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Abstract

In automata networks, it is well known that the way entities up-
date their states over time has a major impact on their dynamics.
In particular, depending on the chosen update schedule, the underly-
ing dynamical systems may exhibit more or less asymptotic dynamical
behaviours such as fixed points or limit cycles. Since such mathemat-
ical models have been used in the framework of biological networks
modelling, the question of choosing appropriate update schedules has
arised soon. In this note, focusing on Boolean networks, our aim is to
emphasise that the adequate way of thinking regulations and genetic
expression over time is certainly not to consider a wall segregating
synchronicity from asynchronicity because they actually complement
rather well. In particular, we highlight that specific update schedules,
namely block-parallel update schedules, whose intrinsic features are
still not known from a theoretical point of view, admit realistic and
pertinent properties in the context of biological modelling and deserve
certainly more attention from the community.

Keywords: Discrete dynamical systems Automata networks Threshold
Boolean networks Block-parallel updating schedules.

1 Introduction

Automata networks (ANs) are discrete dynamical systems, introduced in
1943 by McCulloch and Pitts [MP43], widely used to model genetic con-
trol networks and more generally biological networks since the end of the
1970’s and the seminal works of Kauffman [Kau69a, Kau69b, Kau74] and
Thomas [Tho73, Tho78, Tho81]. In this context of molecular systems biol-
ogy, the ANs considered are finite, i.e., they are composed of a finite number
of nodes (or automata) that interact with each other over a discrete time.
As soon as they have been used as models of genetic regulation networks,
the way that nodes had to be updated over time was discussed. Indeed,
when Kauffman introduced them at the end of the 1960’s by scheduling
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nodes in parallel (certainly due to mathematical usabilities), biological ar-
guments were highlighted notably by Thomas arguing that parallelism was
not likely because of the impossibility for genetic expressions to occur simul-
taneously. Of course, the links between parallelism and simultaneity could
be discussed further in the context of modelling but this is not the purpose of
this note. So, other ways of updating ANs were introduced that are located
at the other end of the spectrum, based on the concept of asynchronicity
such as the asynchronous method of Thomas et al. [RR08, Tho73, Tho91],
and random sequential ANs [Dem87, Ger03, HB97, SS05]. This created a
strong separation between the synchronous and sequential ways of consider-
ing ANs, to such an extent that the schedules mixing together synchronicity
and asynchronicity were set aside for decades in the context of modelling.
Fortunately, it was not the case in mathematics and computer science, as
shown in the works of Robert [Rob69, Rob80, Rob86] on block-sequential up-
date schedules, that were used in [MAB98] in the framework of the modelling
of the floral morphogenesis of the plant Arabidopsis thaliana and began to be
studied in depth from the second half of the 2000’s [AGMS09, DES08, Ele09].
In this note, following a natural computing approach that consists in us-
ing the well known biologically-inspired computational model of ANs, and
studying instances of them to model real biological phenomena, our wish is
to highlight that the update schedules studied until now (all belonging to
the family of block-sequential update schedules), even if they are interest-
ing theoretically, are far from being sufficient to capture specific biological
intricacies. In particular, biological timers (classically called “Zeitgebers”
in biology and medicine) and clocks that can be of genetic or physiologi-
cal nature/origin [HHR90, HA92] need other ways of thinking updatings to
be modelled. Here, our very aim is to put the emphasis on block-parallel
update schedules, introduced initially in [Sen08] and never studied per se
until now, by giving insights essentially, and to highlight that they have
interesting theoretical properties because of their intrinsic complexity, and
pertinent features from a modelling point of view since they allow to model
biological timers.
Section 2 recalls the basics related to ANs, and some of the seminal re-
sults obtained in the past. In Section 3, block-parallel update schedules
are presented together with some of their very basic properties. Through
two examples coming from distinct areas of biology, Section 4 underlines
the ability of block-parallel modes to model biological timers. Finally, open
questions are given in Section 5.

2 Preliminary

This section presents the classical notions and definitions used and widely
studied in the literature related to Boolean networks. Of course, all of these
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can be easily generalised for other alphabets and multi-valued automata
networks. Moreover, for the sake of simplicity without losing generality, we
reduce the set of Boolean networks considered to threshold Boolean net-
works.

