
ar
X

iv
:1

91
0.

08
51

8v
1

 [
cs

.F
L

]
 1

8
O

ct
 2

01
9

Pumping lemmas for classes of languages generated by

folding systems

Jorge C. Lucero∗

December 14, 2018

Abstract

Geometric folding processes are ubiquitous in natural systems ranging from pro-
tein biochemistry to patterns of insect wings and leaves. In a previous study, a
folding operation between strings of formal languages was introduced as a model of
such processes. The operation was then used to define a folding system (F-system)
as a construct consisting of a core language, containing the strings to be folded,
and a folding procedure language, which defines how the folding is done. This paper
reviews main definitions associated with F-systems and next it determines necessary
conditions for a language to belong to classes generated by such systems. The con-
ditions are stated in the form of pumping lemmas and four classes are considered,
in which the core and folding procedure languages are both regular, one of them is
regular and the other context-free, or both are context-free. Full demonstrations of
the lemmas are provided, and the analysis is illustrated with examples.

1 Introduction

In a recent paper, Sburlan (2011) introduced a folding operation for strings of sym-
bols of a given formal language. The operation was inspired in actual geometric folding
processes that occur in, e.g., protein biochemistry (Dobson, 2003), in-vitro DNA shaping
(Rothemund, 2006), and even origami (the Japanese art of paper folding;
Demaine and O’Rourke, 2007), and it was proposed as a restricted computational model
of such processes.

The folding operation was applied to define folding systems (F-systems) of the form
Φ = (L1, L2), where L1 is the language that contains the strings to be folded (the core
language), and L2 is the language that contains strings defining how the folding must be
performed (the folding procedure language). Then, the computing power of F-systems
was investigated by comparison with standard language classes from the Chomsky hier-
archy; i.e., regular, context-free, context-sensitive, recursive and recursively enumerable
languages.

The paper fitted well within a growing body of applications of geometric folding to sci-
ence and technology which have surged in recent years; in, e.g., aerospace and automotive
technology (Cipra, 2001), civil engineering (Filipov, Tachi, and Paulino, 2015), biology
(Mahadevan and Rica, 2005), and robotics (Felton, Tolley, Demaine, Rus, and Wood,

∗Dept. Computer Science, University of Brasília, Brazil. E-mail: lucero@unb.br

1

http://arxiv.org/abs/1910.08518v1
mailto:lucero@unb.br

J. C. Lucero: Pumping lemmas for F-systems

2014). Also, a number of theoretical studies have considered algebraic models, algo-
rithmic complexity, and other mathematical and computational aspects of folding(e.g.,
Akitaya, Demaine, and Ku, 2017; Alperin, 2000; Ida, Fleuriot, and Ghourabi, 2016).

F-systems might find relevant applications to DNA computing and related areas
of natural computing (Kari and Rozenberg, 2008). Thus, the general purpose of the
present paper is to further explore capabilities and limitations of such systems, and it
will consider the classes of languages generated when the core and the folding procedure
languages are regular or context-free. Necessary conditions for a language to belong to
some of those classes were presented by Sburlan (2011) in the form of pumping lem-
mas, similar to the well known pumping lemmas for regular and context-free languages
(Hopcroft, Motwani, and Ullman, 2001). His analysis considered the cases in which both
the core and the folding procedure language are regular, and in which the core language
is context-free and the folding procedure language is regular. Here, the two cases will
be revised, in order to solve detected inconsistencies (see footnote 2 to Lemma 1). The
lemmas will be restated in a weaker form (as consequence of the revision) and full proofs
will be provided. Also, it will be shown that the same lemma for the case in which the
core language is context-free and the folding procedures language is regular also applies
to the case in which the class attribution is reversed. Finally, a lemma for the remaining
case in which both the core and the folding procedure languages are context-free will be
presented and proved.

2 Folding systems

For clarity of the analysis, let us review main definitions associated to folding operations
and systems.

Let Σ be an alphabet, Γ = {u, d}, and f : Σ∗ × Σ × Γ → Σ∗ a function such that

f(w, a, b) =

{

aw, if b = u,
wa, if b = d.

(1)

Then, the folding function h : Σ∗ × Γ∗ → Σ∗ is a partial function defined by

h(w, v) =

f(f(. . . f(ε, a1, b1) . . . , ak−1, bk−1), ak, bk), if |w| = |v| > 0
ε, if |w| = |v| = 0,
undefined, if |w| 6= |v|.

