arXiv:1910.08518v1 [cs.FL] 18 Oct 2019

Pumping lemmas for classes of languages generated by
folding systems

Jorge C. Lucero*

December 14, 2018

Abstract

Geometric folding processes are ubiquitous in natural systems ranging from pro-
tein biochemistry to patterns of insect wings and leaves. In a previous study, a
folding operation between strings of formal languages was introduced as a model of
such processes. The operation was then used to define a folding system (F-system)
as a construct consisting of a core language, containing the strings to be folded,
and a folding procedure language, which defines how the folding is done. This paper
reviews main definitions associated with F-systems and next it determines necessary
conditions for a language to belong to classes generated by such systems. The con-
ditions are stated in the form of pumping lemmas and four classes are considered,
in which the core and folding procedure languages are both regular, one of them is
regular and the other context-free, or both are context-free. Full demonstrations of
the lemmas are provided, and the analysis is illustrated with examples.

1 Introduction

In a recent paper, Sburlan (2011) introduced a folding operation for strings of sym-
bols of a given formal language. The operation was inspired in actual geometric folding
processes that occur in, e.g., protein biochemistry (Dobson, 2003), in-vitro DNA shaping
(Rothemund, 2006), and even origami (the Japanese art of paper folding;
Demaine and O’Rourke, 2007), and it was proposed as a restricted computational model
of such processes.

The folding operation was applied to define folding systems (F-systems) of the form
® = (Ly, Ls), where L; is the language that contains the strings to be folded (the core
language), and Lo is the language that contains strings defining how the folding must be
performed (the folding procedure language). Then, the computing power of F-systems
was investigated by comparison with standard language classes from the Chomsky hier-
archy; i.e., regular, context-free, context-sensitive, recursive and recursively enumerable
languages.

The paper fitted well within a growing body of applications of geometric folding to sci-
ence and technology which have surged in recent years; in, e.g., aerospace and automotive
technology (Cipra, 2001), civil engineering (Filipov, Tachi, and Paulino, 2015), biology
(Mahadevan and Rica, 2005), and robotics (Felton, Tolley, Demaine, Rus, and Wood,

*Dept. Computer Science, University of Brasilia, Brazil. E-mail: lucero@unb.br

http://arxiv.org/abs/1910.08518v1
mailto:lucero@unb.br

J. C. Lucero: Pumping lemmas for F-systems

2014). Also, a number of theoretical studies have considered algebraic models, algo-
rithmic complexity, and other mathematical and computational aspects of folding(e.g.,
Akitaya, Demaine, and Ku, 2017; Alperin, 2000; Ida, Fleuriot, and Ghourabi, 2016).

F-systems might find relevant applications to DNA computing and related areas
of natural computing (Kari and Rozenberg, 2008). Thus, the general purpose of the
present paper is to further explore capabilities and limitations of such systems, and it
will consider the classes of languages generated when the core and the folding procedure
languages are regular or context-free. Necessary conditions for a language to belong to
some of those classes were presented by Sburlan (2011) in the form of pumping lem-
mas, similar to the well known pumping lemmas for regular and context-free languages
(Hopcroft, Motwani, and Ullman, 2001). His analysis considered the cases in which both
the core and the folding procedure language are regular, and in which the core language
is context-free and the folding procedure language is regular. Here, the two cases will
be revised, in order to solve detected inconsistencies (see footnote 2 to Lemma 1). The
lemmas will be restated in a weaker form (as consequence of the revision) and full proofs
will be provided. Also, it will be shown that the same lemma for the case in which the
core language is context-free and the folding procedures language is regular also applies
to the case in which the class attribution is reversed. Finally, a lemma for the remaining
case in which both the core and the folding procedure languages are context-free will be
presented and proved.

