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Abstract

In this paper we study the dynamical behavior of Boolean networks with firing memory,
namely Boolean networks whose vertices are updated synchronously depending on their
proper Boolean local transition functions so that each vertex remains at its firing state
a finite number of steps. We prove in particular that these networks have the same
computational power than the classical ones, i.e. any Boolean network with firing memory
composed of m vertices can be simulated by a Boolean network by adding vertices. We
also prove general results on specific classes of networks. For instance, we show that the
existence of at least one delay greater than 1 in disjunctive networks makes such networks
have only fixed points as attractors. Moreover, for arbitrary networks composed of two
vertices, we characterize the delay phase space, i.e. the delay values such that networks
admits limit cycles or fixed points. Finally, we analyze two classical biological models
by introducing delays: the model of the immune control of the λ-phage and that of the
genetic control of the floral morphogenesis of the plant Arabidopsis thaliana.
Keywords: Discrete dynamical systems, Boolean networks, Biological network modeling

1 Introduction

In the context of gene regulation modeling, the choice of the methodology highly depends on
the nature of the underlying real system and on the objective of the study, that can be oriented
towards quantitative or qualitative analysis of the dynamical behaviors of the networks. From
the qualitative point of view, Boolean networks (BNs) are one of the simplest model and for
more than forty years, they have been used to analyze and understand several biological
phenomena. Notably, several BN models of real biological systems have become popular:
the immunity control network of bacteriophage λ [44], the floral morphogenesis network of
Arabidopsis thaliana [30], the fission yeast cell-cycle network [9], the budding yeast cell-cycle
network [26], the mammalian cell-cycle network [15], the p53-mdm2 network [7], and the
blood cancer large granular lymphocyte (T-LGL) leukemia network [51].
Introduced by Kauffman at the end of the 1960’s [24] by generalizing the classical formal neural
networks of McCulloch and Pitts [28], this model consists in a network where the vertices
represent genes that can be expressed (or active, i.e. vertex value 1) or not (inactive, i.e.
vertex value 0), and the edges represent regulatory relations between the genes. The dynamics
of a network is then given by a set of Boolean functions, one for each vertex. Starting from any
of the 2n possible configurations (a configuration being a vector of Bn = {0, 1}n), for a network
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composed of n vertices, the dynamics of the network eventually converges towards ordered
sets of recurrent configurations that repeat endlessly and periodically which we classically call
attractors. When an attractor is composed of one configuration, it is called a fixed point;
when it is composed of at least two configurations, we call it a limit cycle. Attractors are
particularly relevant in the context of biological modeling because they are used to represent
differentiated cellular types or tissues (in the case of fixed points) and biological rhythms or
oscillations (in the case of limit cycles).
One of the characteristics of BNs is that they are associated with an update mode that defines
the way vertices update their states along time. The parallel mode in which all the vertices are
updated at each time step is canonical (i.e. it is directly derived from the network definition)
and belongs to the class of block-sequential update modes [10, 20, 40]. Block-sequential
modes are deterministic and periodic and are defined by ordered partitions of the set of
vertices. Another classical approach in the domain is to consider non-deterministic (and non-
stochastic) update modes like the asynchronous one [36, 39, 45] (stochastic asynchronicity,
however, has been well studied in the context of cellular automata [12, 13, 14, 35]). Numerous
studies have focused on the influence of update modes on the dynamical behaviors. From the
theoretical point of view, among the most impacting analyses are [4, 3, 19] in the context
of deterministic modes and [34] in that of non-deterministic ones. In both of these, the very
relevance comes from the fact that the authors succeeded in explaining the influence of update
modes on the dynamics of BNs by relating it to their static structures. From the applied point