(2)

where w = a1a2 . . . ak, v = b1b2 . . . bk, ai ∈ Σ and bi ∈ Γ for i = 1, 2, · · · , k, and ε is the
empty string.1

Example 1. Let w = abcde and v = dduud. Then,

h(w, v) = f(f(f(f(f(ε, a, d), b, d), c, u), d, u), e, d),

= f(f(f(f(a, b, d), c, u), d, u), e, d),

= f(f(f(ab, c, u), d, u), e, d),

= f(f(cab, d, u), e, d),

= f(dcab, e, d),

= dcabe.

1Sburlan’s (2011) original definition has been modified in order to include the case in which both w

and v are empty strings.

2

J. C. Lucero: Pumping lemmas for F-systems

εabcde

edcba

Step 1: fold down

ε

edcba

bcde

Step 2: fold down

edc

ε

a

bcde

Step 3: fold up

de

edc

ε

a

b

Step 4: fold up

de

c

ε

a

b

e

Step 5: fold down

d

c

ε

a

b

e

Final result

Figure 1: Computation of h(abcde, dduud) = dcabe as a sequence of folding operations.

d c a b c d e

d d u u d

Figure 2: Computation of h(abcde, dduud) = dcabe using Eq. (3).

The computation of h(w, v) is represented graphically in Fig. 1. As shown there,
each application of function f may be regarded as a folding operation that arranges the
symbols of w in a stack. Strings over Γ describe how each folding must be performed,
where symbol u represents a “folding up” action and symbol d represents a “folding
down” action. The final result is the created stack, read from top to bottom.

Another way to see the folding operation is illustrated in Fig. 2. The folded string
may be written as

h(w, v) = wR
u

wd, (3)

where wu is the sequence of symbols in w that are folded up, R denotes the reverse order
operator, and wd is the sequence of symbols in w that are folded down. Letting w = xy,
v = st, with |x| = |s| and |y| = |t|, we obtain the identity

h(xy, st) = yR
u

h(x, s)yd. (4)

A folding system (F-system) is defined as a pair Φ = (L1, L2), where L1 ⊆ Σ∗ is the
core language, and L2 ⊆ Γ∗ is the folding procedure language. The language of Φ is

L(Φ) = {h(w, v)|w ∈ L1, v ∈ L2, |w| = |v|}. (5)

The class of all languages generated by F-systems with core languages of a class C
and folding procedure languages of a class H is defined as

F(C, H) = {L(Φ)|Φ = (L1, L2), L1 ∈ C, L2 ∈ H}. (6)

3

J. C. Lucero: Pumping lemmas for F-systems

3 Pumping lemmas

The first lemma states necessary conditions for a language to belong to class
F(REG, REG), where REG is the class of regular languages.

Lemma 1. Let L ∈ F(REG, REG) be an infinite language over an alphabet Σ. Then,

there are strings u, v, x, y, z ∈ Σ∗, with |vy| > 0, such that uvixyiz ∈ L for all i ≥ 0.2

Proof. Let L1 ⊆ Σ∗, L2 ⊆ {u, d}∗ and define the F-system Φ = (L1, L2). If L = L(Φ)
is infinite, then L1 and L2 are also infinite. Set p = max(p1, p2), where p1 and p2

are pumping lengths for L1 and L2 (from the pumping lemma for regular languages),
respectively, and choose any string w ∈ L such that |w| ≥ p. Then, there are strings
r ∈ L1 and s ∈ L2 such that w = h(r, s), with |r| = |s| = |w| ≥ p.

According to the pumping lemma for regular languages, r may be written as r =
xryrzr, with |yr| > 0, such that xryj

rzr ∈ L1 for any j ≥ 0. Similarly, s may be written
as s = xsyszs, with |ys| > 0, such that xsyj

szs ∈ L2 for any j ≥ 0.
Consider the sequences {rj} and {sj} defined by

rj = xry|ys|j+1
r zr, (7)

sj = xsy|yr|j+1
s zs, (8)

for any j ≥ 0. Clearly, rj ∈ L1, sj ∈ L2; further, |rj | = |sj| and so each of the strings
in {rj} may be folded according with the corresponding string in {sj}. For clarity, let

us arrange rj and sj in the form of a double stranded structure
[

rj

sj

]

, illustrated with an

example in Fig. 3. Note that, for j large enough, repetitions of substring yr overlap with
repetitions of substring ys. Therefore, we may seek expressions of rj and sj of the form

rj = ξ1ξj−j0

2 ξ3, (9)

sj = µ1µj−j0

2 µ3, (10)

with substrings ξk and µk such that |ξk| = |µk| for k = 1, 2, 3, and for j ≥ j0, where j0

is a constant to be determined.