2 Folding systems

For clarity of the analysis, let us review main definitions associated to folding operations
and systems.
Let ¥ be an alphabet, I' = {u,d}, and f : ¥* x ¥ x ' = ¥* a function such that

aw, if b=,

flw,a,b) = { wa, ifb=d. (1)

Then, the folding function h : ¥* x I'* — ¥* is a partial function defined by
FOfFC. fleyar,br) ... ap—1,bp—1), ar, by), if |w| =]v] >0

h(w,v) =< e, if |w| = |v| =0, (2)
undefined, if |w| # |v].
where w = ajas...ap, v =b1by... by, a; € X and b; € I" for ¢ = 1,2,--- ,k, and ¢ is the

empty string.!
Example 1. Let w = abcde and v = dduud. Then,

h(w,v) = F(F(F(F(F(e a,d),b,d), cow), d,), e, d),
= f(f(f(f(a’b’d) c u)’d’u)’e’d)’
— F(f(f(ab,c,u).d,u), e,),
— f(f(cab,d,u),e,d),
= f(dcab,e,d),
= dcabe

!Sburlan’s (2011) original definition has been modified in order to include the case in which both w
and v are empty strings.

J. C. Lucero: Pumping lemmas for F-systems

edc
cabcde £ I3

edcba edcba a
\bjcde bcde

Step 1: fold down Step 2: fold down Step 3: fold up

/Xe de

d

edc [@ c
I3 £ I3

a a a

b b b

e e

Step 4: fold up Step 5: fold down Final result

Figure 1: Computation of h(abcde, dduud) = dcabe as a sequence of folding operations.

m

dcabcde
dduud

Figure 2: Computation of h(abcde, dduud) = dcabe using Eq. (3).

The computation of h(w,v) is represented graphically in Fig. 1. As shown there,
each application of function f may be regarded as a folding operation that arranges the
symbols of w in a stack. Strings over I' describe how each folding must be performed,
where symbol u represents a “folding up” action and symbol d represents a “folding
down” action. The final result is the created stack, read from top to bottom.

Another way to see the folding operation is illustrated in Fig. 2. The folded string

may be written as
h(w,v) = wRwg, (3)

where wy is the sequence of symbols in w that are folded up, R denotes the reverse order
operator, and wy is the sequence of symbols in w that are folded down. Letting w = xy,
v = st, with |z| = |s| and |y| = |t|, we obtain the identity

h(l’y, St) - Fh(wa S)yd' (4)

A folding system (F-system) is defined as a pair ® = (L1, Lg), where L1 C ¥* is the
core language, and Lo C I'* is the folding procedure language. The language of ® is

L(®) = {h(w,v)|w € Li,v € Lo, |w| = |v|}. (5)

The class of all languages generated by F-systems with core languages of a class C
and folding procedure languages of a class H is defined as

F(C,H) = {L(®)|® = (L1, Ls), L1 € C, Ly € H}. (6)

J. C. Lucero: Pumping lemmas for F-systems

3 Pumping lemmas

The first lemma states necessary conditions for a language to belong to class
F(REG, REG), where REG is the class of regular languages.

Lemma 1. Let L € F(REG, REG) be an infinite language over an alphabet . Then,
there are strings u,v,z,y,z € 3*, with |vy| > 0, such that wlzy'z € L for all i > 0.?

Proof. Let L1 C ¥*, Ly C {u,d}* and define the F-system ® = (L, Ly). If L = L(®)
is infinite, then L; and Lo are also infinite. Set p = max(p1,p2), where p; and po
are pumping lengths for Ly and Lo (from the pumping lemma for regular languages),
respectively, and choose any string w € L such that |w| > p. Then, there are strings
r € Ly and s € Lo such that w = h(r,s), with |r| = |s| = |w| > p.

According to the pumping lemma for regular languages, » may be written as r =
TpYr 2y, With |y.| > 0, such that z,y)z,. € Ly for any j > 0. Similarly, s may be written
as 8 = TgYs2s, With |ys| > 0, such that z4ylzs € Lo for any j > 0.

Consider the sequences {r;} and {s;} defined by

Ty = xryLySUHZra (7)
S5 = xsyLyTUJrlZ& (8)

for any j > 0. Clearly, 7; € L1, s; € Lo; further, |r;| = |s;| and so each of the strings
in {r;} may be folded according with the corresponding string in {s;}. For clarity, let

us arrange r; and s; in the form of a double stranded structure [Z—ﬂ , illustrated with an
example in Fig. 3. Note that, for j large enough, repetitions of substring ¥, overlap with
repetitions of substring ys. Therefore, we may seek expressions of r; and s; of the form

ry =687, (9)
sj = pupy O p3, (10)

with substrings & and py such that [€gx| = |uk| for £ = 1,2,3, and for j > jo, where jg
is a constant to be determined.