Threshold Boolean networks Let V = {1, ..., n} a set of nodes (often
called automata in the literature). A configuration on V is a one-to-one
function x : V → B = {0, 1} so that a Boolean value is associated with each
node of V . In other terms, a configuration x = (x1, x2, ..., xn) is a Boolean
vector of dimension n, where any of the xi ∈ B is the state of node i in
configuration x. The discrete evolution of the local state of node i is defined
as a local transition function

fi :

{
Bn → B
x 7→ H(

∑n
j=1wi,j · xj(t)− θi)

,

where W is the interaction matrix, i.e., the real-valued square matrix of
order n such that coefficient wi,j is the weight of the influence that node
j has on node i, Θ is the activation vector, i.e., the real-valued vector of
dimension n such that θi is the activation threshold of node i, and H is
the Heaviside step function such that H(x) = 0 if x < 0, and 1 otherwise.
Consequently, f = (fi)i∈{1,...,n} is such that

f :

{
Bn → Bn
x 7→ H(W · x−Θ)

,

and defines the threshold Boolean network.

Interaction graphs Let f be a threshold Boolean network. From its
interaction matrix W , we can derive the interaction graph G(f) = (V, I),
with I ⊆ V × R× V , where (i, wj,i, j) ∈ I if wj,i 6= 0. When wj,i > 0 (resp.
wj,i < 0, wj,i = 0), node i tends to activate (resp. tends to inhibit, has no
influence on) node j. We generally speak of positive or negative influences.
Figure 1 depicts a threshold Boolean network composed of 3 nodes whose
interaction graph is a cycle of size 3. Notice that this network is more
precisely a canonical positive cycle [DNS12, Nou12, Sen12, Tho81], which
means a cycle composed of an even number of negative influences (not to be
confused with a negative cycle which would be composed of an odd number
of negative influences).

Update schedules In any configuration of a network, one or several punc-
tual events may take place. Here, we consider events that consist in the
update of at least one node state. Supposing that the network is currently
in configuration x ∈ Bn, node i ∈ V is scheduled if its state switches from
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f : W =

0 0 1
1 0 0
0 1 0

 Θ =

+ε
+ε
+ε


+1

+1

3

1 2
G(f) :

+1

Figure 1: (left) Definition of a network f with its interaction matrix W and
its threshold vector Θ; (right) its associated interaction graph G(f).

xi to fi(x). Remark that, possibly, fi(x) = xi so that the update of i is
not effective in x. In any case, this local event that we call a transition
yields a global network configuration change (possibly not effective) which
is described by the i-update function Fi : Bn → Bn such that

∀x ∈ Bn, Fi(x) = (x1, . . . xi−1, fi(x), xi+1, . . . , xn).

This transition is said to be atomic because it involves only one automaton.
We also consider non-atomic transitions that correspond to the synchronous
update of several nodes. In the general case, the B-update function1 FB :
Bn → Bn describes the network configuration change that results in the
update of all the nodes of the subset (or block) B of V such that

∀x ∈ Bn, ∀i ∈ V, FB(x)i =

{
fi(x) if i ∈ B
xi otherwise

.

An update schedule δ of a network whose set of nodes is V is defined by an
ordered (finite or infinite) sequence (Bi)i∈{0,...,t−1} of t non-empty subsets of
nodes. We write δ = (Bi)i∈{0,...,t−1} or just δ = (B0, B1, . . . , Bt−1). Under
an update schedule δ, starting in configuration x ∈ Bn, a network takes
sequentially the configurations x0 = FB0(x), x1 = FB1 ◦ FB0(x), . . ., xt−1 =
FBt−1 ◦ . . . ◦ FB0(x).
Periodic update schedules of arbitrary period p ∈ N are infinite periodic
sequences (B0, B1, . . . , Bp−1, B0, B1, . . . , Bp−1, . . .). For the sake of sim-
plicity, they are rather defined by finite ordered lists (Bi)i∈N/pN of size p:

δ = (B0, B1, . . . , Bp−1). When
⋃p−1
i=0 Bi = V , such update schedules are

called fair update schedules and are strong ergodic update schedules, the
latter being defined as: there exists m ∈ N such that every node is up-
dated in the time interval Jk; k + mK, ∀k ∈ N. Global transition functions
F [δ] : Bn → Bn related to such periodic update schedules are defined as

∀x ∈ Bn, F [δ](x) = FBp−1 ◦ . . . ◦ FB1 ◦ FB0(x).