2Sburlan’s (2011) original version of the lemma states that there exists a positive constant p such
that any string w ∈ L, with |w| ≥ p, can be written as w = uvxyz satisfying uvixyiz ∈ L for each i ≥ 0,
|vy| ≥ 1, and |vxy| ≤ p. In his proof, he set p = max(p1, p2) where p1 and p2 are the pumping lengths
for the core and the folding procedure languages. However, it can be shown that such a value of p does
not always work. As a simple example, set Φ = (L1, L2) with L1 = aaaab

∗ and L2 = (uu)∗

ddd. Then,
p = 5. However, L(Φ) = aaaab ∪ (bb)∗

aaaabbb, and note that string aaaab has length 5 but it can not
be pumped as indicated by the lemma. Although the original lemma may still hold for some other value
of p (p = 9, in case of the example, with u = x = y = ε, v = bb and z = aaaabbb), a full demonstration
was not provided.

Other inconsistencies have been detected in the proof. For example, the proof is based on constructing

a double stranded structure
[

rj

sj

]

, and the technique is also used here. However, instead of Eqs. (7) and

(8), the previous proof sets rj = xry

lcm(|yr |,|ys|)
|yr|

j

r zr and sj = xsy

lcm(|yr |,|ys|)
|ys|

j

s zs, where lcm denotes the
least common multiple. Since the stranded construction requires |rj | = |sj |, it follows that |xrzr| = |xszs|
and hence |yr| = |ys|. However, those conditions do not hold for arbitrary regular languages L1 and L2

(note that, in the above example, |yr| = |b| = 1 whereas |ys| = |uu| = 2).
Similar problems have been found also in the original version of the lemma for the case of L ∈

F(CF, REG).

4

J. C. Lucero: Pumping lemmas for F-systems

[

rj

sj

]

=

[]

| xr | yr | yr | yr | yr | yr | | yr | yr | yr | yr | zr |

| xs |ys |ys |ys |ys |ys |ys | · · ·

· · ·

· · ·

· · ·

|ys |ys |ys |ys |ys |ys | zs |

ξ1 ξ2 ξ2 ξ2 ξ3

µ1 µ2 µ2 µ2 µ3

Figure 3: Double stranded structure built with strings rj ∈ L1 and sj ∈ L2, in the case in
which both L1 and L2 are regular languages.

In Eqs. (7) and (8), the iterated portions may be decomposed as

y|ys|j+1
r = α1ξj−j0

2 α2, (11)

y|yr|j+1
s = β1µj−j0

2 β2, (12)

with

α1α2 = yj0|ys|+1
r , (13)

β1β2 = yj0|yr|+1
s . (14)

Consequently, ξ2 and µ2 will be formed by repetitions of strings yr and ys, respectively,
with

|ξj−j0

2 | = |y|ys|j+1
r | − |α1α2|,

= |yr|(|ys|j + 1) − |yr|(j0|ys| + 1)

= |yr||ys|(j − j0), (15)

and the same result for |µj−j0
2 |. Consequently, |ξ2| = |µ2| = |yr||ys|.

Next, we set ξ1 = xrα1, ξ3 = α2zr, µ1 = xsβ1, µ3 = β2zs. Substrings α1, α2, β1, β2

are computed so that |ξ1| = |µ1| and |ξ3| = |µ3|, with
{

β1 = ε, |α1| = |xs| − |xr|, if |xs| ≥ |xr|,
α1 = ε, |β1| = |xr| − |xs|, if |xs| < |xr|.

(16)

and using Eqs. (13) and (14). During the calculations, constant j0 is chosen large enough
so as to produce |α2| ≥ 0 and |β2| ≥ 0. result.

Finally, h(rj , sj) is computed by using Eqs. (9), (10), and the identity in Eq. (4).
Note that ξ1, ξ2 and ξ3 are folded as determined by µ1, µ2, and µ3, respectively. Then,
letting i = j − j0,

h(ξ1ξi
2ξ3, µ1µi

2µ3) = (ξ3)R
u

[(ξ2)R
u

]i(ξ1)R
u

(ξ1)d(ξ2)i
d
(ξ3)d. (17)

The condition stated by the lemma is obtained from Eq. (17) with u = (ξ3)R
u

, v = (ξ2)R
u

,
x = (ξ1)R

u
(ξ1)d, y = (ξ2)d, z = (ξ3)d. Also, |vy| = |ξ2| = |yr||ys| > 0.

