) of dimension n
is a collection of functions f = 〈f1, . . . , fn〉 where ∀i ∈ {1, . . . , n}, fi : Bn → B.

Given x ∈ Bn, we write f(x) for f1(x) . . . fn(x).
Fig. 2 (a) shows an example of BN of dimension 3.

When modelling biological systems, each node i ∈ {1, . . . , n} usually repre-
sents a biochemical species, being either active (or present, value 1) or inactive
(or absent, value 0). Each function fi indicates how is the evolution of the
value of i influenced by the current value of other components j ∈ {1, . . . , n}.
However, this description can be interpreted in several ways, therefore several
updating modes coexist for BNs, depending on the assumptions about the
order in which the evolutions predicted by the fi apply.

The (fully) asynchronous updating assumes that only one component is
updated at each time step. The choice of the component to update is non-
deterministic.

Concurrency in Boolean networks 5

f1(x)
∆
= ¬x2

f2(x)
∆
= ¬x1

f3(x)
∆
= ¬x1 ∧ x2

(a)

1

3

2

(b)

010 110 011 111

000 100 001 101

(c)

Fig. 2 (a) Example BN f of dimension 3; (b) Influence graph G(f); positive edges are
with normal tip; negative edges are with bar tip; (c) Transition relations between states in
Bn according to the generalized asynchronous semantics of f .

Definition 2 (Asynchronous updating) Given a BN f , the binary irreflex-

ive relation
f

−−−→
async

⊆ Bn × Bn is defined as:

x
f

−−−→
async

y
∆

⇐⇒ ∃i ∈ {1, . . . , n}, ∆(x, y) = {i} ∧ yi = fi(x) .

We write
f

−−−→
async

∗ for the transitive closure of
f

−−−→
async

.

The synchronous updating can be seen as the opposite: all components are
updated at each time step. This leads to a purely deterministic dynamics.

Definition 3 (Synchronous updating) Given a BN f , the binary irreflex-

ive relation
f

−−−→
sync

⊆ Bn × Bn is defined as:

x
f

−−−→
sync

y
∆

⇐⇒ x 6= y ∧ ∀i ∈ {1, . . . , n}, yi = fi(x) .

By forcing all the components to evolve simultaneously, the synchronous
updating makes a strong assumption on the dynamics of the system. In many
concrete cases, for instance in systems biology, this assumption is often unreal-
istic, at least because the components model the quantity of some biochemical
species which evolve at different speeds.

As a result, the synchronous updating fails to describe some behaviours,
like the transition 010 → 011 represented in Fig. 2 (c) which represents
the activation of species 3 when species 1 is inactive and species 2 is active
(f3(010) = 1). There are also transitions which are possible in the synchronous

but not in the asynchronous updating, for instance 000 → 110. Remark that
110 is not even reachable from 000 in the asynchronous updating.

The generalized asynchronous updating generalizes both the asynchronous
and the synchronous updating: it allows updating synchronously any
nonempty subset of components.

6 Chatain, Haar, Kolčák, Paulevé, Thakkar

Definition 4 (Generalized asynchronous updating) Given a BN f , the

binary irreflexive relation
f

−−→
gen

⊆ Bn × Bn is defined as:

x
f

−−→
gen

y
∆

⇐⇒ x 6= y ∧ ∀i ∈ ∆(x, y) : yi = fi(x) .

Clearly, x
f

−−−→
async

y ⇒ x
f

−−→
gen

y and x
f

−−−→
sync

y ⇒ x
f

−−→
gen

y. The converse

propositions are false in general.
Note that we forbid “idle” transitions (x → x) regardless of the updating
mode.

Other updating modes like sequential or block sequential have also been
considered in the literature on cellular automata and BNs [5,3], and usually
lead to transitions allowed by the generalized asynchronous updating.

For each node i ∈ {1, . . . , n} of the BN, fi typically depends only on
a subset of nodes of the network. The influence graph of a BN (also called
interaction or causal graph) summarizes these dependencies by having an edge
from node j to i if fi depends on the value of j. Formally, fi depends on xj

if there exists a configuration x ∈ Bn such that fi(x) is different from fi(x
′)

where x′ differs from x solely in the component j (x′
j = ¬xj). Moreover,

assuming xj = 0 (therefore x′
j = 1), we say that j has a positive influence on i

(in configuration x) if fi(x) < fi(x
′), and a negative influence if fi(x) > fi(x

′).
It is possible that a node has different signs of influence on i in different
configurations, leading to non-monotonic fi. It is worth noticing that different
BNs can have the same influence graph.

Definition 5 (Influence graph) Given a BN f , its influence graph G(f) is
a directed graph ({1, . . . , n}, E+, E−) with positive and negative edges such
that

(j, i) ∈ E+
∆

⇐⇒ ∃x, y ∈ Bn : ∆(x, y) = {j}, xj < yj, fi(x) < fi(y)

(j, i) ∈ E−
∆

⇐⇒ ∃x, y ∈ Bn : ∆(x, y) = {j}, xj < yj, fi(x) > fi(y)

A (directed) cycle composed of edges in E+ ∪ E− is said positive when it
is composed by an even number of edges in E− (and any number of edges in
E+), otherwise it is negative.

When E+ ∩E− = ∅, we say that f is locally monotonic.

The influence graph is an important object in the literature of BNs [41,2].
For instance, many studies have shown that one can derive dynamical features
of a BN f by the sole analysis of its influence graph G(f). Importantly, the
presence of negative and positive cycles in the influence graph, and the way
they are intertwined can help to determine the nature of attractors (that are
the smallest sets of configurations closed by the transition relationship) [35],
and derive bounds on the number of fixpoints and attractors a BN having the
same influence graph can have [34,1,4].

Concurrency in Boolean networks 7

•

p1

•

p2

• p3

p4 p5

p6

a b

c

d

Fig. 3 A Read Petri net (RPN). Neither atomic semantics nor step semantics allow d to
fire, while the more permissive non-atomic semantics allows it.

3 Read Petri Nets with transition-centered specifications

In the semantics of BNs, each node computes its next value according to the
value of the other nodes. We have seen in the previous section that this general
rule does not suffice to define the precise behaviour and several updating modes
can be considered.

This situation is very similar to what happens in contextual or Read Petri
nets (RPNs), where read arcs have been introduced to model read-only access
to resources, for a matter of concurrency. Interestingly, the introduction of
read arcs in Petri nets has also led to several variants of the semantics. In this
section, we present some of them, mainly taken from [14]. Next, relying on a
natural encoding of BNs in RPNs (Sect. 4), we will establish a correspondence
between updating modes for BNs and semantics of RPNs. In particular, we
transpose the interval semantics of RPNs to a new semantics for BNs (Sect. 6)
which retrieves some plausible scenarios that were missed by other updating
modes.

3.1 Read Petri Nets

We consider only safe Read Petri nets (RPNs), i.e., RPNs with at most one
token in each place at any time.

Definition 6 (Read Petri Net (RPN)) A Read Petri net is a tuple
(P, T, pre, cont , post ,M0) where P and T are finite sets of places and tran-
sitions respectively, pre, cont and post map each transition t ∈ T to its

(nonempty) preset denoted •t
∆
= pre(t) ⊆ P , its (possibly empty) context

8 Chatain, Haar, Kolčák, Paulevé, Thakkar

denoted t
∆
= cont(t) ⊆ P \ •t and its (possibly empty) postset denoted

t•
∆
= post(t) ⊆ P ; M0 ⊆ P is the initial marking. We usually denote •t

∆
= •t∪t.

For simplicity, we assume that for every transition t, its context is disjoint
from its preset and postset.

A RPN is represented as a graph with two types of nodes: places (circles)
and transitions (rectangles). Presets are represented by arrows from places
to transitions, postsets by arrows from transitions to places, and contexts by
undirected edges, called read arcs, between places and transitions. The initial
marking is represented by tokens in places. Fig. 3 shows an example of RPN.
The transition a, for instance, has p1 in its preset, p2 in its context and p4 in
its postset.

3.2 Atomic Semantics

A marking of a safe RPN is a set M ⊆ P of marked places. A Petri net starts
in its initial marking M0. A transition t ∈ T is enabled in a marking M if all
the places of its preset and context are marked, i.e., •t ⊆ M . Then t can fire

from M , leading to the marking M ′ ∆
= (M \ •t) ∪ t•. In this case, we write

M
N,t

−−−→
atom

M ′ or simply M
N

−−−→
atom

M ′.

As we consider only safe RPNs, we assume that if a transition t ∈ T is
enabled in a marking M , then (M \ •t) ∩ t• = ∅.

Definition 7 (Atomic semantics, a-run) We call firing sequence of N un-

der the atomic semantics, or a-run, any sequence σ
∆
= (t1 . . . tn) of transitions

for which there exist markings M1, . . . ,Mn such that for all i ∈ {1, . . . , n},
firing ti from Mi−1 is possible and leads to Mi.

For instance, the net in Fig. 3 has two possible firing sequences: (a) and
(bc). However, d can never fire because that would require to fire both a and
b first, and firing one of a, b disables the other.

3.3 Non-atomic Semantics

In this section, we discuss two semantics for concurrent firing of multiple tran-
sitions. One is the well-known step semantics [23], in which multiple transitions
can fire simultaneously. This is typically the case of a and b in the net of Fig. 3,
which are both enabled and have disjoint presets, but cannot fire together ac-
cording to the atomic semantics. The step semantics can be interpreted as first
checking whether all members of a set of transitions can fire, and then firing
them simultaneously. Intuitively, the step semantics is somehow similar to the
general asynchronous updating as it considers any set of fireable transitions;
whereas the maximal step semantics which considers only maximal sets of

Concurrency in Boolean networks 9

fireable transitions is analoguous to the synchronous updating. We then recall
the interval semantics introduced in [14], which allows a more liberal choice
of checking and firing transitions in a set.

We present the semantics under the assumption that the underlying net is
safe even under these two semantics, which allow more possibilities than the
atomic one.

3.3.1 Step Semantics

We first recall the step semantics [23].

Definition 8 (Step semantics, s-run) Let N be a RPN. A step is a set S
of transitions of N . It can fire from configuration M and lead to configuration

M ′, written M
N,S
−−→
step

M ′ or simply M
N

−−→
step

M ′, if

– every t ∈ S is enabled in M ,
– the presets of the transitions in S are disjoint, and
– M ′ =

(

M \
⋃

t∈S
•t
)

∪
⋃

t∈S t•.