Such very update schedule has never been studied in depth, certainly because
of their inherent generality and underlying complexity. Remark nevertheless
that they have been mentioned in [GN12].

1∀i ∈ V, Fi obviously equals F{i}.
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Figure 2: Update graphs of the network f defined in Figure 1: (left)
Parallel update graph U({1,2,3})(f); (centre) Block-sequential update graph
U({1,2},{3})(f); (right) Sequential update graph U({1},{2},{3})(f).

Well known instances of periodic update schedules are block-sequential sched-
ules [DES08, Ele09, GN10, GN12, Rob86, Rob95]. Their particularity lies in
that their periodic sequence of updates involves exactly once each automaton
of the network. Formally, a block-sequential update schedule of a network
of node set V is an ordered partition P of V . With our notations, it can be
defined as a finite sequence (Bi)i∈N/pN such that V =

⊔
i∈N/pNBi. It can also

be defined as a function δ : V → N/pN. The parallel update schedule is the
unique block-sequential update schedule of period p = 1 (∀i ∈ V, δ(i) = 1).
It updates all the nodes of the network at each time step, simultaneously.
The n! sequential update schedules [MR01, Rei06] are block-sequential up-
date schedules with period equal to the size of the network (p = n). They
update only one node of the network at a time (∀i ∈ N/pN, |Bi| = 1).
For the sake of clarity, when a network is subjected to a block-sequential
schedule δ = (Bi)i∈N/pN, the nodes inside a subset of P are updated simul-
taneously and the subsets are iterated sequentially at each time step, from
B0 to Bp−1.
A non-classical way (but quite useful for proofs related to robustness of
update schedules) to represent a block-sequential update schedule is the
update graph introduced by Aracena et al. in [ADFM13a, ADFM13b,
AFMN11, AGMS09, AGS13]. On the basis of f a threshold Boolean network
and the unlabelled version of its interaction graph G′(f) = (V, I ′), where
I ′ = {(i, j) | (i, wj,i, j) ∈ I}i,j∈V , a labelled graph (G′(f), lab) is defined,
with lab : I ′ → {<,≥}. Given a block-sequential update schedule δ (seen
as a function δ : V → N/pN), Uδ(f) = (G′(f), lab) is the update graph
associated with δ if:

∀(i, j) ∈ I ′, lab(i, j) =

{
≥ if δ(i) ≥ δ(j)
< if δ(i) < δ(j)

.

An illustration of the concept of update graphs is given in Figure 2. From
this update graph, Aracena et al. obtained the following very interesting
result that gives strong insights on the role of block-sequential update sched-
ules on the possible dynamical behaviours of a network.
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Theorem 1 (Aracena et al. [AGMS09]). Let f be a Boolean network. Let
δ1 and δ2 be two block-sequential update schedules. If Uδ1(f) = Uδ2(f) then
F [δ1] = F [δ2].

Transition graphs Given a network f and a block-sequential update
schedule δ, the related transition graph is Gδ(f) = (Bn, Tδ), whose nodes
are network configurations and arcs are network transitions such that Tδ ⊆
Bn × Bn. Formally, if δ = (Bi)i∈N/pN,

Gδ(f) = (Bn, Tδ) where Tδ = {(x, F [δ](x)) | x ∈ Bn}.

A transition graph Gδ(f) represents the dynamics over time of network f
associated with update schedule δ (see Figure 3). From this graph, given
a configuration x ∈ Bn, the trajectory of x is the path (i.e., the transition
sequence) that starts in x. Since the number of configurations is finite
and F [δ] is a deterministic one-to-one function mapping Bn to itself, the
trajectory of x necessary ends up in a cycle of configurations, called an
attractor. In this framework, an attractor can be either a fixed point of
F [δ] (i.e., a stable configuration that repeats endlessly), or a limit cycle
of F [δ] (i.e., a sequence of recurrent configurations that repeats endlessly).
Remark that, from a more applied point of view, a transition graph could be
restricted to specific strict subsets of V depending on the observability of the
node states from which it could be relevant to compute and/or extract the
related restricted attractors. Moreover, notice also that a transition graph
can be extended by integrating all the intermediary visited configurations
resulted from the application of FBi , ∀Bi ∈ (Bi)i∈N/pN. It is then called a
complete transition graph.
Let us recall now seminal and general theoretical results on (i) the com-
putable features and (ii) the relations between the static (syntactic) and
dynamical (semantic) properties of networks.