of view, the dynamical behaviors of many biological networks with different update schemes
have been studied [11, 18, 31, 41, 42]. This manner of studying the dynamical behaviors of
biological networks is desirable when searching for biologically meaningful updating modes.
However, as a matter of fact, although it is deeply interesting and relevant from formal points
of view like mathematical and computational ones, this manner that consists in studying
biological networks by considering as much updating schemes as possible is rather tedious
(due to the infinite number of updating schemes, an updating scheme being defined from a
general point of view as a function associating any subset of nodes with each time step of
N, i.e. an infinite sequence of subsets of nodes) when the objective is fixed on the biological
matter. Another approach that allows adding asynchronicity is based on the concept of delay.
In the context of discrete modeling of biological regulation networks, among the first who
have introduced delays is certainly Thomas [46, 47, 48] whose works have been followed by
many other in different frameworks [1, 5, 16, 37, 38]. Here, we make choice using a distinct
approach based on considering BNs with memory, as the model studied in [22, 23] that was
initially developed by Graudenzi and Serra under the name of gene protein Boolean networks
(GPBNs) [21]. As this name suggests, in this model, each vertex of the classical Boolean
network is decoupled into both a gene vertex and a protein vertex, so that each pair of such
vertices is associated with a decay time that acts as a memory standing for the number of
steps during which the protein vertex remains active.
In the seminal papers [22, 23], the authors focus on the provision of the memory effect due the
addition of decay times. In particular, thanks to numerical simulations, they highlight very
interesting properties: the memory effect significantly affects the robustness of the computa-
tional model itself against state perturbations, with respect to the classical model of random
BNs; the more the maximum decay time value, the less the network admits asymptotic de-
grees of freedoms, i.e. attractors; higher values of the maximum decay time results in longer
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limit cycles associated to attraction basins that are more ordered than in the case of (random)
BNs.
From this, we are convinced that this model deserves to be deeply studied, from both theo-
retical and applied points of view. That is what we propose to do in this paper, by following
a constructive approach. Indeed, we will see that the GPBN model proposed by Graudenzi et
al. is not more powerful than that of classical BNs from a strictly computational standpoint.
Doing so, we will develop another equivalent intermediate representation merging gene and
protein vertices that simplify substantially the phase space. This representation will be called
Memory Boolean networks (MBNs). We will also focus on specific classes of networks and
pay particular attention to two genes networks which, despite their small size, allow acquiring
much knowledge about the model. In addition, under a biological context, network tradition-
ally are small, for example: Quorum-sensing systems in the plant growth-promoting bacterium
(5 nodes) [52], lac operon in Escherichia coli (10 nodes, which can be even further reduced
to 3 nodes) [49], oxidative stress response (6 nodes) [25]. Furthermore, there are examples
where no prior knowledge (key genes) is available, and therefore, key genes cannot be selected
from the hundreds or thousands of genes beforehand. In these cases, small Boolean networks
have been inferred, where the nodes are metagenes (a group of genes that have similar co-
expression patterns) identified via clustering in an earlier stage of the analysis, for example,
the network of Arabidopsis thaliana saline stress response (12 meta genes nodes, originally
569 genes that were differentially regulated due to salt exposure) [43]. Eventually, a pertinent
constructive track initiated by Alon et al. [27, 33, 50] to achieve a better understanding of
genetic networks consists in viewing them as compositions of small regulation motifs of 2 or 3
nodes (considered as “building blocks of complex networks”) that deserve to be studied per se
before tackling their compositions. As a consequence, theoretical analyses of small networks
are of interest in the context of modeling.
This theoretical part will be followed by applications to two real biological systems: the
immune control of the λ-phage and the genetic control of the floral morphogenesis of the
plant Arabidopsis thaliana.