2Sburlan’s (2011) original version of the lemma states that there exists a positive constant p such
that any string w € L, with |w| > p, can be written as w = uwvzyz satisfying wv'zy'z € L for each i > 0,
lvy| > 1, and |vzy| < p. In his proof, he set p = max(p1, p2) where p1 and p2 are the pumping lengths
for the core and the folding procedure languages. However, it can be shown that such a value of p does
not always work. As a simple example, set ® = (L1, L2) with L1 = aaaab® and Ls = (uu)*ddd. Then,
p = 5. However, L(®) = aaaab U (bb)“aaaabbb, and note that string aaaab has length 5 but it can not
be pumped as indicated by the lemma. Although the original lemma may still hold for some other value
of p (p =9, in case of the example, with u = x =y = ¢, v = bb and z = aaaabbb), a full demonstration
was not provided.

Other inconsistencies have been detected in the proof. For example, the proof is based on constructing

a double stranded structure [:—]}7 and the technique is also used here. However, instead of Eqs. (7) and

lem(lyr | lysD ; lem(lyr | lysD -

[yrl lusl

zs, where lem denotes the

(8), the previous proof sets r; = z,y, zr and 8; = TsYs

least common multiple. Since the stranded construction requires |r;| = |s;|, it follows that |z, 2| = |zs2s]
and hence |y-| = |ys|. However, those conditions do not hold for arbitrary regular languages L1 and Lo
(note that, in the above example, |y-| = |b| = 1 whereas |ys| = |uu| = 2).

Similar problems have been found also in the original version of the lemma for the case of L €
F(CF,REG).

J. C. Lucero: Pumping lemmas for F-systems

& &2 &2 &2 &3
il _ Yy Y [Y Y Y | s U Y | | yr | 2|
Sj Ts |Ys|Ys|YUs|Us|Ys|Ys| - |Us|Ys|Ys|Us|Us|ys| zs |
1 2 2 2 3

Figure 3: Double stranded structure built with strings r; € L; and s; € Lo, in the case in
which both L; and L, are regular languages.

In Egs. (7) and (8), the iterated portions may be decomposed as

po It = €] s, (11)
gl = BBy, (12)
with
ooy = ylolvsHL (13)
B1Bo = ylolrt, (14)

Consequently, & and po will be formed by repetitions of strings y, and ys, respectively,
with

1677 = [y = |onasl,
= lyrl(lyslj + 1) — lyr|(olys| + 1)
= [yr[lys| (7 — Jo), (15)

and the same result for |,u%_j0|. Consequently, |&2| = |u2] = |yr||ys|-
Next, we set {1 = zran, &3 = agzr, 1 = @51, pg = Pazs. Substrings ai, as, 1, B2
are computed so that |{1| = |p1| and &3] = |ps|, with
A= e loa| = || = o], if 2] > |2,
: (16)
ar = ¢, |f1] = |ar| = |@s], i |zs| < |20

and using Eqgs. (13) and (14). During the calculations, constant jg is chosen large enough
so as to produce |as| > 0 and |53] > 0. result.

Finally, h(rj,s;) is computed by using Eqgs. (9), (10), and the identity in Eq. (4).
Note that &1, & and &3 are folded as determined by pq, uo, and ug, respectively. Then,
letting 7 = j — jo,

h(€165¢3, paphps) = (€8)R1(E)R (€D (61)a(€2)a(&3)a. (17)

The condition stated by the lemma is obtained from Eq. (17) with u = (£3)%, v = (&)F,

= (&) (), y = (§2)a, 2 = (&3)a- Also, |vy| = [&a| = |yr|lys| > 0.
O

The next lemma considers the two cases in which the core and the folding procedure
languages belong to different classes, regular or context-free. Its demonstration follows
similar steps as in Lemma, 1.

J. C. Lucero: Pumping lemmas for F-systems

&1 &2 T &2 &3 &4 e &a &s
Ty _ Uy ‘/UT|U7"|U7"|“‘|’UT’|/UT’|/UT‘|:UT"y’I’|yT’|yT| |y7"|y7"| Zr ‘
Sj Ts |ys|ys|ys| to |ys|ys|ys|ys|ys|ys|ys|ys|ys|ys| to |ys|ys|ys|ys|ys| Zs |
1 2 2 3 4 4 5

Figure 4: Double stranded structure built with strings r; € L; and s; € Lo, in the case in
which L; is a context-free language and L5 is a regular language.