Theorem 2 (Goles and Martinez [GM90]). The computational model of
Boolean networks is Turing-complete.

Theorem 3 (Goles and Martinez [GM90]). Let f be a Boolean network, π
the parallel update schedule and δ an arbitrary update schedule. If x ∈ Bn is
a fixed point of F [π], then x is a fixed point of F [δ].

Notice that the reciprocal of Theorem 3 is not true. A simple illustration
of this consists in considering the positive cycle presented in Figure 1 that
admits two fixed points, 000 and 111, when scheduled block-sequentially,
and that admits the four following fixed points 000, 010, 101, and 111 when
scheduled according to δ = ({2, 3}, {1, 3}, {1, 2}).

Theorem 4 (Robert [Rob86, Rob95]). Let f be a Boolean network associ-
ated with a directed acyclic interaction graph. Whatever the update schedule
δ, F [δ] admits a unique attractor that is a stable configuration.

6



111

011 101

110

000

001 100

010

000 111 100 011

010 101 001 110

000 111

010
100

110 001
011

101

Figure 3: Periodic dynamics of the network f defined in Figure 1: (left) Par-
allel graph transition G({1,2,3})(f); (centre) Block-sequential graph transition
G({1,2},{3})(f); (right) Sequential graph transition G({1},{2},{3})(f).

The following theorem gives a strong global relation between interaction
graphs and the existence of multi-stationarity of the underlying dynami-
cal systems. It originally comes from a conjecture of Thomas presented
in [Tho81], was proven in the context of block-sequential update schedules
by Aracena [ADG04] and then in the context of Thomas’ asynchronous rep-
resentation in [RRT08, RC07] before it was proven generally for any kind of
update schedule by Noual and Sené in [Nou12, Sen12].

Theorem 5. Let f be a Boolean network and G(f) its associated interac-
tion graph. Whatever the update schedule δ, if F [δ] admits several stable
configurations then G(f) contains a positive cycle.

3 Block-parallel threshold Boolean networks

In the previous section, we have emphasised that fair update schedules are
very interesting from a theoretical point of view. Indeed, given a network
f and its interaction graph G(f) = (V, I), they can make emerge pecu-
liar asymptotic dynamics, such as stable configurations that are not fixed
points of the parallel global transition function F [(V )]. However, on the
one hand, such an intrinsic mathematical richness seems to be too much
important from a more applied point of view directed toward the quali-
tative modelling of genetic regulation networks. Conversely, on the other
hand, block-sequential update schedules are not sufficiently rich to model
specific observed biological abilities. In particular, there exist some exam-
ples of genetic regulation networks in which a specific subnetwork plays a
role of “Zeitgeber” (i.e., a timer) having its own clock. For instance, in
Drosophila, this subnetwork consists in a small set of genes like TIME and
PER [Gol95, HHR90, SPMY94] exhibiting as its unique attractor a limit
cycle with its proper free-run period. This subnetwork influences other
groups of genes, each of them having their own biological functionalities.
Such a time command cannot be modelled by the classically studied block-
sequential update schedules, simply because they prevent from having up-
date repetitions of nodes in a same period of updates. Nevertheless, it can
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Figure 4: (left) Time diagram of the updates and (right) partial order
graph of the anteriorities defined from the block-parallel update schedule
δ = {(1), (2, 3), (4, 5, 6)}.