2 The models

2.1 Definitions and notations

2.1.1 Boolean networks (BNs)

A BN F of size n, i.e. composed of n genes, is a collection of n Boolean local tran-
sition functions such that F = (fi : Bn → B, fi(x) 7→ xi)i∈{1,...,n}, where x denotes a
configuration of F , and xi denotes the state of gene i. In a function fi, consider it be-
ing minimal, if there is a positive (resp. negative) literal, for instance xj (resp. ¬xj),
this means that gene j tends to activate (resp. inhibit) gene i. In other terms, the state
of i tends to mimic (resp. negate) that of j. From this can be easily derived a digraph
G = (V,E) where the vertex set is V = {1, . . . , n} and where E = {(j, s, i) | s = + (resp. s =
−) if xj (resp. ¬xj) appears in the definition of fi}. Such a graph G is called the interac-
tion graph of F . As in Kauffman’s seminal work [24], let us consider for now on that BNs
evolve in such a way that every gene updates its (expression) state at each time step, i.e.
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x1 x2 f1 f2

0 0 0 0
0 1 0 0
1 0 1 1
1 1 0 0

00 01

10 11

(a) (b) (c)

Figure 1: (a) Interaction graph, (b) truth tables of its local transition functions and (c)
transition graph of the BN composed of two genes 1 and 2, defined by the local transition
functions f1(x) = f2(x) = x1 ∧ ¬x2. The transition graph shows that this BN admits only
one attractor, fixed point (0, 0).

in parallel. In this specific framework, the (global) dynamics of a BN F is simply given by
∀x ∈ Bn, F (x) = (f1(x), f2(x), . . . , fn(x)), and can be written (by emphasing time steps):
∀i ∈ V,∀t ∈ N, xi(t + 1) = fi(x(t)). Such a dynamics can be represented by its transition
graph that is the digraph G = (Bn, F ) (see Figure 1). This graph represents more precisely
the trajectories of all configurations towards attractors that are either fixed points or limit
cycles as explained in the introduction.

2.1.2 Gene protein Boolean networks (GPBNs)

GPBNs were presented in [21]. A GPBN F can be viewed similarly to a BN by its in-
teraction graph G = (V,E), where each vertex of V is decoupled into a gene and its as-
sociated protein. So, each gene of the network is strictly linked to a unique and specific
protein. The vertex set is defined as V = {G1, . . . , GN , P1, . . . , PN} and the Boolean local
transition functions are given by (fGi , fPi : BN → B)i∈{1,...,N}. Let us consider configuration
x = (xG1 , . . . , xGN

, xP1 , . . . , xPN
). If xGi = 1 (resp. 0) then it means that gene Gi is expressed

or active (resp. unexpressed or inactive), and if xPi = 1 (resp. 0), it means that protein Pi is
present (resp. absent) in the underlying cell. Every protein Pi, with 1 ≤ i ≤ N , is associated
with a decay time dti ∈ N. This decay time dti defines the number of time steps during which
Pi remains present in the cell after having been produced by the punctual expression of gene
Gi. Moreover, in this model, a delay of one time step is considered between a gene punctual
expression and a protein for it to be considered as present.
Formally, the global dynamics of a GPBN F is defined as ∀x ∈ Bn, with n = 2N, F (x) =
(fG1(x), . . . , fGN

(x), fP1(x), . . . , fPN
(x)), where ∀i ∈ {1, . . . , N} and for any time step t ∈ N:

xGi(t + 1) = fGi(x(t)) and xPi(t + 1) =

{
1 if ∆i(t+ 1) ≥ 1

xGi(t) if ∆i(t+ 1) = 0
,
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with: 

∆i(0) =

{
0 if xPi(0) = 0

α ∈ {1, . . . , dti} if xPi(0) = 1

∆i(t+ 1) =


0 if xGi(t) = 0 ∧∆i(t) = 0

∆i(t)− 1 if xGi(t) = 0 ∧∆i(t) > 0

dti if xGi(t) = 1

.

2.1.3 Memory Boolean networks (MBNs)

In this paper, we propose a new model, that of MBNs. A MBN is defined by a digraph G =
(V,E), with V = {1, . . . , n} and the Boolean local transition functions (fi : Bn → B)i∈{1,...,n}.
To this model is added a vector of delays dt ∈ (N\{0})n such that a firing vertex i will remain
at state 1 during dti time steps. Given an initial condition x(0) ∈ {0, 1}n we consider the
delays of each vertex so that ∆i(0) = 0 if xi(0) = 0 and ∆i(0) ∈ {1, . . . , dti} if xi(0) = 1.
More formally, a MBN is defined as ∀x ∈ Bn, F (x) = (f1(x), f2(x), . . . , fn(x)), where the
update is:

xi(t+ 1) =

{
1 if ∆i(t+ 1) ≥ 1

fi(x(t)) if ∆i(t+ 1) = 0
,

and the delays are:

∆i(t+ 1) =


0 if fi(x(t)) = 0 and ∆i(t) = 0

∆i(t)− 1 if fi(x(t)) = 0 and ∆i(t) > 0

dti if fi(x(t)) = 1

.

In the sequel, we will use an abuse of notation for not burdening the reading. Rather than
decoupling the state xi ∈ B of a vertex i from its associated delay dti ∈ N, we will simply
change the notation into xi ∈ {0, . . . , dti} so that, for all i ∈ V , if xi = 1 and dti = 2, we
will usually write xi = 2. Due to this abuse of notation, if we consider for instance a MBN of
size 3 such that dt = (2, 1, 1), configuration x at time step t denoted by x(t) = (2, 0, 1) stands
for the Boolean configuration (1, 0, 1) (with dt = (1, 1, 1)) in the model such as it has been
formally defined above.