Lemma 2. Let L € F(CF,REG) or L € F(REG, CF) be an infinite language over an
alphabet ¥2. Then, there are strings wi, ws, ..., wy € X%, with [wawqwewg| > 0, such that
w1w§w3w2w5wéw7w§w9 € L foralli>0.

Proof. Consider first the case L € F(CF,REG) and proceed similarly as in Lemma 1,
except that the pumping lemma for context-free languages is used for string r € Lj.
Thus, r is written as r = w,v.2,.y,2,, with |v,y,| > 0 and wviz,ylz. € Ly, for any
j > 0. Strings r; € Ly and s; € Ly are now defined as

_ +1 j+1

ry = urviys\J xryiys\J Zr, (18)
p— rTyr +1

55 = weylrvrlitly, (19)

for any j > 0, and their double stranded arrangement is illustrated in Fig. 4.
For j large enough, repetitions of ys overlap with repetitions of v, (if |v.| > 0) and
yr (if |yr| > 0). Then, we may seek expressions of r; and s; of the form

r; = 616088770, (20)
sj = papey O pspy 7 ps, (21)

with substrings & and g such that || = |ug| for £ =1,2,...,5, and for j > jo, where
jo is a constant to be determined.
In Egs. (18) and (19), the iterated portions are decomposed as

ULys|j+1 = algg_joag, (22)
Yt = Bie B, (23)
I = gy ey s, (24)
with
ey = B0l (25)
B1 By = ylolvsI, (26)
Ny2ys = ylolr v, (27)

Consequently, & and po will be formed by repetitions of strings v, and ys, respectively,
with [&o| = |pe| = |vr||ys|- Also, & and py will be formed by repetitions of strings y,
and ys, respectively, with |{4] = |pa| = |yr||ys|-

J. C. Lucero: Pumping lemmas for F-systems

Next, we set §1 = urai, §3 = az,f1, §5 = Qazp, 1 = TsY1, U3 = Y2, 15 = V3%s-
Substrings a1, ag, B1, B2, 71, V2, and 3 are selected so that |§ = pil, |£3 = ps|, and
€5 = ps|, with

1 = & lar| = |zs| — Jugl, if || > url, (28)
a1 = &, || = ur| = |zsl, if |zs] < |url,
'73:57’/82’ :‘Zs‘_‘zr‘7 if ’28’ > ‘ZT,v (29)
B2 = &, |3l = |z — |25, if [2s] < |2r],

and using Eqs. (25) to (27) for a value of jj large enough.
Finally, we compute h(rj, s;) using Eqgs. (20), (21), and the identity in Eq. (4). Then,
letting 7 = j — jo,

h(E1€5E3€4E5, pn pb g s) =
(&) RIEDTT (€ RIE)RT (€I (€1)al€2)a(&3)al€a) i (E5)a (30)

The condition stated by the lemma is obtained from Eq. (30) with w; = (&),
wy = (£ w3 = (&)F, wa = ()% ws = (E)F(E)a, we = (£2)a, wr = (£3)a;
ws = (€4)a, wo = (§5)a- Also, [wawgwews| = |&284] = [vryr||ys| > 0.

Consider next the case L € F(REG,CF). This case is treated as the previous one,
except that r and s are decomposed following the pumping lemmas for regular languages

and context-free languages, respectively. Thus, strings r; and s; are now defined as

sYs j 1
rj = apltewlitlz, (31)

_ j+1 j+1
sj—uvayTU T ARE (32)

with |y,| > 0, |vsys| > 0, and for any j > 0.
In Egs. (31) and (32), the iterated portions are decomposed as

Jostr L o 09000 0y (33)
vt = BB,)
i1y 30 (35)

with
ooy = ?/gomysHl’ (36)
1B = vkt .
Y2 = ylolr (38)

The demonstration then follows similar steps as in the previous case: r; and s; are
expressed as in Eqgs. (20) and (21) with & = z,aq, & = a9, & = aszy, p1 = usf,
w3 = Baxs71, 5 = V22s-

O

The last lemma considers the case in which both the core and the folding procedure
languages are context-free. It has a longer demonstration; nevertheless, it follows the
same technique as the previous ones.