be modelled by another family of fair update schedules that we call block-
parallel update schedules which are the topic of this note.
Where a network f scheduled block-sequentially evolves so that the nodes are
updated simultaneously inside a block and the blocks themselves are iterated
sequentially, a network scheduled block-parallelly evolves conversely. The
blocks are iterated simultaneously and the nodes inside them are updated
sequentially. In other terms, where a block-sequential update schedule is
defined by an ordered partition of V (i.e., a finite sequence of non-empty
and disjoint subsets of V recovering V ), a block-parallel update schedule is
defined by a set of non-empty and disjoint finite sub-sequences Si of V whose
union of elements recovers V . Thus, a block-parallel update schedule can be
formally defined as δ = {Si}i∈{0,...,|δ|−1}, such that 1 ≤ |δ| ≤ |V |. Remark
that if |δ| = 1 (resp. |δ| = |V |), δ is a sequential (resp. the parallel) update
schedule. Furthermore, notice that this definition satisfies the assumptions
of a fair update schedule. Indeed, there exists a rewriting of any block-
parallel update schedule into a finite sequence of subsets of V , complying
with the dynamical properties of the underlying network. For instance,
consider an arbitrary network of size 6 with V = {1, ..., 6} and the following
block-parallel update schedule: {(1), (2, 3), (4, 5, 6)}. The updatings along
time of node states follow Figure 4(left), which corresponds exactly to the
following finite sequence of subsets of V :

({1, 2, 4}, {1, 3, 5}, {1, 2, 6}, {1, 3, 4}, {1, 2, 5}, {1, 3, 6}).

A block-parallel update schedule can also be represented by a graph δ ≡
(V,A) that is simply the partial order graph associated with the partial
order of the anteriorities defined by δ (see Figure 4(right)).
Remark that block-parallel and block-sequential update schedules are dis-
tinct families of fair update schedules having a non-empty intersection made
only of the block-sequential update schedules whose subsets have the same
cardinality. Moreover, the union of these two families does not coincide
with fair update schedules. Consider for instance a network f of 3 ele-
ments and δ = {(0, 1), (1, 2), (0, 1, 2)} that is not a block-parallel one since
the sub-sequences are not disjoint. Its rewriting as a sequence of subsets is
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f : W =


1 −2 −2 −2 0
−2 1 −2 −2 0
−2 −2 1 −2 0
0 0 0 1 −2
0 0 0 1 0

 Θ =


−ε
−ε
−ε
−ε
ε


−2

−2

−2

−2

+1

4 5+1

+1

−2
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+1 +1
G(f) :

3

1 2

Figure 5: (left) Definition of the genetic network controlling the plant growth
f with its interaction matrix W and its threshold vector Θ; (right) its asso-
ciated interaction graph G(f).

({0, 1}, {1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1}, {1, 2}) which does not correspond to
a block-sequential update schedule. However, it respects the definition of a
fair update schedule.

4 Applications to biology

Now the block-parallel update schedules have been introduced, let us high-
light their relevance in the qualitative modelling of biological regulation
networks. We present two applications, the first one in genetics and the
second one in physiology.

4.1 Genetic control of plant growth

The first example of a timer is the biological clock ruling the plant growth.
A very schematic view of the functioning of the genetic control of the plant
growth is to consider two components evolving independently. The first
one can be modelled as a sub-network made of three genes that correspond
to the localised expressions of the protein auxin (one of the plant growth
regulators). The first gene AUXa corresponds to the apical localisation,
the others correspond to the axillary bud localisations, AUX` for the left
bud and AUXr for the right bud. The second one can be modelled as a
sub-network localised in the cotyledon and composed of two genes: CCA
(Circadian Clock Associated gene) and TOC (Timing Of CAB expression
gene).
The dynamics of the plant growth is governed by the threshold Boolean
network f where AUXa ≡ 1, AUX` ≡ 2, AUXr ≡ 3, CCA ≡ 4 and TOC
≡ 5, defined in Figure 5 which is derived from [BMH15, TDN+04]. Now, the
idea is to focus only on the most realistic initial conditions for computing
the dynamical behaviour. These conditions have to integrate the following
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biological observations:

• In the first component, the apical auxin is the first expressed during
the plant growth. The other left and right bud auxins start at state 0
because the axillary buds are still not existing.

• In the second component, CCA is induced by photosynthesis (it starts
at state 1) and activates secondarily TOC [BMH15].