The next lemma considers the two cases in which the core and the folding procedure
languages belong to different classes, regular or context-free. Its demonstration follows
similar steps as in Lemma 1.

5

J. C. Lucero: Pumping lemmas for F-systems

[

rj

sj

]

=

[]

| ur | vr | vr | vr |· · ·

· · ·

| vr | vr | vr |xr| yr | yr | yr | · · ·

· · ·

| yr | yr | zr |

| xs |ys|ys|ys|

· · ·

· · · |ys|ys|ys|ys|ys|ys|ys|ys|ys|ys|

· · ·

· · · |ys|ys|ys|ys|ys| zs |

ξ1 ξ2 ξ2 ξ3 ξ4 ξ4 ξ5

µ1 µ2 µ2 µ3 µ4 µ4 µ5

Figure 4: Double stranded structure built with strings rj ∈ L1 and sj ∈ L2, in the case in
which L1 is a context-free language and L2 is a regular language.

Lemma 2. Let L ∈ F(CF, REG) or L ∈ F(REG, CF) be an infinite language over an

alphabet Σ. Then, there are strings w1, w2, . . . , w9 ∈ Σ∗, with |w2w4w6w8| > 0, such that

w1wi
2w3wi

4w5wi
6w7wi

8w9 ∈ L for all i ≥ 0.

Proof. Consider first the case L ∈ F(CF, REG) and proceed similarly as in Lemma 1,
except that the pumping lemma for context-free languages is used for string r ∈ L1.
Thus, r is written as r = urvrxryrzr, with |vryr| > 0 and urvj

rxryj
rzr ∈ L1, for any

j ≥ 0. Strings rj ∈ L1 and sj ∈ L2 are now defined as

rj = urv|ys|j+1
r xry|ys|j+1

r zr, (18)

sj = xsy|vryr |j+1
s zs, (19)

for any j ≥ 0, and their double stranded arrangement is illustrated in Fig. 4.
For j large enough, repetitions of ys overlap with repetitions of vr (if |vr| > 0) and

yr (if |yr| > 0). Then, we may seek expressions of rj and sj of the form

rj = ξ1ξj−j0

2 ξ3ξj−j0

4 ξ5, (20)

sj = µ1µj−j0

2 µ3µj−j0

4 µ5, (21)

with substrings ξk and µk such that |ξk| = |µk| for k = 1, 2, . . . , 5, and for j ≥ j0, where
j0 is a constant to be determined.

In Eqs. (18) and (19), the iterated portions are decomposed as

v|ys|j+1
r = α1ξj−j0

2 α2, (22)

y|ys|j+1
r = β1ξj−j0

4 β2, (23)

y|vryr |j+1
s = γ1µj−j0

2 γ2µj−j0

4 γ3, (24)

with

α1α2 = vj0|ys|+1
r , (25)

β1β2 = yj0|ys|+1
r , (26)

γ1γ2γ3 = yj0|vryr |+1
s , (27)

Consequently, ξ2 and µ2 will be formed by repetitions of strings vr and ys, respectively,
with |ξ2| = |µ2| = |vr||ys|. Also, ξ4 and µ4 will be formed by repetitions of strings yr

and ys, respectively, with |ξ4| = |µ4| = |yr||ys|.

6

J. C. Lucero: Pumping lemmas for F-systems

Next, we set ξ1 = urα1, ξ3 = α2xrβ1, ξ5 = α2zr, µ1 = xsγ1, µ3 = γ2, µ5 = γ3zs.
Substrings α1, α2, β1, β2, γ1, γ2, and γ3 are selected so that |ξ1 = µ1|, |ξ3 = µ3|, and
|ξ5 = µ5|, with

{

γ1 = ε, |α1| = |xs| − |ur|, if |xs| ≥ |ur|,
α1 = ε, |γ1| = |ur| − |xs|, if |xs| < |ur|,

(28)

{

γ3 = ε, |β2| = |zs| − |zr|, if |zs| ≥ |zr|,
β2 = ε, |γ3| = |zr| − |zs|, if |zs| < |zr|,