2.2 Equivalence(s) between BNs, GPBNs, MBNs

Definitions of BNs, GPBNs and MBNs above emphasize that these models match on many
aspects. Here we will show that these models are equivalent in the following sense: given
a GPBN F , it is always possible to build a MBN F ′ and a BN F̃ ′ such that F , F ′ and F̃ ′

admit equivalent asymptotic behaviors, in terms of type and number of attractors (of course,
the attractors are not exactly composed of the same recurrent configurations because of the
compression induced by the construction).
First, let us analyze the equivalence between GPBNs and MBNs that have similar charac-
teristics (as delay memory). Now, if we eliminate the intermediate translation of the genetic
state 1 to the protein state from the GPBN framework, both behaviors are the same. More

5



P2

G1

G2

−

+

−

+

P1

xP1 xP2 xG1 xG2 fP1 fP2 fG1 fG2

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
2 0 0 0 1 0 1 1
2 1 0 0 1 0 0 0

0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 0
1 0 0 1 0 1 1 1
1 1 0 1 0 1 0 0
2 0 0 1 1 1 1 1
2 1 0 1 1 1 0 0

0 0 1 0 2 0 0 0
0 1 1 0 2 0 0 0
1 0 1 0 2 0 1 1
1 1 1 0 2 0 0 0
2 0 1 0 2 0 1 1
2 1 1 0 2 0 0 0

0 0 1 1 2 1 0 0
0 1 1 1 2 1 0 0
1 0 1 1 2 1 1 1
1 1 1 1 2 1 0 0
2 0 1 1 2 1 1 1
2 1 1 1 2 1 0 0

2111

11110111

1001 2001

1011

2000

2011

2010 1010

0010

0110 1110 2110

1000

2100

0011

0000

0100

1100

21010001

0101 1101

(a) (b) (c)

Figure 2: (a) Interaction graph, (b) transition tables of its local transition functions and (c)
transition graph of the GPBN of Example 1, with dt = (2, 1).

precisely, if in the GPBN model we define fi : BN → {0, 1} as

∀i, xi(t+ 1) = fi(x(t)) =

{
1 if ∆i(t+ 1) ≥ 1

fGi(x(t)) if ∆i(t+ 1) = 0
,

and we take x = (x1, . . . , xN ) where, ∀i ∈ {1, . . . , N}, xi = xPi and

∆i(0) =

{
0 if xi(0) = 0

α ∈ {1, . . . , dti} if xi(0) = 1

∆i(t+ 1) =


0 if fGi(x(t)) = 0 and ∆i(t) = 0

∆i(t)− 1 if fGi(x(t)) = 0 and ∆i(t) > 0

dti if fGi(x(t)) = 1

,

we get the MBN model.

Example 1. Consider the GPBN defined by means of the local transition functions fG1 =
fG2 = xP1 ∧ ¬xP2 and delay vector dt = (2, 1). The interaction graph of this network in
Figure 2.a. Denoting each state xPi = k when xPi = 1 with variable memory k, i.e. if delays
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Figure 3: (a) Interaction graph, (b) transition tables of its local transition functions f1 and
f2 and (c) transition graph of the MBN related to the GPBN given in Example 1.

dt = (dt1, dt2) = (2, 1) then (xP1 , xP2) ∈ {0, 1, 2} × {0, 1}, then we transform the model into
this equivalent form in which delays are integrated to the protein states:

xP1(t+ 1) =

{
∆1(t+ 1) if ∆1(t+ 1) ≥ 1

xG1(t) if ∆1(t+ 1) = 0
and xP2(t+ 1) = xG2(t).

Figures 2.b and c picture the dynamical behavior of the GPBN, emphasizing the existence
of two attractors, the fixed point (0, 0, 0, 0) and a limit cycle of size 3. Now, by eliminating
the intermediate translation from gene state 1 to the protein state, this GPBN can be easily
transformed into a MBN whose vertex set is V = {P1, P2}, local transition functions are:

xPi(t+ 1) = fi(x(t)) =

{
1 if ∆i(t+ 1) ≥ 1

xP1(t) ∧ ¬xP2(t) if ∆i(t+ 1) = 0
,

and delay vector is dt = (2, 1), as pictured in Figure 3.