J. C. Lucero: Pumping lemmas for F-systems

&1 g &3 &7 &5 g &7

r +1 Up v, +1

| U H 'Ulv IIySHvsyS‘] H xT |y| Ilysll SySIJ | z ‘
Up VrYr j+1 Uy Ur J+1

| ’Ul ||yS|| Yy |] |.T ’(7 y‘ HySH yTl? > ; |

3 Jj—Jjo

1 Jj—Jjo j
Hy He

I25)

Figure 5: Double stranded structure built with strings r; € L; and s; € Lo, in the case in
which both L; and Ly are context-free languages and |v,||ys| > |vs||y:|-

Lemma 3. Let L € F(CF, CF) be an infinite language over an alphabet .. Then, there
are strings wi,ws,...,wig € X, with |wowgwe---wia| > 0, such that
wiwhwswiws - - wiwiywiz € L for all i > 0.

Proof. We proceed as in the previous lemmas, except that the pumping lemma for
context-free languages is used for both strings r € L1 and s € Ls. Thus, r is written as
T = UpUpZypYr 2y, With |vpyy| > 0 and r; = urvﬁxry{zr € L4 for any j > 0, and s is written
as s = UsUsTsYsZs, With |vgys| > 0 and s; = usvizsylzs € Lo for any j > 0.

Consider first the case in which |v,||ys| > |vs||yr|. Strings r; and s; are defined as

r; = urv‘TUTHyS"Usy8|j+1xryL”r"ysnvsysUJFIZT’ (39)
85 = uvavr"ysHvryT'jJrlxsyLerysHUTyTUJrle’ (40)

for any j > 0, and their double stranded arrangement is illustrated in Fig. 5.
For j large enough, and since |v,||ys| > |vs||yr|, then repetitions of v, overlap with

repetitions of both vy (if |vs| > 0) and ys, and repetitions of y, overlap with repetitions
of both v, and y, (if |y,| > 0). Then, we may seek expressions of r; and s; of the form

rj =618 7"€€y 0685 (41)
sj = papy " papy s, (42)

with substrings & and py such that || = |uk| for £ =1,2,...,7, and for j > jo, where
Jo is a constant to be determined.
In Egs. (39) and (40), the iterated portions may be decomposed as

ol llvsllvsws i — o 730 e, (5 — oo, (43)
ylorllusllocysli+l — g eG=io) g, (44)
olrllslloeye it — oy =0)y, o
ylorllwsllorrlitd — 5,), 0=d0)g,), =d0) 5, (46)

with
o apag = vlolvrlvsllvsysl+1

_ ,.Jolv v +1
81 _y;p\ rl|ys|[vsys| ,

— o Jolvellys||vryr|+1
,-)/1;)/2 — ,1)8 ™ S ryr

— yolvrllys|lvryr|+1
(51(52(53—1)8 rHgsHErIrT S

J. C. Lucero: Pumping lemmas for F-systems

&1 g &3 &7 &5 g &7

v r ||V j+1 v, r| |V +1
| 'l)l Slly || SyS|.7 |$ H yl SHy H syS|J 3 |
11 -
| u I(i UIUSHyTIIvaT'] Hx |ylvs||y7‘||U7‘yr|J+1| ‘

Zs

3 Jj—Jjo

1 Jj—Jjo j
Hy He

I25)

Figure 6: Double stranded structure built with strings r; € L; and s; € Lo, in the case in
which both Ly and Ly are context-free languages and |v,||ys| < |vs||yr|-

Consequently, & and us will be formed by repetitions of strings v, and wvg, respectively,
with [&o| = |u2] = |vr||vs||ys||vryr|; €4 and pyg will be formed by repetitions of strings
v and ys, respectively, with [&4] = [ua] = |vr||ys|([vr[lys] — |vs|lyr]); and & and pg
will be formed by repetitions of strings y, and ys, respectively, with || = |ug] =
[vr| [y [|ys| [vsys|. Next, we set & = u,ya1, §3 = ao, & = azx,.f1, &1 = Pozr, p1 = Us1,
H3 = Y2501, pi5 = 02, fi7 = 032s.