(29)

and using Eqs. (25) to (27) for a value of j0 large enough.
Finally, we compute h(rj , sj) using Eqs. (20), (21), and the identity in Eq. (4). Then,

letting i = j − j0,

h(ξ1ξi
2ξ3ξi

4ξ5, µ1µi
2µ3µi

4µ5) =

(ξ5)R
u

[(ξ4)R
u

]i(ξ3)R
u

[(ξ2)R
u

]i(ξ1)R
u

(ξ1)d(ξ2)i
d
(ξ3)d(ξ4)i

d
(ξ5)d. (30)

The condition stated by the lemma is obtained from Eq. (30) with w1 = (ξ5)R
u

,
w2 = (ξ4)R

u
, w3 = (ξ3)R

u
, w4 = (ξ2)R

u
, w5 = (ξ1)R

u
(ξ1)d, w6 = (ξ2)d, w7 = (ξ3)d,

w8 = (ξ4)d, w9 = (ξ5)d. Also, |w2w4w6w8| = |ξ2ξ4| = |vryr||ys| > 0.
Consider next the case L ∈ F(REG, CF). This case is treated as the previous one,

except that r and s are decomposed following the pumping lemmas for regular languages
and context-free languages, respectively. Thus, strings rj and sj are now defined as

rj = xry|vsys|j+1
r zr, (31)

sj = usv
|yr |j+1
s xsy|yr|j+1

s zs, (32)

with |yr| > 0, |vsys| > 0, and for any j ≥ 0.
In Eqs. (31) and (32), the iterated portions are decomposed as

y|vsyr|s+1
r = α1ξj−j0

2 α2ξj−j0

4 α3, (33)

v|yr|j+1
s = β1µj−j0

2 β2, (34)

y|yr|j+1
s = γ1µj−j0

4 γ2, (35)

with

α1α2α3 = yj0|vsys|+1
r , (36)

β1β2 = vj0|yr|+1
s , (37)

γ1γ2 = yj0|yr|+1
s . (38)

The demonstration then follows similar steps as in the previous case: rj and sj are
expressed as in Eqs. (20) and (21) with ξ1 = xrα1, ξ3 = α2, ξ5 = α3zr, µ1 = usβ1,
µ3 = β2xsγ1, µ5 = γ2zs.

The last lemma considers the case in which both the core and the folding procedure
languages are context-free. It has a longer demonstration; nevertheless, it follows the
same technique as the previous ones.

7

J. C. Lucero: Pumping lemmas for F-systems

[

rj

sj

]

=

[]

| ur | v
|vr ||ys||vsys|j+1
r | xr |y

|vr||ys||vsys|j+1
r | zr |

| us | v
|vr||ys||vryr|j+1
s | xs | y

|vr||ys||vryr|j+1
s | zs |

ξ1 ξj−j0

2 ξ3 ξj−j0

4 ξ5 ξj−j0

6 ξ7

µ1 µj−j0

2
µ3 µj−j0

4
µ5 µj−j0

6
µ7

Figure 5: Double stranded structure built with strings rj ∈ L1 and sj ∈ L2, in the case in
which both L1 and L2 are context-free languages and |vr||ys| > |vs||yr|.

Lemma 3. Let L ∈ F(CF, CF) be an infinite language over an alphabet Σ. Then, there

are strings w1, w2, . . . , w13 ∈ Σ∗, with |w2w4w6 · · · w12| > 0, such that

w1wi
2w3wi

4w5 · · · w11wi
12w13 ∈ L for all i ≥ 0.

Proof. We proceed as in the previous lemmas, except that the pumping lemma for
context-free languages is used for both strings r ∈ L1 and s ∈ L2. Thus, r is written as
r = urvrxryrzr, with |vryr| > 0 and rj = urvj

rxryj
rzr ∈ L1 for any j ≥ 0, and s is written

as s = usvsxsyszs, with |vsys| > 0 and sj = usvj
sxsyj

szs ∈ L2 for any j ≥ 0.
Consider first the case in which |vr||ys| > |vs||yr|. Strings rj and sj are defined as

rj = urv|vr ||ys||vsys|j+1
r xry|vr ||ys||vsys|j+1

r zr, (39)

sj = usv|vr ||ys||vryr |j+1
s xsy|vr||ys||vryr|j+1

s zs, (40)