Now, let us see to what extent the MBN model is equivalent to the BN model. To do
so, let us consider a MBN F defined over an interaction graph G = (V = {1, . . . , n}, E)
with n Boolean functions (f1, . . . , fn) and delay vector dt. The idea is to find a BN F̃
without delays that simulates the asymptotic dynamics of F . To do so, to every vertex
v ∈ V we associate a set of vertices {[v, 1], . . . , [v, dtv]}, consider the neighborhood of vertex
v, Nv = {j ∈ V | (j, v) ∈ E} = {j1, . . . , jr}. So in the new network (constructed by replacing
each vertex v by a set of dtv vertices) we consider the following Boolean functions:

∀v ∈ V, f̃[v,dtv ](x[1,1], . . . , x[n,dtn]) = fv(x[j1,1], . . . , x[jr,1])

f̃[v,dtv−1](x[1,1], . . . , x[n,dtn]) = fv(x[j1,1], . . . , x[jr,1]) ∨ x[v,dtv ]
...

f̃[v,1](x[1,1], . . . , x[n,dtn]) = fv(x[j1,1], . . . , x[jr,1]) ∨ x[v,2]

,

where the evolution of F̃ is such that x̃[v,dtv ](t+ 1) = fv(x[j1,1](t), . . . , x[jr,1](t)) and x̃[v,a](t+
1) = fv(x[j1,1](t), . . . , x[jr,1](t)) ∨ x[v,a+1](t), 1 ≤ a < dtv. This construction emphasizes an
injective encoding φ of MBNs into BNs such that for any configuration x of F , if x 7→ F (x)
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f̃[1,1](x) = (x[1,1] ∧ x[2,1]) ∨ x[1,2]
f̃[1,2](x) = x[1,1] ∧ x[2,1]
f̃[2,1](x) = x[1,1] ∧ x[2,1]

+

−++
−

−

+

[1, 2]

[1, 1]

[2, 1]

≡


f1(x) = x1 ∧ ¬x2
f2(x) = x1 ∧ ¬x2
dt = (2, 1)

−

+ −1 2

+

Figure 4: (left) Interaction graph and local transition functions defining the MBN of Exam-
ple 1 and (right) its associated and equivalent BN.

x[1,1] x[1,2] x[2,1] f[1,1] f[1,2] f[2,1]

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 1 0 1 1 1
1 1 1 1 0 0

000

011010

001 100

110 111

101

(a) (b)

Figure 5: (a) Truth tables of the local transition functions f[1,1], f[2,1], f[1,2] and (b) transition
graph of the BN constructed in Figure 4 that is equivalent to the MBN of Example 1.

then x̃ = φ(x) 7→ F̃ (φ(x)) = F̃ (x̃), where x̃ is a configuration of F̃ . Thus, if there exists a
fixed point (resp. a limit cycle) among the attractors of F , F̃ admits also a fixed point (resp.
a limit cycle) that is the encoding of the latter according to the given construction.

Example 2. Let us consider the MBN of Example 1, in which we rename each protein vertex
Pi by its index i such that V = {1, 2}. From the construction given above, we obtain its
related BN as pictured at the right of Figure 4 whose local transition function truth tables
and transition graph are illustrated in Figure 5.
Notice that by construction of our simulation, x[1,1](t) = 0 implies that x[1,2](t) = 0. More
precisely, x[1,1](t) = 0 ⇐⇒ x[1,1](t) = f1(x[1,1](t−1), x[2,1](t−1))∨x[1,2](t−1) = 0 that implies
that x[1,2](t− 1) = 0 and f1(x[1,1](t− 1), x[2,1](t− 1)) = 0. As a consequence, since x[1,2](t) =
f1(x[1,1](t−1), x[2,1](t−1)) = x[1,1](t) = 0, the configurations x = (x[1,1], x[1,2], x[2,1]) = (0, 1, a),
with a ∈ {0, 1}, are artefacts of the construction and are not real parts of the dynamical
behavior.