We call s-run of N any sequence σ
∆
= (S1 . . . Sn) of steps for which there exist

markings M1, . . . ,Mn such that for all i ∈ {1, . . . , n}, step Si can fire from
Mi−1 and leads to Mi.

A variant of step semantics, called maximal step semantics has received
interest in the literature [25,19].

Definition 9 (Maximal step semantics) The firing rule for the maximal

step semantics is defined as M
N,S

−−−−→
mstep

M ′ (or simply M
N

−−−−→
mstep

M ′) iff M
N,S
−−→
step

M ′ and no larger step S′) S can fire from M .

In the example of Fig. 3, the step semantics allows one to fire a and b in one
step since they are both enabled in the initial marking and •a ∩ •b = ∅. This
gives the s-run ({a, b}) in addition to the others which were already possible
under the atomic semantics; for instance the a-run involving b followed by c,
denoted (bc) for the atomic semantics, is simply rewritten as the s-run ({b}{c})
under the step semantics. However, transition d remains dead since none of
these s-runs contains all of a, b, and c.

The intuitive model underlying the step semantics is that all the transitions
in the step can first check, in any order, whether they are enabled and not
in conflict with one another, i.e., their presets are disjoint. Once the checks
have been performed, they can all fire, again in any order. Put differently, if
we denote the checking phase of a transition t by t− and its firing phase by
t+, then every step consists of any permutation of the actions of type t− (for
all transitions t in the step), followed by any permutation of the actions t+.
The notion introduced in Def. 10 formalizes this intuition.

10 Chatain, Haar, Kolčák, Paulevé, Thakkar

Definition 10 (s±-run) For every s-run (T1 . . . Tn) of a RPN N , every con-
catenation u−

1 .u
+
1 . · · · .u

−
n .u

+
n of sequences u−

i and u+
i , is an s±-run of N ,

where every u−
i is a permutation of the set {t− | t ∈ Ti} and every u+

i is a
permutation of the set {t+ | t ∈ Ti} (where Ti is a set of transitions of N).

For example, the s-run ({b}{c}) yields the s±-run (b−b+c−c+) and the s-
run ({a, b}) yields four s±-runs: (a−b−a+b+), (a−b−b+a+), (b−a−a+b+) and
(b−a−b+a+).

3.3.2 Splitting Transitions for Understanding Steps

Def. 10 formalizes a semantics of RPNs in which the firing of a transition does
not happen directly, but in two steps, the checking of the pre-conditions and
the actual execution. In this section, we generalize this idea.

The left-hand side of Fig. 4 shows a part of the net in Fig. 3, which con-
sists of transition a with its preset {p1}, context {p2}, and postset {p4}. The
construction on the right-hand side of 4 illustrates the idea of splitting firing
transitions into two phases:

– every transition t is split into t− and t+;
– every place p is duplicated to pc (meaning token in p available for con-

sumption) and pr (meaning token in p available for reading).

Similar ideas about splitting transitions can be found in several works, for
instance in [44].

Intuitively, if we apply this construction to all transitions from Fig. 3, then
the s±-runs of that net correspond to a-runs of the newly constructed net. The
following Def. 11 provides the precise details of the construction.

Definition 11 (split(N)) Given a RPN N = (P, T, pre, cont , post ,M0),

split(N)
∆
= (P ′, T ′, pre ′, cont ′, post ′,M ′

0) is the RPN where

– T ′ contains two copies, denoted t− and t+ of every transition t ∈ T .
– P ′ contains two copies, denoted pc and pr of every place p ∈ P , plus one

place pt per transition t ∈ T .

– •t−
∆
= {pc | p ∈ •t}

– t−
∆
= {pr | p ∈ t}

– t−
• ∆
= {pt}

– •t+
∆
= {pr | p ∈ •t} ∪ {pt}

– t+
∆
= ∅

– t+
• ∆
= {pc | p ∈ t•} ∪ {pr | p ∈ t•}}

– M ′
0

∆
= {pc | p ∈ M0} ∪ {pr | p ∈ M0}

We now formally prove the intuition mentioned above:

Lemma 1 Every s±-run σ± of N is an a-run of split(N). Moreover σ±

reaches the marking {pc | p ∈ M} ∪ {pr | p ∈ M}, where M is the mark-
ing of N reached after the s-run σ from which σ± is obtained.

Concurrency in Boolean networks 11

p1 p2

p4

a

pc1 pr1 pc2 pr2

pa

pc4 pr4

a−

a+

Fig. 4 The splitting of transition a (left) into a− and a+ (right).

Proof We proceed by induction on the length of σ. The case σ = () is triv-
ial. Now, let σ± = u−

1 .u
+
1 . · · · .u

−
n .u

+
n be an s±-run obtained from an s-run

σ = (T1 . . . Tn), assume the property true for u−
1 .u

+
1 . · · · .u

−
n−1.u

+
n−1 and de-

note Mn−1 the marking reached after (T1 . . . Tn−1). By induction hypothe-
sis, u−

1 .u
+
1 . · · · .u

−
n−1.u

+
n−1 reaches the marking {pc | p ∈ Mn−1} ∪ {pr | p ∈

Mn−1} of split(N). The fact that Tn is a valid step from Mn−1 implies that
⋃

t∈Tn

•t ⊆ Mn−1 and that the presets of the transitions in Tn are disjoint.
This allows one to fire all the t−, t ∈ Tn in any order and reach the marking
{pc | p ∈ Mn−1 \

⋃

t∈Tn

•t} ∪ {pr | p ∈ Mn−1} ∪ {pt | t ∈ Tn} of split(N). Now
the t+, t ∈ Tn, are all enabled and their presets are disjoint. They can in turn
be fired in any order, reaching the desired marking of split(N). ⊓⊔

Note that the converse of Lemma 1 does not hold. For instance, for the
net N from Fig. 3, the net split(N) admits the a-run a−b−b+c−c+a+, which
is not an s±-run of N .

3.3.3 Interval Semantics

We have seen that the construction split(N) admits firing sequences that can-
not be mapped back to executions under either the atomic or the step seman-
tics. In this section, we shall introduce the interval semantics, which is more
general than the step semantics, and whose interpretation on a net N does
correspond to the feasible executions in split(N).

Definition 12 (Interval semantics, i-run) Every a-run of split(N) is called
i-run of N , or run of N under the interval semantics.

Coming back to the example of Fig. 3, transition d can fire under the inter-
val semantics, for instance after the i-run a−b−b+c−c+a+d−d+ where transi-
tions b and c complete the firing during the period in which a fires. Under the
atomic semantics, a and b are in conflict, which prevents d from firing. Under

12 Chatain, Haar, Kolčák, Paulevé, Thakkar

the step semantics, a and b can fire in the same step, but then c cannot fire.
Under the interval semantics, d can also fire.

Recall that we introduced t− and t+ to represent different phases during
the execution of transition t. An obvious question is whether the new semantics
can lead to runs in which a transition ‘gets stuck’ during its execution. The
following Lemma 2 affirms that this is not the case: once t− is fired, nothing
can hinder t+ from firing too.

Definition 13 (complete marking) A marking of split(N) is complete if
no pt is marked.

In particular, the initial marking is complete.

Definition 14 (complete i-run) An i-run is complete if for each transition
t− in it, it includes the corresponding transition t+.

Lemma 2 Every i-run can be completed: for every i-run σ, there exists a
suffix µ which matches all the unmatched t−, and such that σµ is an i-run.
Moreover, complete i-runs (and only them) lead to complete markings.

Proof As long as a t− is unmatched, •t+ remains included in the marking:
no other transition consumes these tokens. Hence, it suffices to fire all the t+

corresponding to the unmatched t−, in any order. ⊓⊔

Now, relating split(N) with the original net N , we map naturally every

marking M of N to the complete marking M ′ of split(N) defined as M ′ ∆
=

{pc | p ∈ M} ∪ {pr | p ∈ M}. We get of course that

M1
N,t

−−−→
atom

M2 =⇒ M ′
1

N,t−

−−−→
atom

N,t+

−−−→
atom

M ′
2 ,

but in general the interval semantics induces more runs: for all markings M1

and M2 of N , we write M1
N

−−−→
istep

∗ M2 when M ′
1

N
−−−→
atom

∗ M ′
2.

4 Encodings

4.1 Coding Boolean Networks in safe Read Petri nets

The translation of BNs into safe Petri nets has been addressed in the literature
(e.g. [10,11,13,12]). We provide here a similar encoding of BNs into safe RPNs,
with the explicit specification of the context of transitions, and with notations
that will be used in Sect. 5. The encoding can be easily generalized to multi-
valued networks to safe RPNs, following [13,32].

BNs translate into a special type of RPNs:

– complemented : for every place p there is exactly one distinct place p such
that

•p = p• ∧ p• = •p ∧ ∀t ∈ T : p ∈ t ⇒ p 6∈ t ;

Concurrency in Boolean networks 13

– Boolean: there is a surjection var : P → {1, . . . , n} such that

∀p, p′ ∈ P : var (p) = var(p′) ⇔ p′ ∈ {p, p},

and, subsequently, a mapping val : P → B which satisfies

∀p ∈ P : val(p) + val (p) = 1.

Moreover, any reachable marking M satisfies

∀p ∈ P : p ∈ M ⇔ p /∈ M.

– transition dichotomy: every transition t ∈ T has exactly one input place
p and one output place p̄. If val(p) = 0 then call t the up-transition
up(var(p)) of var(p), otherwise the down-transition dw(var (p)) of var (p).