for any j ≥ 0, and their double stranded arrangement is illustrated in Fig. 5.
For j large enough, and since |vr||ys| > |vs||yr|, then repetitions of vr overlap with

repetitions of both vs (if |vs| > 0) and ys, and repetitions of ys overlap with repetitions
of both vr and yr (if |yr| > 0). Then, we may seek expressions of rj and sj of the form

rj = ξ1ξj−j0

2 ξ3ξj−j0

4 ξ5ξj−j0

6 ξ7, (41)

sj = µ1µj−j0

2 µ3µj−j0

4 µ5µj−j0

6 µ7, (42)

with substrings ξk and µk such that |ξk| = |µk| for k = 1, 2, . . . , 7, and for j ≥ j0, where
j0 is a constant to be determined.

In Eqs. (39) and (40), the iterated portions may be decomposed as

v|vr ||ys||vsys|j+1
r = α1ξ

(j−j0)
2 α2ξ4(j − j0)α3, (43)

y|vr||ys||vsys|j+1
r = β1ξ

(j−j0)
6 β2, (44)

v|vr ||ys||vryr|j+1
s = γ1µ

(j−j0)
2 γ2, (45)

y|vr||ys||vryr|j+1
s = δ1µ

(j−j0)
4 δ2µ

(j−j0)
6 δ3, (46)

with

α1α2α3 = vj0|vr ||ys||vsys|+1
r , (47)

β1β2 = yj0|vr||ys||vsys|+1
r , (48)

γ1γ2 = vj0|vr ||ys||vryr |+1
s (49)

δ1δ2δ3 = vj0|vr ||ys||vryr |+1
s . (50)

8

J. C. Lucero: Pumping lemmas for F-systems

[

rj

sj

]

=

[]

| us | v
|vs||yr||vryr|j+1
s | xs |y|vs||yr||vryr|j+1

s | zs |

| ur | v
|vs||yr||vsys|j+1
r | xr | y

|vs||yr||vsys|j+1
r | zr |

ξ1 ξj−j0

2 ξ3 ξj−j0

4 ξ5 ξj−j0

6 ξ7

µ1 µj−j0

2
µ3 µj−j0

4
µ5 µj−j0

6
µ7

Figure 6: Double stranded structure built with strings rj ∈ L1 and sj ∈ L2, in the case in
which both L1 and L2 are context-free languages and |vr||ys| < |vs||yr|.

Consequently, ξ2 and µ2 will be formed by repetitions of strings vr and vs, respectively,
with |ξ2| = |µ2| = |vr||vs||ys||vryr|; ξ4 and µ4 will be formed by repetitions of strings
vr and ys, respectively, with |ξ4| = |µ4| = |vr||ys|(|vr||ys| − |vs||yr|); and ξ6 and µ6

will be formed by repetitions of strings yr and ys, respectively, with |ξ6| = |µ6| =
|vr||yr||ys||vsys|. Next, we set ξ1 = urα1, ξ3 = α2, ξ5 = α3xrβ1, ξ7 = β2zr, µ1 = usγ1,
µ3 = γ2xsδ1, µ5 = δ2, µ7 = δ3zs.

Substrings α1, α2, α3, β1, β2, γ1, γ2, δ1, δ2 and δ3 are selected so that |ξ1 = µ1|,
|ξ3 = µ3|, |ξ5 = µ5|, |ξ7 = µ7|, with δ1 = ε, |α2| = |γ2| + |xs|,

{

γ1 = ε, |α1| = |us| − |ur|, if |us| ≥ |ur|,
α1 = ε, |γ1| = |ur| − |us|, if |us| < |ur|,

(51)

{

δ3 = ε, |β2| = |zs| − |zr|, if |zs| ≥ |zr|,
β2 = ε, |δ3| = |zr| − |zs|, if |zs| < |zr|,

(52)

and using Eqs. (47) to (50) for a value of j0 large enough.
Finally, we compute h(rj , sj) using Eqs. (41), (42), and the identity in Eq. (4). Then,

letting i = j − j0,

h(ξ1ξi
2ξ3ξi

4ξ5ξi
6ξ7, µ1µi

2µ3µi
4µ5µi

6µ7) =

(ξ7)R
u

[(ξ6)R
u

]i(ξ5)R
u

[(ξ4)R
u

]i(ξ3)R
u

[(ξ2)R
u

]i(ξ1)R
u

(ξ1)d(ξ2)i
d
(ξ3)d(ξ4)i

d
(ξ5)d(ξ6)i

d
(ξ7)d. (53)