2.3 Some particular classes of MBNs

In this section, we present general results that hold for specific classes of MBNs. For our
purpose, let us first focus on the class of positive disjunctive MBNs, i.e. MBNs in which every
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vertex is associated with a local transition function composed only of the Boolean operator
or with no negated variables. Before presenting any result, let us give two definitions [6].
First, the index of imprimitivity η(G) of a strongly connected digraph G is the greatest
common divisor of the lengths of all cycles of G. Second, the adjacency matrix M of a
strongly connected digraph G is primitive if and only if M is an irreducible square matrix for
which there exists a positive integer m such that ∀k ≥ m, Mk is a strictly positive matrix.
These definitions are related by the fact that, given a strongly connected digraph, its index
of imprimitivity equals 1 if and only if its adjacency matrix is primitive. Proposition 1 below
emphasizes that such networks cannot admit limit cycles.

Proposition 1. Let F be a strongly connected positive disjunctive MBN and let G = (V,E)
be its interaction graph. If F is such that at least one vertex v admits a delay greater than
1 (dtv ≥ 2), then F does not have any limit cycle and can only converge towards two fixed
points: (0, . . . , 0) and (dt1, . . . , dtn).

Proof. Let us consider F such that it is composed of a vertex v0 ∈ V of delay dtv0 ≥ 2.
Following the construction proposed above, we can obtain a BN F̃ of interaction graph G̃ =
(Ṽ , Ẽ) that simulates F . G being strongly connected by hypothesis, v0 belongs to a cycle C
in G. Let us admit that C is of length q and such that:

C = v1 . . . vq−1v0 .

From this, we derive that, in G̃, there are at least the two following cycles C̃ and C̃ ′ (the
latter being the direct consequence of dtv0 ≥ 2):

C̃ = [v0, 1] [v1, 1] . . . [vq−1, 1]

and:

C̃ ′ = [v0, 1] [v0, 2] [v1, 1] . . . [vq−1, 1] ,

of respective lengths |C̃| and |C̃ ′| such that |C̃ ′| = |C̃|+1, which implies that gcd(|C̃|, |C̃ ′|) = 1.
Thus, η(G̃) = 1 and F̃ is primitive. In this context, this means that for every configuration
x 6= (0, . . . , 0), there exists t ∈ N such that x(t) = x · M̃ t = (1, . . . , 1), where M̃ is the
adjacency matrix of G̃ [17]. As a result, F̃ does not admit any limit cycle but two fixed points
(0, . . . , 0) and (1, . . . , 1). From this, and because of the disjunctive nature of the underlying
MBN, the only attractors of F are (0, . . . , 0) and (dt1, . . . , dtn).

Example 3. In order to illustrate Proposition 1, let us consider the positive disjunctive BN
defined as (f1(x) = x2, f2(x) = x1 ∨ x3, f3(x) = x2). This BN admits three attractors: the
fixed points (0, . . . , 0) and (1, . . . , 1) and the limit cycle 010 � 101. Consider now the related
MBN with the same local transition functions in which dt = (2, 1, 1). For this network, the
only attractors are (0, . . . , 0) and (2, 1, 1).

Because positive disjunctive BNs may admit fixed points and limit cycles (cf. Example 3),
Proposition 1 highlights that the introduction of “memory” may freeze the dynamics (i.e. limit
cycles may disappear). Now, the question is to know if this freezing property is invariant under
the addition of delays. Proposition 2 below shows that it is true for digraphs with no cycles
except possibly positive loops. Notice that this result is an extension of that of Robert [40]
about acyclic BNs.
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Proposition 2. Let F be a BN whose interaction graph G = (V,E) such that |V | = n does
not induce cycles except possibly positive loops. Every MBN built on F admits only fixed
points.

Proof. With or without positive loops, G can be represented by layers of different depths as a
classical directed acyclic graph. Now, let us focus on the first layer L1 = {i | fi(x) is constant ∨
fi(x) = xi} , i.e. the layer that contains only vertices that are either source vertices or mimic
vertices. By definition of the local transition functions, all the vertices of this layer will remain
fixed after at most maxi∈L1(dti) time steps. Once fixed, an induction on the layers depths
suffices to show that the stability of the whole MBN is reached and, considering that there
are k layers in the graph, that it is reached in at most

∑k
j=1 maxi∈Lj dti time steps.

The BN class of the previous proposition is not the only one for which the freezing property
remains invariant. As Proposition 3 states, it is also the case for decreasing (resp. increasing)
BNs that are such that ∀x ∈ Bn, F (x) ≤ x (resp. F (x) ≥ x), where F (x) ≤ x (resp. F (x) ≥ x)
if and only if ∀i ∈ {1, . . . , n}, fi(x) ≤ xi (resp. fi(x) ≥ xi).
Proposition 3. Let F be a decreasing (resp. increasing) BN. Any MBN associated to F
necessarily converges towards fixed points only.