Substrings oy, a9, as, f1, B2, V1, Y2, 01, 02 and d3 are selected so that |& = pq],
&3 = wsl, 1§65 = psl, & = prl, with 01 = €, |ag| = [y2| + |2s],

1 =&, |oa| = |us| — |url, if Jug| > fug, (51)
a1 = & || = [ur| — |ug|, if |us| < |u|,
53:57 ’/82‘ :‘25’—’271’, if‘zs‘ > ’ZT"7 (52)
B2 = &,103] = |zr| — |25, if |2s] < |2,

and using Eqs. (47) to (50) for a value of jy large enough.
Finally, we compute h(rj, s;) using Eqgs. (41), (42), and the identity in Eq. (4). Then,
letting 7 = j — jo,

h(&1€5E3E5E58E7, pa pb gty ps s pur) =
(&) RE6) R (&) RIED T (€) R ()R (€D (€1)a(€2)a(E3)al€)a (&5)al€6)a(67)a. (53)

The condition stated by the lemma is obtained from Eq. (53) with w; = (&),
wy = ()5, ws = (&)F, wy = (E)F, ws = (&)F, we = (L)F, wr = (&)F(&)a,
wg = (§2)a, w9 = (£3)a, wio = (§4)a, w11 = (&5)a, w1z = (&6)a, w1z = (§7)a. Also,
lwawswewswiowia| = [£26486| = |vr|[ys||vryr||vsys| > 0.

Consider next the case in which |v,.||ys| < |vs||yr|, and define

r; = urv\rvs\\yr\\vsys|y+1xryLvs||yr||vsys\1+lzr’ (54)

sj = usvlsvs\\yr||vryr|]+1xsy\sus||yr\\uryrlyﬂzs’ (55)

for any j > 0, with the double stranded arrangement illustrated in Fig. 6.
We seek expressions of 7; and s; of the form in Eqgs. (41) and (42), and decompose

J. C. Lucero: Pumping lemmas for F-systems

the iterated portions in Egs. (54) and (55) as

plsllyrllvsysli+t — algéj*j(’)og, (56)

ylsllvrllvsyslitl — g, ¢l7=5o) g, ¢(G=70) g, (57)

plvsllvellvryeli+t — o G=d0)) (G=d0) (58)

yLUsHyTHUTyr‘j"'l == 61//%]'7]'0)62, (59)

with

1y = plolvsllurllvsys 1 (60)

B1Ba B3 = yfolvsllurllvsysl1 (61)

1ayg = violvsllurlloryrl 41 (62)

5185 = violvsllurlloryrl+1 (63)

Consequently, & and ps will be formed by repetitions of strings v, and vg, re-
spectively, with |&2] = |ua| = |ve||vs]|yr||vsys|; €4 and py will be formed by repeti-
tions of strings y, and vs, respectively, with |&4| = |pa| = |yr||vs|([vs||ye| — [vr|lys]);
and & and pg will be formed by repetitions of strings ¥, and y,, respectively, with
|£6| = |M6| = |ys||vs||yr||vryr|- Next, we set {1 = ura1, §3 = @z, b1, §5 = B2, &7 = P32,
H1 = UsV1, B3 = V2, H5 = V3Ts01, fi7 = 022s.

Substrings oy, a9, as, f1, B2, Y1, Y2, 01, 02 and d3 are selected so that |& = pq],
&5 = psl, €5 = psl, &7 = prl, with 43 = €, [Bo] = |01] + |z,

{ 02 = &, | B3| = |zs| — |2r|, if [25] = |24,

. 04
By = £, 16| = || — |2, i |2a] < |20, (64)

and using Eq. (51) and Egs. (60) to (63), for a value of jy large enough.

The demonstration then follows similar steps as in the previous case.

Finally, consider the remaining case of |v,||ys| = |vs||yr|. If |vr|lys| # 0 and |vs||y,| #
0, then the same constructions of the previous cases work, resulting in £, = pq4 = € and
therefore wy = wyg = ¢.