The condition stated by the lemma is obtained from Eq. (53) with w1 = (ξ7)R
u

,
w2 = (ξ6)R

u
, w3 = (ξ5)R

u
, w4 = (ξ4)R

u
, w5 = (ξ3)R

u
, w6 = (ξ2)R

u
, w7 = (ξ1)R

u
(ξ1)d,

w8 = (ξ2)d, w9 = (ξ3)d, w10 = (ξ4)d, w11 = (ξ5)d, w12 = (ξ6)d, w13 = (ξ7)d. Also,
|w2w4w6w8w10w12| = |ξ2ξ4ξ6| = |vr||ys||vryr||vsys| > 0.

Consider next the case in which |vr||ys| < |vs||yr|, and define

rj = urv|vs||yr||vsys|j+1
r xry|vs||yr||vsys|j+1

r zr, (54)

sj = usv|vs||yr||vryr |j+1
s xsy|vs||yr||vryr|j+1

s zs, (55)

for any j ≥ 0, with the double stranded arrangement illustrated in Fig. 6.
We seek expressions of rj and sj of the form in Eqs. (41) and (42), and decompose

9

J. C. Lucero: Pumping lemmas for F-systems

the iterated portions in Eqs. (54) and (55) as

v|vs||yr||vsys|j+1
r = α1ξ

(j−j0)
2 α2, (56)

y|vs||yr||vsys|j+1
r = β1ξ

(j−j0)
4 β2ξ

(j−j0)
6 β3, (57)

v|vs||yr||vryr |j+1
s = γ1µ

(j−j0)
2 γ2µ

(j−j0)
4 γ3, (58)

y|vs||yr||vryr |j+1
s = δ1µ

(j−j0)
6 δ2, (59)

with

α1α2 = vj0|vs||yr||vsys|+1
r , (60)

β1β2β3 = yj0|vs||yr||vsys|+1
r , (61)

γ1γ2γ3 = vj0|vs||yr||vryr |+1
s , (62)

δ1δ2 = vj0|vs||yr||vryr |+1
s . (63)

Consequently, ξ2 and µ2 will be formed by repetitions of strings vr and vs, re-
spectively, with |ξ2| = |µ2| = |vr||vs||yr||vsys|; ξ4 and µ4 will be formed by repeti-
tions of strings yr and vs, respectively, with |ξ4| = |µ4| = |yr||vs|(|vs||yr| − |vr||ys|);
and ξ6 and µ6 will be formed by repetitions of strings yr and ys, respectively, with
|ξ6| = |µ6| = |ys||vs||yr||vryr|. Next, we set ξ1 = urα1, ξ3 = α2xrβ1, ξ5 = β2, ξ7 = β3zr,
µ1 = usγ1, µ3 = γ2, µ5 = γ3xsδ1, µ7 = δ2zs.

Substrings α1, α2, α3, β1, β2, γ1, γ2, δ1, δ2 and δ3 are selected so that |ξ1 = µ1|,
|ξ3 = µ3|, |ξ5 = µ5|, |ξ7 = µ7|, with γ3 = ε, |β2| = |δ1| + |xs|,

{

δ2 = ε, |β3| = |zs| − |zr|, if |zs| ≥ |zr|,
β3 = ε, |δ2| = |zr| − |zs|, if |zs| < |zr|,

(64)

and using Eq. (51) and Eqs. (60) to (63), for a value of j0 large enough.
The demonstration then follows similar steps as in the previous case.
Finally, consider the remaining case of |vr||ys| = |vs||yr|. If |vr||ys| 6= 0 and |vs||yr| 6=

0, then the same constructions of the previous cases work, resulting in ξ4 = µ4 = ε and
therefore w4 = w10 = ε.

If |vr||ys| = |vs||yr| = 0, then either vr = vs = ε or yr = ys = ε (recall that the
pumping lemma for context-free languages demands |vryr| > 0 and |vsys| > 0). Assume
first vr = vs = ε, and define

rj = urxry|ys|j+1
r zr, (65)

sj = usxsy
|yr|j+1
s zs, (66)

for any j ≥ 0. Next, follow the same procedure as in Lemma 1 to express rj and sj in
the form of Eqs. (9) and (10), with the exception that ξ1 = urxrα1 and µ1 = usxsβ1

(instead of ξ1 = xrα1 and µ1 = xsβ1, respectively). Then, h(rj , sj) is given by Eq. (17)
and the condition stated by the present lemma is obtained with w1 = (ξ3)R

u
, w2 = (ξ2)R

u
,

w3 = w4 = w5 = w6 = ε, w7 = (ξ1)R
u

(ξ1)d, w8 = w9 = w10 = w11 = ε, w12 = (ξ2)d,
w13 = (ξ3)d. Also, |w2w4w6w8w10w12| = |ξ2| = |yr||ys| ≥ 1.