Proof. Let us consider the case of a decreasing BN F where ∀x ∈ Bn, F (x) ≤ x. Such a
global transition function implies locally that if xi = 0, it remains at that state because no
transitions from state 0 to state 1 are possible. As a consequence, whatever the delay vector
dt we decide to associate to F to create a MBN, the network cannot admit limit cycles. The
case of an increasing BN is analogous.

However, despite the two classes previously presented, there obviously exist MBNs for which
the introduction of “memory” does not lead to freeze their dynamics. For instance, Figure 1
depicts a BN of size 2 that admits only one fixed point, configuration (0, . . . , 0). Figure 3
pictures the related MBN with dt = (2, 1) in which a limit cycle of length 2 appears. Another
more general example follows. Let us consider the BN F : Bn → Bn defined as:

F (x) =


(0, . . . , 0,

a b
0,1, 0, . . . , 0) if x = (0, . . . , 0,

a b
1,0, 0, . . . , 0)

(0, . . . , 0,
a b
1,0, 0, . . . , 0) if x = (0, . . . , 0,

a b
1,1, 0, . . . , 0)

(0, . . . , 0) otherwise

.

Clearly, this BN converges towards the fixed point (0, . . . , 0). However, adding delay can make

a limit cycle appear. For instance, consider the associated MBN such that dt = ((1, . . . , 1)
a
2

(1, . . . , 1)), i.e. ∀i 6= a, dti = 1 and dta = 2. It is easy to see that this MBN admits a limit

cycle of length 2 that is: (0, . . . , 0,
a b
1,1, 0, . . . , 0) � (0, . . . , 0,

a b
2,0, 0, . . . , 0).

3 MBN with two genes

In this section, we analyze the dynamical behavior of every network composed of two vertices
that admit fixed points. The idea is to highlight some of the main theoretical features of such
interaction networks, which constitutes a first step for further formal studies of more general
MBNs.
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x [1,00] [2,00] [3,00] [4,00] [5,00] [6,00] [7,00] [8,00] [9,00]

00 00 00 00 00 00 00 00 00 00
01 00 00 00 00 00 00 00 00 00
10 00 00 00 01 01 01 11 11 11
11 00 01 10 00 01 10 00 01 10

x [10,00] [11,00] [12,00] [13,00] [14,00] [15,00] [16,00] [17,00] [18,00]

00 00 00 00 00 00 00 00 00 00
01 10 10 10 10 10 10 10 10 10
10 00 00 00 01 01 01 11 11 11
11 00 01 10 00 01 10 00 01 10

x [19,00] [20,00] [21,00] [22,00] [23,00] [24,00] [25,00] [26,00] [27,00]

00 00 00 00 00 00 00 00 00 00
01 11 11 11 11 11 11 11 11 11
10 00 00 00 01 01 01 11 11 11
11 00 01 10 00 01 10 00 01 10

Table 1: Exhaustive list of the 27 BNs that admits configuration (0, 0) as their unique fixed
point.

3.1 Networks admitting one fixed point

Here, we focus on networks that admit a unique fixed point. Because the other cases can be
studied similarly (and do not reveal other dynamical peculiarities), we pay only attention to
networks that converge towards the fixed point (0, 0). First of all, it is trivial to list all the
27 BNs that admit (0, 0) as their unique fixed point. For the sake of clarity, let us introduce
the following notation that allows to specify the 27 distinct networks at stake here.

Notation 1. [k,x], with k ∈ {1, . . . , 27} and x ∈ B2, denotes the network of size 2 whose local
transition functions are represented by k and defined by their truth tables in Table 1 and that
admits x as its unique fixed point (represented as a binary word).