Let us consider a BN f of dimension n. Each component v ∈ {1, . . . , n} is
modeled as two places v0 and v1 representing the two values possible for v.
Then a Petri net transition v

+ is defined for each conjunctive clause of the
disjunctive normal form of (¬xv ∧ fv(x)). Such a transition consumes a token
in the place v0 and produces a token in the place v1, and its context is formed
by the places corresponding to the literals of the conjunction other than ¬xv:
for each component v

′ ∈ {1, . . . , n}, v′ 6= v, if the clause contains xv
′ , the

context contains the place v′1; if the clause contains ¬xv
′ , the context contains

the place v
′
0. A transition v

− is defined similarly for each conjunctive clause
of the disjunctive normal form of (xv ∧ ¬fv(x)), such that

•(v+) = (v−)
•
= {v0} and •(v−) = (v+)

•
= {v1},

Fig.5 shows the translation of the BN of Fig. 2 into RPN.
Hereafter, Def. 15 gives a formalization of this encoding, and Theorem 1

states its correctness with respect to the asynchronous, synchronous, gener-
alized asynchronous updating modes, and RPN atomic, maximal step, and
step semantics, respectively. Given a Boolean formula F , we write DNF[F] for
the set of conjunctive clauses in the disjunctive normal form of F ′. A clause
C ∈ DNF[F] is then a set of literals, positives or negatives. It is worth noticing
that the resulting RPN can have a number of transitions exponential in the
number of literals in the Boolean functions.

Definition 15 Given a BN f of dimension n and a configuration y, LfM is the
RPN (P, T, pre, cont , post ,M0) such that

– P = {1, . . . , 2n} are the places;
– T, pre, cont , post are the smallest sets such that for each i ∈ {1, . . . , n}, for

each clause C ∈ DNF[¬xi ∧ fi(x)] (resp. C ∈ DNF[xi ∧¬fi(x)]), there is a
transition t ∈ T such that •t = {i} (resp. •t = {i+n}), t• = {i+n} (resp.
t• = {i}), and t = {j | [¬xj] ∈ C, j 6= i} ∪ {j + n | [xj] ∈ C, j 6= i};

– M0 = LyM

where, for any configuration x ∈ Bn, LxM
∆
= {i + nxi | i ∈ {1, . . . , n}} (e.g.,

L010M = {1, 5, 3}, L101M = {4, 2, 6}).

14 Chatain, Haar, Kolčák, Paulevé, Thakkar

•1

1↑

1↓

4

• 2

2↑

2↓

5

•3

3↑

6

3↓1

3↓2

Fig. 5 RPN encoding of the BN of Fig. 2 〈f1(x) = ¬x2, f2(x) = ¬x1, f3(x) = ¬x1 ∧ x2〉
and configuration 000

Theorem 1 Given a BN f of dimension n, for any configurations x, y ∈ Bn,

x
f

−−−→
async

y ⇐⇒ LxM
LfM

−−−→
atom

LyM ,

x
f

−−−→
sync

y ⇐⇒ LxM
LfM

−−−−→
mstep

LyM ,

x
f

−−→
gen

y ⇐⇒ LxM
LfM
−−→
step

LyM .

Proof For any i ∈ {1, . . . , n}, fi(x) 6= xi if and only if there exists a transition
t of LfM where •t ⊆ LxM. ⊓⊔

4.2 Coding Read Petri Nets in Boolean Networks

We have given above a translation of BNs into (a special class of) RPNs. The
comparison of both models also leads us into the opposite direction.

In the following, fix a safe RPN N = (P, T, pre, cont , post ,M0). The BN
associated to N has |P | + |T | components, where the first |P | components
encode the marking of the corresponding places, and the |T | other components
encode the occurring transitions. Without loss of generality, we assume that

Concurrency in Boolean networks 15

places and transitions range over indexes from 1 to |P | + |T |, i.e., P ∪ T ≡
{1, . . . , |P |+ |T |}. In order to simplify the encodings, we additionally assume
the RPNs to be loop-free, i.e., for every transition t ∈ T , •t ∩ t• = ∅. It is
well known that loops can be replaced by read arcs without any effect on the
(atomic) semantics.

Transporting the dynamics, i.e., the actual firing of transitions, into the
framework of BNs constitutes the non-trivial part of the translation. A RPN
transition typically has more than one output place, while the functions in
BNs write on one single variable. Our encoding decomposes the firing of a
RPN transition into several updates of the BN. Essentially, when components
corresponding to the pre-condition and context of a transition t are marked,
and if no other transition t′ is already occurring, the tth component of the BN
can be updated to 1. Then, the components related to the input and output
places of t are updated (in any order) to apply their respective un-marking and
marking. Once all these components have been updated, the tth component is
updated to 0.

It results that a transition t is occurring, encoded by the value 1 of the
tth component, if and only if either (i) no transition is occurring, and all
components corresponding to places in the pre-condition and context of t have
value 1, or (ii) t is already occurring and at least one input (resp. output)
place has not been unmarked (resp. marked) yet. A component corresponding
to a place p has value 1 if and only if either one of transition producing p
is occurring, or if it has already value 1 and none transition consuming it is
occurring.

Hereafter, Def. 16 provides a formalization of the encoding of a safe RPN
into a BN and Theorem 2 states its correctness in the scope of the asynchronous
updating (atomic); note that the correctness also holds for the generalized
asynchronous (step semantics) and synchronous (maximal step semantics) up-
dating.

Definition 16 Given a safe loop-free RPN N = (P, T, pre, cont , post ,M0),
JNK is the BN of dimension |P |+ |T | such that

∀p ∈ P, JNKp(x) =

(

∨

t∈•p

xt

)

∨

(

xp ∧
∧

t∈p•

¬xt

)

∀t ∈ T, JNKt(x) =

∧

p∈•t

xp ∧
∧

t′∈T

¬xt′

∨

(

xt ∧

(

∨

p∈t•

¬xp ∨
∨

p∈•t

xp

))

Given a marking M ⊆ P of N , the corresponding configuration of JNK
is JMK ∈ Bn where ∀p ∈ M, JMKp = 1, ∀p ∈ P \ M, JMKp = 0, and ∀t ∈
T, JMKt = 0.

16 Chatain, Haar, Kolčák, Paulevé, Thakkar

As an example, let us consider the RPN of Fig. 4(left), which consists 3 places
p1, p2, p4, and one transition a, such that •a = {p1}, a• = {p4}, and a = {p2}.
The above encoding into BN leads to 4 Boolean functions:

fp1
(x) = xp1

∧ ¬xa fp2
(x) = xp2

fp4
(x) = xa ∨ xp4

fa(x) = (xp1
∧ xp2

) ∨ (xa ∧ (¬xp4
∨ xp1

))

Theorem 2 For a safe RPN N = (P, T, pre, cont , post ,M0), and any pair of
markings M,M ′ ⊆ P , one has

M
N

−−−→
atom

∗ M ′ ⇐⇒ JMK
JNK

−−−→
async

∗ JM ′K

Proof If M = M ′, the proof is trivial; in the following we consider M 6= M ′.

(⇒) Let us assume that M
N

−−−→
atom

M ′. Then there exists t ∈ T such that
•t ⊆ M and M ′ = (M \ •t) ∪ t•. Thus, JNKt(JMK) = 1, and therefore, there

exists y ∈ Bn such that x
JNK

−−−→
async

y with ∆(x, y) = {t}. Then, assuming •t∩t• =

∅, for each place p ∈ •t, because t ∈ p• and yp = 1, JNKt(y) = 0, and
for each place p ∈ t•, because t ∈ •p, JNKp = 1. Therefore, by updating the
components p for p ∈ •t∪t• in any ordering, we obtain a configuration z where
all components are 0 except the components p, ∀p ∈ M ′, and the component
t. Then, because JNKt(z) = 0, the latter component is set to 0, resulting in
the configuration JM ′K.

(⇐) Let us assume there exists y ∈ B|P |+|T | such that JMK
JNK

−−−→
async

y.

Necessarily, there is a unique t ∈ T such that yt = 1; moreover, •t ⊆ M .
Remark that as long as the tth component of a configuration x is 1, none of
the other components t′ for t′ ∈ T, t′ 6= t can be set to 1 (because JNKt′(x) =
0). Moreover, remark that in the configuration y, {p ∈ P | yp 6= JNKp} =
•t ∪ t•, and that the component t can be set to 0 only when all these latter
components have been updated. Therefore, with M ′′ = (M \•t)∪t•, we obtain

that JMK
JNK

−−−→
async

∗ JM ′′K and M
N

−−−→
atom

M ′′. ⊓⊔

The reachability problem consists in deciding if there exists a sequence of
transitions from a given configuration (marking) x to a given configuration
y. The reachability problem is PSPACE-complete in safe RPNs with asyn-
chronous update mode [17]. By linear reduction to BNs, we therefore obtain
that reachability in BNs is PSPACE-hard:

Corollary 1 Reachability in asynchronous BNs is PSPACE-hard.

Finally, one can remark that deciding the reachability in BNs is in PSPACE:
given a BN of dimension n and the initial configuration x, let us define a
counter using n bits, initially with value 0. Then, while the counter has value
strictly less that 2n and the current configuration is not equal to y, non-
deterministically apply an update, and increase the counter by one.

Theorem 3 Reachability in asynchronous BNs is PSPACE-complete.

Concurrency in Boolean networks 17

5 Synchronism sensitivity

For some BN or RPN, changing the update/firing policy (from synchronous
to asynchronous) may have little impact on the reachable states. For others,
it may render configurations reachable, or exclude previously feasible paths.
We say that a network of the latter category is synchronism sensitive. The
authors of [30] have analyzed this sensitivity in BNs; in this section, we per-
form an analogous analysis for RPNs. As we will show, the characterization
of synchronism sensitivity in safe RPNs boils down to the existence of pre-
emption cycles, defined below, among the transitions that are enabled in a
given marking. Moreover, we show that when instantiated on RPNs encoding
of BNs (according to Sect. 4.1), the general characterization of synchronism
sensitivity in RPNs allows to recover the results of synchronism sensitivity
in BNs with respect to their influence graph [30], with a slight generalization
relaxing the local monotonicity constraints of BNs.

5.1 Synchronism sensitivity in BNs

Following [30], given a BN f of dimension n where, ∀i ∈ {1, . . . , n}, fi is
monotonoic, a positive (resp. negative) edge (j, i) of its influence graph G(f)
is frustrated in a configuration x ∈ Bn iff xi 6= xj (resp. xi = xj). A (directed)
cycle in G(f) is critical in x iff all its edges are frustrated.

Then, the synchronism sensitivity in BNs can be characterized with respect
to their influence graphs as follows.

Lemma 3 ([30], Prop. 1) A critical cycle must be NOPE: negative with
odd length or positive with even length.