If yr = ys = ε, proceed as above with

rj = urv|vs|j+1
r xrzr, (67)

sj = usv|vr |j+1
s xszs, (68)

for any j ≥ 0.

10

J. C. Lucero: Pumping lemmas for F-systems

4 Final remarks and example

The lemmas only apply to infinite languages. However, any finite language is in class
F(REG, REG). Let L1 be any arbitrary language and define Φ = (L1, d

∗); then, L1 =
L(Φ). Therefore, if L1 finite then it is regular and, consequently, L1 ∈ F(REG, REG).
Further, and since REG ⊂ CF, then L1 also is in F(CF, REG), F(REG, CF), and
F(CF, CF).

In spite of the lemmas being weak, they still are useful to prove non membership of
some languages in a class, as the following example shows.

Example 2. Consider L = {a
n| n is prime } and assume that L satisfies the lemma.

Then, there are strings w1, w2, . . . , w13 ∈ a
∗, with |w2w4w6 · · · w12| > 0, such that

w1wi
2w3wi

4w5 · · · w11wi
12w13 ∈ L for all i ≥ 0. Letting i = 1, we have that

w1w2w3w4w5 · · · w11w12w13 = a
k for some prime k. Then, w2w4w6 · · · w12 = a

ℓ with
0 < ℓ ≤ k. Next, letting i = k + 1, we obtain w1wi

2w3wi
4w5 · · · w11wi

12w13 = a
k(1+ℓ).

However, this string is not in L2, because the number of a’s is not a prime. The contra-
diction implies that L2 /∈ F(CF, CF).

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tec-
nológico (CNPq, Brazil).

References

Akitaya, H. A., Demaine E. D., and Ku J. S. (2017). “Simple folding is really hard,” J.

Inform. Process. 25, 580–589.

Alperin, R. C. (2000). “A mathematical theory of origami constructions and numbers,”
New York J. Math. 6, 119–133.

Cipra, B. (2001). “In the fold: Origami meets mathematics,” SIAM News 34, 1–4.

Demaine, E. D. and O’Rourke, J. (2007). Geometric Folding Algorithms: Linkages,

Origami, Polyhedra. Cambridge (University Press, New York), pp. 167–298.

Dobson, C. M. (2003). “Protein folding and misfolding,” Nature 426, 884–890.

Felton, S., Tolley, M., Demaine, E., Rus, D., and Wood, R. (2014). “A method for
building self-folding machines,” Science 345, 644–646.

Filipov, E. T., Tachi, T., and Paulino, G. H. (2015). “Origami tubes assembled into
stiff, yet reconfigurable structures and metamaterials,” Proc. Natl. Acad. Sci. USA

112, 12321–12326.

Hopcroft, J. E., Motwani R., and Ullman, J. D. (2001). Introduction to Automata Theory,

Languages and Computation, 2nd edn. (Addison-Wesley, New York), pp. 126–127 and
275–276.

Ida, T., Fleuriot, J., and Ghourabi, F. (2016). “A new formalization of origami in geomet-
ric algebra,” in Proceedings of ADG 2016: 11th International Workshop on Automated

Deduction in Geometry, edited by J. Narboux, P. Schreck, and I. Streinu (Strasbourg,
France), pp. 117–136.

11

J. C. Lucero: Pumping lemmas for F-systems

Kari, L. and Rozenberg, G. (2008). “The many facets of natural computing,” Commun.

ACM 51, 72–83.

Mahadevan, L. and Rica, S. (2005) . “Self-organized origami,” Science 307, 1740–1740.

Rothemund, P. W. (2006). “Folding DNA to create nanoscale shapes and patterns,”
Nature 440, 297.

Sburlan, D. (2011). “Computing by folding,” Int. J. Comput. Commun. Controls 6,
739–748.

12

	1 Introduction
	2 Folding systems
	3 Pumping lemmas
	4 Final remarks and example