As a consequence, the most realistic initial configuration is 100 10. Let us
consider now the update schedule. First of all, concerning the timer compo-
nent, whatever the local update schedule, its dynamics remains the same.
So, for the sake of simplicity, we have chosen that CCA and TOC evolve
simultaneously. Now, concerning the auxin component, the messages trans-
mitted from AUXa to AUX` corresponds to the diffusion along the stem of
the auxin expressed by the gene AUXa. The same process can be observed
between AUX` and AUXr. As a consequence, a natural local update sched-
ule for this component is the sequential one ({AUXa}, {AUX`}, {AUXr}).
To sum up, a realistic global update schedule of f is the following block-
parallel one:

δ = {(1, 2, 3), (4), (5)} ⇐⇒ δ = ({1, 4, 5}, {2, 4, 5}, {3, 4, 5}),

whose partial order graph is

.
4 51 2 3

Exploiting all the knowledge given above about the networks, its interac-
tion graph and block-parallel update schedule, the trajectory of the initial
configuration is given in Figure 6(left). It leads to a limit cycle of period 4
(resp. of period 12 if we consider it in the complete transition graph as it is
the case in Figure 6 (left)) starting in 01 000, whose internal structure made
of every intermediary configuration comes from the combination of the three
fixed points of the auxin component and of the limit cycle of period 4 of the
timer component. Notice also that the sequential growth of the three parts
of the plant is correctly induced, in a uniform way. This regular scheme of
growth could correspond to the quasi-perfect growth of Araucaria araucana
which consists in the succession of triplets made of a central and two lateral
stems, as illustrated in Figure 6(right).

4.2 Cardio-respiratory regulation

The second example of a timer is the biological clock ruling the cardio-
respiratory regulation. As for the plant growth, the functioning of the phys-
iological process of this regulation can be described by two components. The
first one corresponds to the central vegetative system and plays the role of a
timer. It comprises inspiratory (I) and expiratory (E) neurons. The second
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100 10→ 000 11→ 000 01

→ 01000→ 01010→ 01011

→ 00001→ 10000→ 10010

→ 10011→ 00001→ 00100

→ 00110→ 00111→ 00001

→ 010 00

Figure 6: (left) Trajectory of configuration 100 10 of network modelling the
genetic control of plant growth governed by the biological timer made of
CCA and TOC; (right) Example of the growth of Araucaria araucana made
by the succession the triplets corresponding to an apical and two lateral
stems.

component is peripheral. It comprises the sino-atrial node ruling the heart
activity (S) and the baroreceptor located at the exit the left ventricle (B).
The dynamics of the cardio-respiratory regulation is governed by the network
g where E ≡ 1, I ≡ 2, B ≡ 3, and S ≡ 4, defined in Figure 7 and derived
from [Bea01, DKI+, DGNM10, MMZ14]. Here also, let us consider the
realistic initial condition 00 00 that corresponds to the end of an expiration
just before the activity start of inspiratory neurons, and to low levels of the
sino-atrial and baroreceptor activities.
The local updating schedule of the timer is similar to that of a plant growth.
That of the second component comes from the information transmission from
S to B thanks to the blood flow. It is consequently sequential and defined
by ({S}, {B}). To sum up, the realistic global update schedule of g is the
following block-parallel one:

δ = {(1), (2), (4, 3)} ⇐⇒ δ = ({1, 2, 4}, {1, 2, 3}).

The trajectory of initial realistic configuration 00 00 is

00 00→ 01 00→ 11 00→ 10 01→ 0011→ 0111→ 1101→ 1001→ 00 11.

It suggests that the cardio-respiratory network presents a limit-cycle of pe-
riod 2 (resp. of period 4 if we consider it in the complete transition graph
as it is the case above with black and gray bold configurations) decomposed
into two phases as in the real biological functioning. It is composed of the
succession of the activity periods of the two families of central neurons (E
and I) that are both inactive and then active, and that can hence trigger
the two intermediary inspiratory and expiratory phases. For the peripheral
activity, we can observe a constant sino-atrial activity inducing an impor-
tant cardiac activity at the end of the expiration and during the inspiration
that is reduced after the inspiration and during the expiration. Such an
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g : W =


0 2 0 −1
−2 1 1 0
0 −1 0 1
1 0 −1 2

 Θ =


ε
−ε
ε
ε


3

G(g) :