Theorem 4 ([30]) Synchronism-sensitivity, i.e., the presence of some syn-
chronous transition that cannot be sequentialized, in a locally monotonic BN
f requires the existence of a critical cycle, and thus of a NOPE-cycle in its
influence graph G(f).

5.2 Synchronism Sensitivity in RPNs

Given any safe RPN N = (P, T, pre, cont , post ,M0), call a pair (τ,M) ∈ 2T ×
2P such that τ is s-enabled but not a-enabled in M a witness of synchronism
sensitivity or, following [30], normal.

As in [8], we say for any two transitions t1, t2 ∈ T that t1 preempts1 t2,
written t1 t2 iff the context of t2 intersects the preset of t1:

t1 t2
∆

⇐⇒ •t1 ∩ t2.

1 for readers familiar with [8]: we will only need this immediate preemption relation
here, not the full asymmetric conflict obtained by adding causal precedence

18 Chatain, Haar, Kolčák, Paulevé, Thakkar

Theorem 5 Let (τ,M) ∈ 2T × 2P such that M s-enables τ .

1. If τ = {t1, . . . , tn} is a preemption cycle, i.e.,

t1 t2 . . . tn−1 tn,

then (τ,M) is normal.
2. Conversely, if (τ,M) is normal, then τ contains a preemption cycle.

Proof Part 1 follows immediately from the assumptions. For Part 2, take any
transition t1 ∈ τ . If there is no place p ∈ t such that p ∈ •t2 for some t2 ∈ τ ,
remove t1 from τ and start over. Otherwise, we have t2 t1, and inspect (•t2)
as above. Since |τ | = n, this process terminates after at most n steps, yielding
either a decomposition of τ , or a preemption chain of length at most n, or
a preemption cycle of length at most n. Only the last case corresponds to τ
being normal. ⊓⊔

As an immediate consequence, we note the following minimality result:

Corollary 2 Let τ be such that (τ,M) is normal, but every ∅ ⊂ τ ′ ⊆ τ (with
proper inclusions) is a-enabled, i.e., (τ ′,M) is not normal. Then τ is a minimal
preemption cycle.

In Fig. 6, τ = {1↓, 2↓, 3↓} illustrates a preemption cycle, which is also
normal in the marking shown; τ ′ = {1↑, 2↑, 3↑} is another preemption cycle
which is not enabled, but would become enabled after firing τ . In Fig. 7,
τ ′′ = {1↑, 2↓} is a preemption cycle, which is normal in the marking shown.

5.3 Application to RPNs encoding BNs

We now study how the characterization of synchronism sensitivity carries over
to RPNs which encode BNs following the transformation described in Sect. 4.1.
Remember that in this setting, each transition t of the RPN satisify •t = {p}
and t• = {p} with var (p) = var(p) and val (p)+val(p) = 1. Thus, t corresponds
either to an up-transition up(var (p)) iff val (p) = 0 (i.e., val(p) = 1), or to a
down-transition dw(var (p)) iff val(p) = 1 (i.e., val (p) = 0).

Let us assume that the contexts of transitions are minimal, i.e., the DNF
being the disjunction of all the context of all the up- (resp. down-) transitions of
a node is minimal. Given an up-transition t = up(vi) (resp. a down-transition
t = dw(vi)) of a node vi, each place p ∈ t corresponds to a node vj with
var (p) = vj . Then, the sign of the influence from vj to vi is positive if val (p) = 1
(resp. val (p) = 0) and negative otherwise.

Consider a preemption cycle t1 . . . tn t1, and any arc (ti, ti+1),
identifying i = 1 and i = n + 1 in this cycle. By definition, there exists a
place p ∈ P with var (p) = vj = var(ti) such that {p} = •ti ∩ ti+1, and a
place q ∈ P with var(q) = vk = var(ti+1) and {q} = •ti+1. If ti = up(vj)
(i.e., val(p) = 0), and ti+1 = dw(vk) (i.e, val(q) = 1), we say that the type of
(ti, ti+1) is 0− 1, written [ր], and witnesses a positive influence of var(ti) on

Concurrency in Boolean networks 19

•

11

10

20

•

21

30•31

1↑1↓

2↓2↑

3↓

3↑

Fig. 6 A translation of the BN 〈f1(x) = ¬x3, f2(x) = ¬x1,¬f3(x)〉 = x3 and the configu-
ration 111 into RPN. The step τ = {1↓, 2↓, 3↓} is normal and reflects the negative-odd cycle
of the BN.

•10 11 20 • 21

1↑

1↓

2↑

2↓

Fig. 7 A translation of the BN 〈f1(x) = x2, f2(x) = x1〉 and configuration 01 into RPN.

20 Chatain, Haar, Kolčák, Paulevé, Thakkar

var (ti+1). Similarly, if ti = dw(vj) and ti+1 = up(vk), the type of (ti, ti+1)
is 1 − 0, written [ց], witnessing a positive influence of var(ti) on var (ti+1);
if ti = up(vj) and ti+1 = up(vk), the type of (ti, ti+1) is 0 − 0, written [⇁],
witnessing a negative influence of var (ti) on var (ti+1); and if ti = dw(vj) and
ti+1 = dw(vk), the type of (ti, ti+1) is 1−1, written [⇀], witnessing a negative
influence of var (ti) on var (ti+1).

As a consequence, in any preemption cycle, the number of type [ր] arcs
and of type [ց] arcs must be equal, while nothing can be said in general
about the number of [⇁] and [⇀] arcs. Since [⇁] and [⇀] correspond to arcs
with negative signs in the BN’s influence graph, adding them in a cycle does
not change the cycle’s NOPE status (it only changes from negative-odd to
positive-even, or vice versa).

Lemma 4 Let {t1, . . . , tn} be a preemption cycle in τ . Then the product of the
signs of associated arcs (ti, ti+1) for i ∈ {1, . . . , n − 1} and (tn, t1) is positive
iff n is even.

Proof By construction, the types of adjacent arcs have to match: type [ր] and
type [⇀] arcs can only be followed by [ց] or [⇀], and analogously, types [⇁]
and [ց] need a successor arc of type [ր] or [⇁]. Hence the word w ∈ {[⇁], [ր
], [ց][⇀]}∗ associated to the preemption cycle must not contain the infixes
[⇁][ց], [ր][ր], [ր][⇁], [ց][ց], [ց][⇀] or [⇀][ր], and not even [⇁][⇀] or
[⇀][⇁]. Since w also has to be cyclic, this implies that

1. between any occurrences of [⇁] and [⇀] ([⇀] and [⇁]), at least one occur-
rence of [ր] ([ց]) is required;

2. between any two occurrences of [ր] ([ց]), at least one occurrence of [ց]
([ր]) is required;

therefore |w|[ր] = |w|[ց], which in turn implies the result. ⊓⊔

Example 1 The preemption cycle τ = {1 ↓, 2 ↓, 3 ↓} in Fig. 6 is of type [⇀
][⇀][⇀], that of τ ′ = {1↑, 2↑, 3↑} of type [⇁][⇁][⇁]; the preemption cycle
τ ′′ = {1↑, 2↓} in Fig. 7 is of type [ր][ց].

6 Encoding the Interval Semantics with Boolean Networks

In this section, we show how the interval semantics for RPNs (Sect. 3.3.3) can
be modelled using BNs with asynchronous updating. The resulting BNs sub-
sume the generalized asynchronous updating mode, and enable new reachable
configurations, while preserving important dynamical and structural (influence
graph) properties.

The interval semantics relies on decomposing the firing of transitions in
two stages: a first stage checks the pre-conditions and commits the transition,
and a second stage eventually applies the transition (consuming and producing
tokens). Because of this decomposition, the interval semantics adds the pos-
sibility to trigger transitions which become enabled during the firing of other

Concurrency in Boolean networks 21

1 11

01

000

10

f i
(x
)

ǫ
¬f

i
(x
)

ǫ

Fig. 8 Automaton of the value change of a node i in the interval semantics. The states
marked 0 and 1 represent the value 0 and 1 of the node. The labels fi(x) and ¬fi(x) on
edges are the conditions for firing the transitions; ǫ indicates that the transitions can be done
without condition. The states are labeled by the corresponding values of nodes (2i− 1)(2i)
in our encoding.

transitions. Essentially, its application to BNs can be modelled as follows. Each
node i ∈ {1, . . . , n} is decoupled in two nodes: a “write” node storing the next
value (2i− 1) and a “read” node for the current value (2i). The decoupling is
used to store an ongoing value change, while other nodes of the system still
read the current (to be changed) value of the node. A value change is then
performed according to the automaton given in Fig. 8: assuming we start in
both write and read node with value 0, if fi(x) is true, then the write node
is updated to value 1. The read node is updated in a second step, leading to
the value where both write and read nodes are 1. Then, if fi(x) is false, the
write node is updated first, followed, in a second stage by the update of the
read node.

Once the write node (2i− 1) has changed its value, it can no longer revert
back until the read node has been updated. Hence, if fi(x) becomes false in
the intermediate value 10, the read node will still go through value 1 (possi-
bly enabling transitions) before the write node can be updated to 0, if still
applicable.

6.1 Encoding

From the automaton given in Fig. 8, one can derive Boolean functions for the
write (2i− 1) and read (2i) nodes. It results in the following BN f̃ , encoding
the interval semantics for the BN f :

Definition 17 (Interval semantics for Boolean networks) Given a BN
f of dimension n, f̃ is a BN of dimension 2n where ∀i ∈ {1, . . . , n},

f̃2i−1(z)
∆
= (fi(γ(z)) ∧ (¬z2i ∨ z2i−1)) ∨ (¬z2i ∧ z2i−1)

f̃2i(z)
∆
= z2i−1

where γ(z) ∈ Bn is defined as γ(z)i
∆
= z2i for every i ∈ {1, . . . , n}.

22 Chatain, Haar, Kolčák, Paulevé, Thakkar

Given x ∈ Bn, α(x) ∈ B2n is defined as α(x)2i−1 = α(x)2i
∆
= xi for every

i ∈ {1, . . . , n}.
A configuration z ∈ B2n is called consistent when α(γ(z)) = z.

The function γ : B2n → Bn maps a configuration of the interval semantics
to a configuration of the BN f by projecting on the read nodes. The function
α : Bn → B2n gives the interval semantics configuration of a configuration
of the Boolean network f , where the read and write nodes have a consistent
value.