If |vellys| = |vsl|lyr| = 0, then either v, = vy = € or y, = ys = € (recall that the
pumping lemma for context-free languages demands |v,y,| > 0 and |vsys| > 0). Assume
first v, = vy = €, and define

slg+1

ry = urxryv‘"y i+ Zry (65)
+1

S = usxsyLyT‘]+ Zsy (66)

for any j > 0. Next, follow the same procedure as in Lemma 1 to express 7; and s; in
the form of Egs. (9) and (10), with the exception that & = u,z,a; and gy = usxsfr
(instead of & =z, and py = x50, respectively). Then, h(rj, s;) is given by Eq. (17)
and the condition stated by the present lemma is obtained with wy = (£&3)%, wo = (&)X,
w3 = wy = wy = we = €, wy = (&)X (E1)a, ws = wg = wip = wi1 = €, wiz = (&2)a,
wig = (§3)a. Also, wawswewgwiowia| = [&2| = [yr|lys| > 1.

If y. = ys = €, proceed as above with

rj = urvlvsuﬂmrzr, (67)
55 = uva”TUHszS, (68)
for any j > 0. O

10

J. C. Lucero: Pumping lemmas for F-systems

4 Final remarks and example

The lemmas only apply to infinite languages. However, any finite language is in class
F(REG,REG). Let Lj be any arbitrary language and define ® = (L;,d*); then, L; =
L(®). Therefore, if Ly finite then it is regular and, consequently, L; € F(REG, REG).
Further, and since REG C CF, then L; also is in F(CF,REG), F(REG,CF), and
F(CF,CF).

In spite of the lemmas being weak, they still are useful to prove non membership of
some languages in a class, as the following example shows.

Example 2. Consider L = {a"|n is prime } and assume that L satisfies the lemma.

Then, there are strings wi,ws,..., w13 € a*, with |wewswg---wia| > 0, such that
wiwhwawiws - - - wipwiswiz € L for all ¢ > 0. Letting ¢ = 1, we have that
W1 WaWsWaws - - - W wiawig = af for some prime k. Then, wowswg - - w1y = al with

0 < ¢ < k. Next, letting i = k 4 1, we obtain wjwbwswiws - - - wywiswg = akI+o),

However, this string is not in Lo, because the number of a’s is not a prime. The contra-
diction implies that Lo ¢ F(CF, CF).

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Cientifico e Tec-
nolégico (CNPq, Brazil).

References

Akitaya, H. A., Demaine E. D., and Ku J. S. (2017). “Simple folding is really hard,” J.
Inform. Process. 25, 580-589.

Alperin, R. C. (2000). “A mathematical theory of origami constructions and numbers,”
New York J. Math. 6, 119-133.

Cipra, B. (2001). “In the fold: Origami meets mathematics,” SIAM News 34, 1-4.

Demaine, E. D. and O’Rourke, J. (2007). Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge (University Press, New York), pp. 167-298.

Dobson, C. M. (2003). “Protein folding and misfolding,” Nature 426, 884-890.

Felton, S., Tolley, M., Demaine, E., Rus, D., and Wood, R. (2014). “A method for
building self-folding machines,” Science 345, 644—646.

Filipov, E. T., Tachi, T., and Paulino, G. H. (2015). “Origami tubes assembled into
stiff, yet reconfigurable structures and metamaterials,” Proc. Natl. Acad. Sci. USA
112, 12321-12326.

Hopcroft, J. E., Motwani R., and Ullman, J. D. (2001). Introduction to Automata Theory,
Languages and Computation, 2nd edn. (Addison-Wesley, New York), pp. 126-127 and
275-276.

Ida, T., Fleuriot, J., and Ghourabi, F. (2016). “A new formalization of origami in geomet-
ric algebra,” in Proceedings of ADG 2016: 11th International Workshop on Automated
Deduction in Geometry, edited by J. Narboux, P. Schreck, and I. Streinu (Strasbourg,
France), pp. 117-136.

11

J. C. Lucero: Pumping lemmas for F-systems

Kari, L. and Rozenberg, G. (2008). “The many facets of natural computing,” Commun.
ACM 51, 72-83.

Mahadevan, L. and Rica, S. (2005) . “Self-organized origami,” Science 307, 1740-1740.

Rothemund, P. W. (2006). “Folding DNA to create nanoscale shapes and patterns,”
Nature 440, 297.

Sburlan, D. (2011). “Computing by folding,” Int. J. Comput. Commun. Controls 6,
739-748.

12

	1 Introduction
	2 Folding systems
	3 Pumping lemmas
	4 Final remarks and example