+12

+1 +1

4

1

−1

−2

+2

−1

+1

−1

+1

Figure 7: (left) Definition of the physiologic network g controlling the cardio-
respiratory regulation with its interaction matrix W and its threshold vector
Θ; (right) its associated interaction graph G(g).

observation could refer to the idea of a qualitative model for the well known
phenomenon called cardiac sinusal arrhythmia.
A relevant characteristics of the network g is that the reduction of the in-
fluence of the sino-atrial node on itself, by changing w4,4 = 2 to w4,4 = 1
suffices to retrieve the normal cardiac functioning with no sinus arrhythmia.
Indeed, in this case, the trajectory of 00 00 becomes:

00 00→ 01 00→ 1100→ 1001→ 0011→ 0110→ 11 00.

However, this trajectory highlights a phase shifting of the cardiac activity
with respect to the firing of respiratory neurons of the vegetative system,
which does not comply with the biological assumptions. As a consequence,
a refining of the model seems to be required, which paves the way for further
modelling studies.

5 Conclusion and open problems/questions

This position paper aimed at putting the focus on block-parallel schedules
and highlighting especially their ability to model autonomous timers that
govern the dynamics of impacted sub-networks, for underlining their perti-
nence from a biological modelling point of view with respect to “Zeitgebers”
(timers). Beyond the modelling interest, these modes seem also to have
very interesting theoretical properties that deserve without any doubt to
be studied in depth from mathematical and theoretical computer science
points of view, as it has been the case for block-sequential update schedules.
Eventually, in order to illustrate our purpose, let us present open prob-
lems/questions which, if addressed, could lead to relevant advances in both
theoretical and applied frameworks:

• In [GN10], the authors showed that any block-sequential isolated pos-
itive or negative cycle can be simulated by a smaller parallel cycle of
same sign. So, a natural question is to understand if a similar prop-
erty holds for block-parallel and another schedule that the parallel
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one. Indeed, it is easy to see that the repetition of at least one node
updating is a lock here and that consequently, generally speaking, a
block-parallel cycle cannot be simulated by a smaller parallel cycle. As
a consequence, the open question is: as the parallel is the canonical
block-sequential update schedule for Boolean cycles, does there exist
a canonical block-parallel update schedule?

• In [DNS12], by basing themselves on the result of [GN10], the authors
proved all the combinatorial transient and asymptotic properties of
parallel Boolean cycles. If a positive answer is found to the previous
open question leading to the definition of a canonical block-parallel
update schedules, it will be crucial to lead a similar combinatorial
study to obtain a perfect knowledge of cycles in this context since
the latter remain important in this framework in terms of dynamical
complexity.

• As presented in the note, in [ADFM13b, AFMN11, AGMS09], the au-
thors introduced block-sequential update graphs. This graph is of real
interest since it allows to know efficiently if a network associated with
two block-sequential update schedules admits an equivalent dynamics
(see Theorem 1). In order to prove similar equivalence properties in
the context of block-parallel update schedules, it seems that it would
be of great interest to develop the concept of block-parallel update
graphs. Can such a concept be found? If yes, given a network f and
a block-parallel update schedule δ, is it as easy to define/construct as
for block-sequential update schedules?

• Concerning the attractors of block-parallel models with timers of real
biological networks, are the complete limit cycles (i.e., the limit cycles
including intermediary configurations) always made of an alternation
of the attractors projected on the nodes of the peripheral sub-networks
provoked by the period of the limit cycle(s) of the timer(s)? Even
if it seems to be efficient, does nature tend to classically use such
timers/processes to make biological networks able to oscillate between
attraction basins and thus create functional rhythms? To answer to
these questions, a statistical study in depth of well known networks
modelling biological rhythms will be necessary.
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the number of update digraphs and its relation with the feed-
back arc sets and tournaments. Discrete Applied Mathematics,
161:1345–1355, 2013.

[ADG04] J. Aracena, J. Demongeot, and E. Goles. Positive and negative
circuits in discrete neural networks. IEEE Transactions on
Neural Networks, 15:77–83, 2004.
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réseaux de régulation génétique. PhD thesis, Université Joseph
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