The correctness of our encoding is given with respect to the interval se-
mantics applied to the RPN translation of the BN. It follows from the corre-
spondence between split transitions of the RPN and update of read and write
nodes of the encoded BN: for any Petri net transition t of the RPN LfM, the
triggering of t− matches with the update of the “write node” for var(t•) of
the BN, and the triggering of t+ matches with the update of the “read node”
for var (t•) of the BN.

Theorem 6 Given a BN f of dimension n, for all x, y ∈ Bn,

LxM
LfM

−−−→
istep

∗ LyM ⇐⇒ α(x)
f̃

−−−→
async

∗ α(y) .

6.2 Consistency

The above theorem shows that the asynchronous updating of the BN f̃ en-
coding the interval semantics can reproduce any behaviour of the generalized
asynchronous updating of f . The aim of this section is to show that the inter-
val semantics still preserves important constraints of the BN on its dynamics.
In particular, we show the one-to-one relationship between the fixpoints of
the BN and its encoding for interval semantics; and that the influences are
preserved with their sign.

Lemma 5 states that from any configuration of encoded BN, one can always
reach a consistent configuration:

Lemma 5 (Reachability of consistent configurations) For any z ∈ B2n

such that α(γ(z)) 6= z, ∃y ∈ Bn : z
f̃

−−−→
async

∗ α(y).

Proof For each i ∈ {1, . . . , n} such that z2i−1 6= z2i, we update the 2i node, in
arbitrary order. This leads to the configuration z′ ∈ B2n where ∀i ∈ {1, . . . , n},

z′2i = z′2i−1 = z2i−1. Hence, by picking y = γ(z), we obtain z
f̃

−−−→
async

∗ α(y). ⊓⊔

The one-to-one relationship between fixpoints of f and fixpoints of f̃ is
given by the following lemma:

Lemma 6 (Fixpoint equivalence) ∀x ∈ Bn, f(x) = x ⇒ f(α(x)) = α(x);
and ∀z ∈ B2n, f̃(z) = z ⇒ α(γ(z)) = z ∧ f(γ(z)) = γ(z).

Concurrency in Boolean networks 23

Proof Let x ∈ Bn be such that f(x) = x. We have that α(x)2i−1 = α(x)2i =
xi = fi(x). Hence, f̃2i−1(α(x)) = fi(γ(α(x))) = fi(x) = α(x)2i−1; and
f̃2i(α(x)) = α(x)2i−1 = α(x)2i. Thus, f̃(α(x)) = α(x).

Let z ∈ B2n be such that f̃(z) = z. For each i ∈ {1, . . . , n}, because f̃2i(z) =
z2i, by the definition of f̃2i, we obtain that z2i = z2i−1. Thus, α(γ(z)) = z.
Moreover, as (¬z2i ∨ z2i−1) reduces to true and (¬z2i ∧ z2i−1) reduces to false,
f̃2i−1(z) = fi(γ(z)) = z2i−1 = γ(z)i. Therefore, f(γ(z)) = γ(z). ⊓⊔

6.3 Influence graph

As defined in Sect. 2, the influence graph provides a summary of the causal
dependencies between the value changes of nodes of the BN. We show that
our encoding of interval semantics preserves the causal dependencies of the
original network, and in particular, preserves the cycles and their signs.

From the definition of f̃ , one can derive that all the influences in f are
preserved in f̃ , and no additional influences between different variables i, j are
created by the encoding. This latter fact is addressed by the following lemma:

Lemma 7 For any i, j ∈ {1, . . . , n}, i 6= j, there is a positive (resp. negative)
edge from j to i in G(f) if and only if there is a positive (resp. negative) edge
from 2j to 2i− 1 in G(f̃).

Proof Let us define x, y ∈ Bn such that ∆(x, y) = {j}, and z, z′ ∈ B2n such
that z = α(x) and ∆(z, z′) = {2j}, i.e., z′2j = yj . Because z2i = z2i−1 and, as

i 6= j, z′2i = z′2i−1, we obtain that f̃2i−1(z) = fi(x) and f̃2i−1(z
′) = fi(y). ⊓⊔

Lemma 8 For any i ∈ {1, . . . , n},

a. there is a positive self-loop on 2i − 1 in G(f̃) if and only if there exists
x ∈ Bn such that fi(x) = xi;

b. there is never a negative self-loop on 2i− 1 in G(f̃);
c. there is never a positive edge from 2i to 2i− 1 in G(f̃);
d. there is a negative edge from 2i to 2i− 1 in G(f̃) if and only if there exists

x ∈ Bn such that fi(x) 6= xi

e. there is always exactly one edge from 2i−1 to 2i in G(f̃) and it is positive.

Proof (a) Let us consider z, z′ ∈ B2n such that ∆(z, z′) = {2i − 1} with
z2i−1 = 0: f̃2i−1(z) = 0 = ¬f̃2i−1(z

′) ⇔ [(z2i = 0 ∧ fi(γ(z)) = 0) ∨ (z2i =
1 ∧ fi(γ(z)) = 1)] ⇔ fi(γ(z)) = z2i. (b) Let us consider z, z

′ ∈ B2n such that
∆(z, z′) = {2i− 1} with z2i−1 = 0 and f̃2i−1(z) = 1 = ¬f̃2i−1(z

′). Thus, z2i =
0, therefore, f̃2i−1(z

′) = z′2i−1 = 1, which is a contradiction. (c) Let us consider
z, z′ ∈ B2n such that ∆(z, z′) = {2i} with z2i = 0: if z2i−1 = z′2i−1 = 0, then

f̃2i−1(z) ≥ f̃2i−1(z
′); if z2i−1 = z′2i−1 = 1, then f̃2i−1(z) ≥ f̃2i−1(z

′); therefore

there cannot be a negative edge from 2i to 2i − 1 in G(f̃). (d) ∃z, z′ ∈ B2n:
∆(z, z′) = {2i}, z2i = 0, f̃2i−1(z) = 1 = ¬f̃2i−1(z

′) ⇔ [(z2i−1 = z′2i−1 =
0∧fi(γ(z)) = 1)∨(z2i−1 = z′2i−1 = 1∧fi(γ(z′)) = 0)] ⇔ ∃x ∈ Bn : fi(x) = ¬xi.

(e) By f̃2i definition. ⊓⊔

24 Chatain, Haar, Kolčák, Paulevé, Thakkar

From Lemma 8, one can deduce that if there is a positive self-loop on i
in G(f), then there is a positive self-loop on 2i − 1 in G(f̃); and if there is a
negative self-loop on i in G(f), then there is a negative edge from 2i to 2i− 1
in G(f̃).

We can then deduce that the positive and negative cycles of G(f) are
preserved in G(f̃). It is worth noting that the encoding may also introduce
negative cycles between 2i−1 and 2i and positive self-loops on 2i−1, for some
i ∈ {1, . . . , n}.

Lemma 9 To each positive (resp. negative) cycle in G(f) of length k > 1,
there exists a corresponding positive (resp. negative) cycle in G(f̃) of length
2k. To each positive self-loop in G(f) corresponds one positive self-loop in
G(f̃); to each negative self-loop in G(f) corresponds a negative cycle in G(f̃)
of length 2.

Proof For cycle of length k > 1, by Lemma 7 and by the fact that there is a
positive edge from 2i − 1 to 2i in G(f̃): each edge (i, j) in the cycle in G(f)
is mapped to the string (2i, 2j − 1)(2j − 1, 2j), giving a cycle in G(f̃) of the
same sign. Correspondence of self-loops is given by Lemma 8. ⊓⊔

7 Beyond Generalized Asynchronicity and Interval Semantics

BNs are widely used to model the qualitative dynamics of biological networks,
notably of signalling and gene regulation networks.

A major concern is the impact of the chosen updating mode on the val-
idation of the model. Indeed, it is usual to assess the accordance of a BN
with measurement data, including time series: it is expected that the observed
behaviours can be reproduced in the abstract model. With this perspective,
the computation of reachable configurations in BNs is key. For example, let
us assume we observe (in the concrete system) that a given component (e.g.,
gene) gets eventually activated: if the reachability analysis of the BN concludes
that no reachable state has this component active, the model would likely be
rejected by the modeller.

In biological applications, the analysis of BNs merely splits into two sci-
entific sub-communities: the one preferring the synchronous updating mode,
and the one preferring the asynchronous updating mode. The generalized asyn-
chronous updating, which subsumes synchronous and asynchronous, seems a
good compromise but it received very little attention in practice. It should
be noted that most of computational tools rely only on either synchronous or
asynchronous modes, which can provide a partial explanation.

Is the generalized asynchronous mode the ultimate updating mode when
analysing reachable configurations in BNs for biological systems? If little is
known on time and speed features of the system and the reachability analysis
with generalized asynchronicity concludes on the absence of the observed state,
can we safely invalidate the model?

Concurrency in Boolean networks 25

0 time

activity

1

species 2
species 1
species 3

Fig. 9 A possible evolution of the activity of species modelled by the BN of Fig. 2 (species
1 in dashed line, species 2 plain, species 3 dotted).

In the following motivating example (Sect. 7.1), we show that the gener-
alized asynchronous updating can miss transitions, hence reachable configu-
rations, which correspond to particular, but plausible, behaviours. Thus, the
resulting analysis can be misleading on the absence of some behaviours, no-
tably regarding the reachability of attractors (configurations reachable in the
long-run), and may lead to rejection of valid models. It is worth noting that
the network considered in the example is embedded in many actual models of
biological networks, e.g., [28,29,43].

As introduced in Sect. 3, the interval semantics of RPNs takes advantage
of the fine-grained specification of causality of transitions to enable new be-
haviours, i.e., new reachable states, which can be caused by specific ordering
and duration of updates. We show in Sect. 7.2 that using the encoding of BNs
into RPNs provided in Sect. 4.1 and applying the interval semantics correctly
recovers the missing reachable configurations in our motivating example.

Finally, in Sect. 7.3 we explore further extensions of the interval semantics
resulting in correct over-approximation of the configurations reachable by any
multi-valued refinement of the BN.

7.1 Motivating example

Let us consider the BN defined in Fig. 2. The BN and its influence graph
suggest that the activity of species 3 increases when 1 is inactive and 2 is
active. In any scenario starting from 000 where 3 eventually increases, 2 has
to increase to trigger the increase of 3. Hence, according to the generalized
asynchronous updating represented in Fig. 2 (c), the only transition which
represents an increase of 3 is 010 → 011. After this, no transition is possible.

But, assuming the BN abstracts continuous evolution of activities, the
following scenario, pictured in Fig. 9, becomes possible: initially, the inactivity
of species 1 causes an increase of the activity of species 2, represented in plain
line on the figure. Symmetrically, the absence of species 2 causes an increase
of the activities of species 1 (dashed line). This corresponds to the evolution
described by the arrow 000 → 110 in Fig. 2(b) and leads to a (transient)
configuration where species 1 and 2 are present.

Assume that 1 and 2 activity increase slowly. After some time, however,
the activity of 2 becomes sufficient for influencing positively the activity of 3,
while there is still too little of species 1 for influencing negatively the activity

26 Chatain, Haar, Kolčák, Paulevé, Thakkar

of 3. Species 3 can then increase. In the scenario represented in the figure,
3 (dotted line) increases quickly, and then 1 and 2 continue to increase. In
summary, the activity of species 3 increased from 0 to 1 during the increase of
1 and 2, which was not predicted by the generalized asynchronous updating
(Fig. 2(b)).

One could argue that in this case, one should better consider more fine-
grained models, for instance by allowing more than binary values on nodes in
order to reflect the different activation thresholds. However, the definition of
the refined models would require additional parameters (the different activa-
tion thresholds) which are unknown in general. Our goal is to allow capturing
these behaviours already in the Boolean abstraction, so that any refinement
would remove possible transitions, and not create new ones.

7.2 Application of the Interval Semantics of RPNs

Let us consider the BN f in Fig. 2 and its RPN encoding LfM in Fig. 5. Starting
from the marking L000M, 1↑− 2↑− 2↑+ 3↑− 3↑+ 1↑+ is a complete i-run (Def. 14)
of the interval semantics, and leads to the marking L111M.

Similarly, let us consider the encoding of the interval semantics in the BN
f̃ , as defined in Sect. 6. We obtain the following possible sequence of fully
asynchronous updates of f̃ :

00 00 00
f̃

−−−→
async

10 00 00
f̃

−−−→
async

10 10 00
f̃

−−−→
async

10 11 00

f̃
−−−→
async

10 11 10
f̃

−−−→
async

10 11 11
f̃

−−−→
async

11 11 11

Therefore, with the interval semantics, the configuration 111 of f is reach-
able from 000, contrary to the generalized asynchronous semantics. This is due
to the decoupling of the update of node 1: the activation of 1 is delayed which
allows activating node 3 beforehand.

7.3 Beyond the Interval Semantics

With the interval semantics, during the interleaving of transitions, the nodes
have access only to the before-update value of other nodes. Moreover, the
interval semantics enforces the update application: once an update is triggered
(write node gets a different value than the read node), no further update on the
same node is possible until the update has been applied. Thus, if for instance
the update triggers a change of value from 0 to 1, the interval semantics
guarantees that the read node will eventually have the value 1.

In terms of modeling, the restriction to before-update values in our interval
semantics can be seen as an asymmetry in the consideration of transitions:
the resource modified by the transition is still available during the interval of
update, whereas the result is only available once the transition finished. When

Concurrency in Boolean networks 27

modelling biological systems, it translates into considering only species which
are slow to reach their activity threshold.

Actually, the choice of whether the before-update, after-update or both
values are available during the update may be done according to the knowledge
of the modeled system. Our construction in Sect. 6 can easily be adapted
for giving access, depending on the node, to the after-update value instead
of the before-update value. For instance, if the node j should follow closely
value changes of node i, then node j should access the after-update value
(write node) of i, whereas, as in our motivating example, if i is slow to update
compared to j, node j should access the before-update value (read node) of i.

7.3.1 Most Permissive Fully Asynchronous Semantics for Boolean Networks

Finally, we consider here a more permissive symmetric version which would
allow the access of both before-update and after-update values and do not
enforce update application. This choice may be very reasonable when not
much is known about the system, for instance about the relative speed of the
nodes.

This leads us to define a most permissive fully asynchronous semantics
for BNs which is defined as a 3-valued semantics in order to represent non
instantaneous updates: a component in a configuration can now have value 1

2 ,
in addition to the usual 0 and 1, and the updates are done in two stages: if
the network is in a configuration x where for some i, fi(x) 6= xi, the update
of xi will be in two stages, going through an intermediate configuration y
with yi = 1

2 . In this intermediate configuration y, other updates can occur
before the completion of the update of node i, and they will be allowed to
use either the value 0 or 1 for node i. In the end, for a 3-valued configuration
x ∈ {0, 12 , 1}

n, we allow all the intermediate values to be approximated either
as 0 or as 1. The possible approximations are defined as the set Approx (x) of
Boolean configurations x′ ∈ Bn such that, for every i ∈ {1, . . . , n},

– x′
i = 0 if xi = 0,

– x′
i = 1 if xi = 1,

– otherwise x′
i can be either 0 or 1.

Definition 18 (Most permissive fully asynchronous semantics for

Boolean networks) Given a BN f , the binary irreflexive relation
f

−−−→
mpa

⊆

{0, 12 , 1}
n × {0, 12 , 1}

n is defined as:

x
f

−−−→
mpa

y
∆

⇐⇒ ∃i ∈ {1, . . . , n}, x′ ∈ Approx (x) : ∆(x, y) = {i}

∧ yi =

{

fi(x
′) if xi =

1
2

1
2 otherwise (xi 6= fi(x

′)) .

We write
f

−−−→
mpa

∗ for the transitive closure of
f

−−−→
mpa

.

28 Chatain, Haar, Kolčák, Paulevé, Thakkar

Similarly to the BN encoding of interval semantics presented in Sect. 6,
the most permissive fully asynchronous semantics of a BN f of dimension

n can be encoded as an asynchronous BN
˜̃
f of dimension 3n where each

node i ∈ {1, . . . , n} is decoupled into an after-update value node (2i − 1)
and a before-update value node (2i). As in Def. 17, the updating of this lat-

ter node consists in copying the after-update value node:
˜̃
f2i(z)

∆
= z2i−1. The

definition of
˜̃
f2i−1 is a bit more complex as one has to rewrite fi(x) to use

(non-deterministically) either the before-update or after-update value of input
nodes. This non-deterministic choice can be encoded using extra “coin flip”

nodes (2n + j) for j ∈ {1, . . . , n} with
˜̃
f2n+j(z)

∆
= ¬z2n+j . Then, assuming

fi(x) is specified using propositional logic, the literals xj appearing in fi(x)

are replaced with ˜̃xj
∆
= (z2n+j ∨ z2j) ∧ (¬z2n+j ∨ z2j−1). Also, contrary to the

interval semantics, the most permissive fully asynchronous semantics does not

enforce the update application. Thus,
˜̃
f2i−1(z)

∆
= [fi(x)][˜̃xj/xj ,j∈{1,...,n}](z).

7.3.2 Most permissive fully asynchronous semantics simulates any
multivalued refinement

Multivalued networks are generalization of BNs where the nodes xi can

take values other than {0, 1}. Let us denote the possible values as M
∆
=

{0, 1
m , . . . , m−1

m , 1} for some integer m. For simplicity in notations, we assume
the same number of values for all the nodes. A configuration is now a vector
x ∈ Mn. Given two configurations x, y ∈ Mn, the components that differ are

noted ∆(x, y)
∆
= {i ∈ {1, . . . , n} | xi 6= yi}.

In practical modelling applications, multivalued networks enable consider-
ing different thresholds for the interactions from one component to its regula-
tors: for instance, the activation of a second component may require the first
component to be only slightly active (1

m), whereas the activation of a third
component may require the full activation (1) of this first one.

Hence, multivalued networks can be considered as refinements of BNs,
where in addition to the logic of interactions, one can mix different thresholds
to consider a component active or inactive. This fined-grained specification
requires more information on the system, and it is then natural to aim at
performing analyses at a more abstract level (BN) and then transfering the
results to possible multivalued concretisations of the model.

In this section, we show that the most permissive fully asynchronous se-
mantics enables such a reasoning for reachability properties: essentially, this
semantics captures any behaviour possible in any multivalued refinement of the
BN with asynchronous updating. Therefore, if a configuration is not reachable
in the most permissive fully asynchronous semantics, there exists no multi-
valued refinement for which the configuration become reachable with asyn-
chronous updating.

We illustrate this result with Examples 2 and 3 at the end of the section.
Notably, the last one shows an example where both generalized asynchronous

Concurrency in Boolean networks 29

updating and interval semantics of a BN fail to capture behaviours which
are actually possible in a multivalued refinement of it; these behaviours are
correctly preserved by the most permissive fully asynchronous semantics.

From a specification point of view, multivalued networks can be defined
similarly to BNs, except that the functions now map the configurations to
either ”↑” (increase the value of component by 1

m), ”−” (do not change the
value of component), or ”↓” (decrease the value of component by 1

m).
Def. 21 formalizes the notion of multivalued refinement: a multivalued net-

work F refines a BN f if, for every component i ∈ {1, . . . , n}, for each mul-
tivalued configuration x, if Fi(x) leads to an increase (resp. decrease) of the
value of i, there is a binarization x′ ∈ Bn of x such that fi(x

′) = 1 (resp.
fi(x

′) = 0). Here, the binarization allows to map non-binary values to either
0 or 1.

Theorem 7 states that, given a BN f , any fully asynchronous transition
of any multivalued refinement F of f is captured by the most permissive
fully asynchronous semantics, possibly by the mean of several intermediate
transitions.

Definition 19 (Multivalued network) A multivalued network of dimen-
sion n over a value range M = {0, 1

m , . . . , m−1
m , 1} is a collection of functions

F = 〈F1, . . . , Fn〉 where ∀i ∈ {1, . . . , n}, Fi : M
n → {↑,−, ↓}.

Definition 20 (Asynchronous updating in multivalued networks)

Given a multivalued network F , the binary irreflexive relation
F

−−−→
async

⊆ Mn ×

Mn is defined as:

x
F

−−−→
async

y
∆

⇐⇒∃i ∈ {1, . . . , n} : ∆(x, y) = {i}

∧ yi =

{

min{0, xi −
1
m} if Fi(x) = ↓

max{1, xi +
1
m} if Fi(x) = ↑ .

We write
F

−−−→
async

∗ for the transitive closure of
F

−−−→
async

.

We now define a notion ofmultivalued refinement of a BN, which formalizes
the intuition that the moves defined by the multivalued network are compatible
with those of the BN.

Definition 21 (Multivalued refinement) A multivalued network F of di-
mension n over a value range M = {0, 1

m , . . . , m−1
m , 1} refines a BN f of equal

dimension n iff for every configuration x ∈ Mn and every i ∈ {1, . . . , n}:

– Fi(x) = ↑ =⇒ ∃x′ ∈ Approx (x) : fi(x
′) = 1

– Fi(x) = ↓ =⇒ ∃x′ ∈ Approx (x) : fi(x
′) = 0

where Approx is generalized to multi-valued networks by Approx (x)
∆
=

Approx (abstr (x)) with abstr : Mn → {0, 12 , 1}
n mapping every configuration

of the multivalued network into a 3-valued configuration, which is defined for
every i ∈ {1, . . . , n} as:

30 Chatain, Haar, Kolčák, Paulevé, Thakkar

– abstr(x)i
∆
= 0 if xi = 0,

– abstr(x)i
∆
= 1 if xi = 1,

– abstr(x)i
∆
= 1

2 otherwise.

Theorem 7 (Most permissive fully asynchronous semantics simu-
lates any multivalued refinement) Let f be a BN of dimension n and
F a multivalued refinement of f . Then

∀x, y ∈ Mn, x
F

−−−→
async

y =⇒ abstr(x)
f

−−−→
mpa

∗ abstr (y) .

Proof We assume first that m > 1. By definition of
F

−−−→
async

for multivalued

networks, there exists a unique i such that ∆(x, y) = {i}. Then we have to
study the different cases determined by the value of xi and of Fi(x).

The first case is 0 < xi < m−1
m and Fi(x) = ↑. It implies yi = xi +

1
m , and we observe that, in this case, abstr(x) = abstr(y). Then trivially

abstr(x)
f

−−−→
mpa

∗ abstr(y). The case of 1
m < xi < 1 and Fi(x) = ↓ is symmetric.

The other cases are all similar; consider for instance xi = 0 and Fi(x) = ↑,
which imposes yi = 1

m . Notice first that ∆(abstr (x), abstr (y)) = {i} and
abstr(x)i = 0 and abstr (y)i =

1
2 . Now, since F is a multivalued refinement of f ,

then by Def. 21, there exists an x′ ∈ Approx (x) = Approx (abstr (x)) such that

fi(x
′) = 1. Thus, we get abstr(x)

f
−−−→
mpa

abstr(y). The case when xi = 1 and

Fi(x) = ↓ is similar. Regarding the case when yi = 1 and Fi(x) = ↑, note that
abstr(x)i =

1
2 and abstr(y)i = 1 and that there exists an x′ ∈ Approx (x) =

Approx (abstr (x)) such that fi(x
′) = 1. Thus, abstr(x)

f
−−−→
mpa

abstr(y). The case

when yi = 0 and Fi(y) = ↓ is similar.
Finally, for m = 1, consider the case where xi = 0 and Fi(x) = ↑, which

imposes yi = 1. Now abstr(x) = x and abstr(y) = y. In the most permissive

fully asynchronous semantics, we have x
f

−−−→
mpa

z
f

−−−→
mpa

y with an intermediate

state z defined by ∆(x, z) = {i} and zi =
1
2 . The transition z

f
−−−→
mpa

y is allowed

because x ∈ Approx (z). ⊓⊔

Example 2 The scenario pictured in Fig. 9 can be obtained as a behaviour
of a 3-level refinement F of the BN f in Fig. 2, with the following update
functions:

F1(x)
∆
= ↑ if x2 < 1 else ↓

F2(x)
∆
= ↑ if x1 < 1 else ↓

F3(x)
∆
= ↑ if x1 ≤

1

2
∧ x2 ≥

1

2
else ↓

We get 000
F

−−−→
async

0 1
20

F
−−−→
async

1
2
1
20

F
−−−→
async

1
2
1
2
1
2

F
−−−→
async

1
2
1
21

Concurrency in Boolean networks 31

In particular, imagine that a fourth species would activate when x1, x2 and
x3 are all ≥ 1

2 , then even the generalized asynchronous updating mode would
not capture its activation, contrary to our interval semantics for BNs.

Example 3 Let us consider the BN f of dimension 3 defined as follows:

f1(x)
∆
= 1

f2(x)
∆
= x1

f3(x)
∆
= x2 ∧ ¬x1

Starting from configuration 000 the generalized asynchronous mode allows

only the following transitions 000
f

−−→
gen

100
f

−−→
gen

110, where 110 is a fixpoint of

f . The interval semantics lead to a very similar behaviour, with the following
unique sequence of asynchronous transitions of the BN encoding of the interval
semantics:

00 00 00
f̃

−−−→
async

10 00 00
f̃

−−−→
async

11 00 00
f̃

−−−→
async

11 10 00
f̃

−−−→
async

11 11 00

Indeed, in order to activate species 2, 1 has to be activated first as in the
interval semantics species 2 only has access to the before-update value of 1.
Then, once species 1 is active, it is impossible to activate species 3.

Now, let us consider the following 3-level refinement F of the BN f :

F1(x)
∆
= ↑

F2(x)
∆
= ↑ if x1 ≥

1

2
else ↓

F3(x)
∆
= ↑ if x2 ≥

1

2
∧ x1 ≤

1

2
else ↓

The following asynchronous transitions are possible from configuration 000:

000
F

−−−→
async

1
200

F
−−−→
async

1
2
1
20

F
−−−→
async

1
2
1
2
1
2 . These transitions are also transitions

of the most permissive fully asynchronous semantics of f ,
f

−−−→
mpa

. Essentially,

as in this semantics species can have access to either the before-update or
after-update value of other species, species 2 can be activated by reading the
after-update value of 1, while species 3 can be activated by reading the before-
update value of 1. An example of possible sequence of asynchronous transitions
of the BN encoding of the most permissive fully asynchronous semantics is the
following:

00 00 00
˜̃f

−−−→
async

10 00 00
˜̃f

−−−→
async

10 10 00
˜̃f

−−−→
async

10 11 00

˜̃
f

−−−→
async

10 11 10
˜̃
f

−−−→
async

10 11 11

32 Chatain, Haar, Kolčák, Paulevé, Thakkar

As in the previous example, let us consider a fourth species activated when
x1, x2, and x3 are all greater or equal than 1

2 : such an activation is captured
neither by the generalized asynchronous updating nor by the interval semantics
of the abstract BN f , whereas it is captured by its most permissive fully
asynchronous semantics.

8 Discussion

With this paper, we detailed the link between Boolean Networks (BNs) and
Read (or contextual) Petri Nets (RPNs) by focusing on the analysis of concur-
rency enabled by the latter framework. On the one hand, BNs have prominent
structural properties between the components and their evolution, while on
the other hand RPNs bring a fine-grained specification of the causality and
effect of transitions. We show how we can take benefit of both approaches
to first bring new updating modes to BNs by encoding RPN semantics, and,
secondly, propose further extensions of these semantics aiming at obtaining
correct Boolean abstractions of discrete dynamical systems.

To sum up, the contributions of this paper include:

– The encoding of BNs into RPNs, similar to other encodings already existing
in the literature, here specialized for Read Petri nets;

– The encoding of RPNs into BNs, which allows a brief proof by reduction
of the PSPACE-completeness of the reachability decision in asynchronous
BNs;

– A generic characterization of synchronism sensitivity in RPNs, which when
instantiated to BN translations, allows to recover a recent result in BNs;

– The encoding of the interval semantics of RPNs as asynchronous BNs,
enabling new behaviours missed by usual BN updating modes;

– An extension of the interval semantics for BNs which guarantees to include
the behaviour of any multivalued refinement.

For practical applications, the thorough link between BNs and Petri nets
enables the use of conceptual tools based on causality and concurrency, such
as unfoldings offering more compact representation of behaviours [20,7,16,27]
and for which efficient software tools have been developed for safe PNs [38]
and RPNs [36]. For example, [13,16] show the applicability of unfoldings to
analyse reachable states and attractors in BNs with biological use cases having
up to 88 components.

The transitions enabled by the interval and most permissive semantics are
due to nodes which update at different time scales. For instance with the inter-
val semantics, whenever committed to a value change, in the meantime of the
update application, the other nodes of the network still evolve subject to its
before-update value. This time scale consideration brings an interesting feature
when modeling biological networks which gathers processes of different nature
and velocity. Our encodings can be applied only to a subset of nodes, offering

Concurrency in Boolean networks 33

a flexible modelling approach. Moreover, because the encodings rely on asyn-
chronous BNs, they can be implemented using any software tools supporting
the asynchronous updating mode.

The introduction of the most permissive fully asynchronous semantics for
BNs motivates future work to determine if it offers the smallest abstraction of
any multivalued refinement (i.e., to any transition of the most permissive se-
mantics corresponds an asynchronous transition of a multivalued refinement),
and to assess the complexity of reachability decision. Finally, further work may
explore links between BNs and RPNs with real-time semantics [6], aiming at
tightening connections between the two hybrid frameworks.

Acknowledgements

The authors acknowledge the support from the French Agence Nationale pour
la Recherche (ANR), in the context of the ANR-FNR project “AlgoReCell”
ANR-16-CE12-0034, from the Labex DigiCosme (project ANR-11-LABEX-
0045-DIGICOSME) operated by ANR as part of the program “Investisse-
ment d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02), from Paris Ile-
de-France Region (DIM RFSI), and from UMI 2000 ReLaX (CNRS, Univ.
Bordeaux, ENS Paris-Saclay, CMI, IMSc) for the internship of Aalok Thakkar
at ENS Paris-Saclay, at that time student at Chennai Mathematical Institute,
India, and during which part of this work was done.

References

1. Aracena, J.: Maximum number of fixed points in regulatory boolean networks. Bulletin
of Mathematical Biology 70(5), 1398–1409 (2008). DOI 10.1007/s11538-008-9304-7

2. Aracena, J., Demongeot, J., Goles, E.: Positive and negative circuits in discrete neural
networks. IEEE Transactions of Neural Networks 15, 77–83 (2004)

3. Aracena, J., Goles, E., Moreira, A., Salinas, L.: On the robustness of update schedules
in Boolean networks. Biosystems 97(1), 1 – 8 (2009). DOI 10.1016/j.biosystems.2009.
03.006

4. Aracena, J., Richard, A., Salinas, L.: Number of fixed points and disjoint cycles in
monotone boolean networks. SIAM Journal on Discrete Mathematics 31(3), 1702–1725
(2017)

5. Baetens, J., der Weeën, P.V., Baets, B.D.: Effect of asynchronous updating on the
stability of cellular automata. Chaos, Solitons & Fractals 45(4), 383 – 394 (2012).
DOI 10.1016/j.chaos.2012.01.002

6. Balaguer, S., Chatain, T., Haar, S.: A concurrency-preserving translation from time
Petri nets to networks of timed automata. Formal Methods in System Design 40(3),
330–355 (2012). DOI 10.1007/s10703-012-0146-4

7. Baldan, P., Bruni, A., Corradini, A., König, B., Rodŕıguez, C., Schwoon, S.: Efficient
unfolding of contextual Petri nets. TCS 449, 2–22 (2012)

8. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event struc-
tures, and processes. Information and Computation 171(1), 1–49 (2001)

9. Busi, N., Pinna, G.M.: Non sequential semantics for contextual P/T nets. In: Appli-
cation and Theory of Petri Nets, Lecture Notes in Computer Science, vol. 1091, pp.
113–132. Springer (1996)

10. Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformatics
8(4), 210–219 (2007). DOI 10.1093/bib/bbm029

34 Chatain, Haar, Kolčák, Paulevé, Thakkar

11. Chaouiya, C., Naldi, A., Remy, E., Thieffry, D.: Petri net representation of multi-valued
logical regulatory graphs. Natural Computing 10(2), 727–750 (2011)

12. Chaouiya, C., Remy, E., Ruet, P., Thieffry, D.: Qualitative modelling of genetic net-
works: From logical regulatory graphs to standard Petri nets. In: J. Cortadella, W. Reisig
(eds.) Applications and Theory of Petri Nets 2004, 25th International Conference,
ICATPN 2004, Bologna, Italy, June 21-25, 2004, Proceedings, Lecture Notes in Com-
puter Science, vol. 3099, pp. 137–156. Springer (2004)

13. Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S.: Characterization of reach-
able attractors using Petri net unfoldings. In: Computational Methods in Systems
Biology, Lecture Notes in Computer Science, vol. 8859, pp. 129–142. Springer (2014)

14. Chatain, T., Haar, S., Koutny, M., Schwoon, S.: Non-atomic transition firing in con-
textual nets. In: Applications and Theory of Petri Nets, Lecture Notes in Computer
Science, vol. 9115, pp. 117–136. Springer (2015). DOI 10.1007/978-3-319-19488-2\ 6

15. Chatain, T., Haar, S., Paulevé, L.: Boolean Networks: Beyond Generalized Asynchronic-
ity. In: J.M. Baetens, M. Kutrib (eds.) Cellular Automata and Discrete Complex Sys-
tems (AUTOMATA 2018), Lecture Notes in Computer Science, vol. 10875, pp. 29–42.
Springer, Ghent, Belgium (2018)

16. Chatain, T., Paulevé, L.: Goal-Driven Unfolding of Petri Nets. In: R. Meyer, U. Nest-
mann (eds.) 28th International Conference on Concurrency Theory (CONCUR 2017),
Leibniz International Proceedings in Informatics (LIPIcs), vol. 85, pp. 18:1–18:16.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). DOI
10.4230/LIPIcs.CONCUR.2017.18

17. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theoretical
Computer Science 147(1&2), 117–136 (1995). DOI 10.1016/0304-3975(94)00231-7

18. Collombet, S., van Oevelen, C., Sardina Ortega, J.L., Abou-Jaoudé, W., Di Stefano, B.,
Thomas-Chollier, M., Graf, T., Thieffry, D.: Logical modeling of lymphoid and myeloid
cell specification and transdifferentiation. Proc. Natl. Acad. Sci. 114(23), 5792–5799
(2017). DOI 10.1073/pnas.1610622114

19. Courtiat, J., Säıdouni, D.: Relating maximality-based semantics to action refinement in
process algebras. In: Formal Description Techniques VII, Proceedings of the 7th IFIP
WG6.1 International Conference on Formal Description Techniques, Berne, Switzerland,
1994, IFIP Conference Proceedings, vol. 6, pp. 293–308. Chapman & Hall (1995)

20. Esparza, J., Heljanko, K.: Unfoldings – A Partial-Order Approach to Model Checking.
Springer (2008)

21. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., De Micheli, G.: Synchronous versus
asynchronous modeling of gene regulatory networks. Bioinformatics 24(17), 1917–1925
(2008). DOI 10.1093/bioinformatics/btn336

22. Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular
biology by using stochastic Petri nets. Proceedings of the National Academy of Sciences
95(12), 6750–6755 (1998). DOI 10.1073/pnas.95.12.6750

23. Janicki, R., Koutny, M.: Structure of concurrency. Theoretical Computer Science
112(1), 5–52 (1993). DOI 10.1016/0304-3975(93)90238-O

24. Janicki, R., Koutny, M.: Fundamentals of modelling concurrency using discrete rela-
tional structures. Acta Inf. 34, 367–388 (1997)

25. Janicki, R., Lauer, P.E., Koutny, M., Devillers, R.R.: Concurrent and
maximally concurrent evolution of nonsequential systems. Theor. Com-
put. Sci. 43, 213–238 (1986). DOI 10.1016/0304-3975(86)90177-5. URL
https://doi.org/10.1016/0304-3975(86)90177-5

26. Kauffman, S.A.: Metabolic stability and epigenesis in randomly connected nets. Journal
of Theoretical Biology 22, 437–467 (1969). DOI 10.1016/0022-5193(69)90015-0

27. Kolčák, J., Šafránek, D., Haar, S., Paulevé, L.: Parameter Space Abstraction and Unfold-
ing Semantics of Discrete Regulatory Networks. Theoretical Computer Science (2018).
In press

28. Mai, Z., Liu, H.: Boolean network-based analysis of the apoptosis network: Irreversible
apoptosis and stable surviving. Journal of Theoretical Biology 259(4), 760 – 769 (2009).
DOI https://doi.org/10.1016/j.jtbi.2009.04.024

29. Mart́ınez-Sosa, P., Mendoza, L.: The regulatory network that controls the differentiation
of t lymphocytes. Biosystems 113(2), 96 – 103 (2013). DOI https://doi.org/10.1016/j.
biosystems.2013.05.007

https://doi.org/10.1016/0304-3975(86)90177-5

Concurrency in Boolean networks 35

30. Noual, M., Sené, S.: Synchronism versus asynchronism in monotonic boolean automata
networks. Natural Computing (2017). DOI 10.1007/s11047-016-9608-8

31. Palma, E., Salinas, L., Aracena, J.: Enumeration and extension of non-equivalent deter-
ministic update schedules in boolean networks. Bioinformatics 32(5), 722–729 (2016).
DOI 10.1093/bioinformatics/btv628

32. Paulevé, L.: Reduction of Qualitative Models of Biological Networks for Transient Dy-
namics Analysis. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics (2017). DOI 10.1109/TCBB.2017.2749225. In press

33. Popova-Zeugmann, L., Heiner, M., Koch, I.: Time Petri nets for modelling and analysis
of biochemical networks. Fundamenta Informaticae 67(1), 149–162 (2005)

34. Remy, E., Ruet, P., Thieffry, D.: Graphic requirements for multistability and attractive
cycles in a Boolean dynamical framework. Advances in Applied Mathematics 41(3),
335 – 350 (2008). DOI 10.1016/j.aam.2007.11.003

35. Richard, A.: Negative circuits and sustained oscillations in asynchronous automata net-
works. Advances in Applied Mathematics 44(4), 378 – 392 (2010). DOI 10.1016/j.aam.
2009.11.011

36. Rodŕıguez, C., Schwoon, S.: Cunf: A tool for unfolding and verifying Petri nets with
read arcs. In: International Symposium on Automated Technology for Verification and
Analysis, pp. 492–495. Springer (2013)

37. Rougny, A., Froidevaux, C., Calzone, L., Paulevé, L.: Qualitative dynamics semantics
for SBGN process description. BMC Systems Biology 10(1), 1–24 (2016). DOI 10.1186/
s12918-016-0285-0

38. Schwoon, S.: Mole. http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
39. Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular au-

tomata. Biosystems 51(3), 123 – 143 (1999). DOI 10.1016/S0303-2647(99)00025-8
40. Steggles, L.J., Banks, R., Shaw, O., Wipat, A.: Qualitatively modelling and analysing

genetic regulatory networks: a Petri net approach. Bioinformatics 23(3), 336–343 (2007).
DOI 10.1093/bioinformatics/btl596

41. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks – II.
Immunity control in bacteriophage lambda. Bulletin of Mathematical Biology 57, 277–
297 (1995). DOI 10.1007/BF02460619

42. Thomas, R.: Boolean formalization of genetic control circuits. Journal of Theoretical
Biology 42(3), 563 – 585 (1973). DOI 10.1016/0022-5193(73)90247-6

43. Traynard, P., Fauré, A., Fages, F., Thieffry, D.: Logical model specification aided by
model-checking techniques: application to the mammalian cell cycle regulation. Bioin-
formatics 32(17), i772–i780 (2016). DOI 10.1093/bioinformatics/btw457

44. Vogler, W.: Fairness and partial order semantics. Inf. Process. Lett. 55(1), 33–39 (1995).
DOI 10.1016/0020-0190(95)00049-I

45. Vogler, W.: Partial order semantics and read arcs. Theoretical Computer Science 286(1),
33–63 (2002)

46. Winkowski, J.: Processes of contextual nets and their characteristics. Fundamenta In-
formaticae 36(1) (1998)

http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

	1 Introduction
	2 Boolean networks with function-centered specification
	3 Read Petri Nets with transition-centered specifications
	4 Encodings
	5 Synchronism sensitivity
	6 Encoding the Interval Semantics with Boolean Networks
	7 Beyond Generalized Asynchronicity and Interval Semantics
	8 Discussion