Let us also denote by F[x] the set composed of all BNs that admit x as their unique fixed
point, FP[x] ⊆ F[x] the set of BNs for which x is the unique attractor, and LC[x] ⊆ F[x] the
set of BNs that admit at least a limit cycle.
From now on, let us analyze the dynamical behavior of networks belonging to F[x]. Notice that
in general, besides the fixed point x, a BN may (or may not) admit limit cycles. The peculiar
question that we address now deals with the asymptotic behavior invariance when we add
delays to a BN and thus change it into a MBN. Actually, what follows aims at determining the
delay vectors dt = (dt1, dt2) for which a given network f ∈ F [x] admits a particular attractor
(say the fixed point x, or a limit cycle which appears only when delays are added). First of
all, it is easy to see from Table 1 that

FP[00] = {[1, 00], [2, 00], [3, 00], [4, 00], [5, 00], [6, 00], [7, 00], [8, 00],

[10, 00], [11, 00], [12, 00], [16, 00], [19, 00], [21, 00], [22, 00], [25, 00]},

and that

LC[00] = {[9, 00], [13, 00], [14, 00], [15, 00], [17, 00], [18, 00],

[20, 00], [23, 00], [24, 00], [26, 00], [27, 00]}.

11
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Figure 6: Interaction graphs of all the networks that admit (0, 0) as a fixed point, whose local
transition functions are given in Table 1. In some of these graphs, abusing notations for not
burdening the reading, an arc (x, y) that is labeled by ± stands for the actual existence of
two arcs from x to y, one labeled by +, the other by −. Such an arc highlights notably that
the local transition function of y is not locally monotonic, and more precisely a xor (denoted
by the operator ⊕) in this case.

Notation 2. In what follows, we will make particular use of the following notations:

• Delay vector dt = (dt1, dt2) will be denoted by dt = (α, β).

• Initial configuration (∆1,∆2) will be denoted by (ρ, γ), with 0 ≤ ρ ≤ α and 0 ≤ γ ≤ β.

• We will write (x1(0), x2(0))
n−→ (x1(n), x2(n)) to refer to (x1(0), x2(0))→ (x1(1), x2(1))→

· · · → (x1(n), x2(n)). Furthermore, we will use x
∗−→ x′ to indicate that x′ belongs to the

configurations that are successors of x.
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Let us now study separately both classes FP[00] and LC[00].

3.1.1 Analysis of FP[00]

Let us divide FP[00] into two sub-classes FP
[00]
s and FP

[00]
c such that:

• FP
[00]
s = {[1, 00], . . . , [5, 00], [8, 00], [10, 00], [12, 00], [21, 00]}, and

• FP
[00]
c = FP[00] \ FP

[00]
s .

Propositions 4 and 5 below respectively show that MBNs related to BNs of FP
[00]
s cannot

admit limit cycles whereas MBNs related to BNs of FP
[00]
c can.

Proposition 4. For any delay vector dt, all the MBNs built on a BN belonging to FP
[00]
s have

a unique attractor, the fixed point (0, 0).

Proof. Let us first consider BN [1, 00]. Because its local transition functions are both constant
and equal to 0, it is trivial that any MBN built on it can only converge towards fixed point
(0, 0), in at most max(α, β) time steps.

Now, let us consider any MBN built on the BNs that belongs to the subset of FP
[00]
s defined as

{[2, 00], [3, 00], [5, 00], [12, 00]} such that dt = (α, β). As pictured in Figure 6, their interaction
graphs do not induce cycles of length greater than or equal to 2 and the only loops they
contain are positive. So, from Proposition 2, we derive that (0, 0) is the unique attractor of
MBNs built on them and that it is reached in at most α+ β time steps.

About MBNs built on BN [4, 00] with any initial configuration (ρ, γ), because of function
f1(x) that is constant and equal to 0, x1 is necessarily fixed to 0 after ρ ≤ α time steps.
Once x1 = 0, by definition of f2(x), x2 will decrease to reach 0 after at most β time steps. A
similar reasoning can be used on the basis of BN [10, 00] because they are symmetric networks.
Moreover, they both converge towards (0, 0) in at most α+ β time steps.

Now, concerning MBNs built on BN [8, 00], let us consider two cases. The first case is when
x1 = 0. By definition of f1(x), once x1 at 0 it remains fixed to 0 and according to the definition
of f2, the value of x2 necessarily decreases to 0. Thus, (0, x2) converges towards (0, 0) in at
most β time steps. Consider now the case where 0 < x1 ≤ α. We have: if x2 ≥ 1 then

(x1, x2) → (x1 − 1, β)
x1−1−−−→ (0, β)

β−→ (0, 0), and the network converges in x1 + β time steps;

if x2 = 0 then (x1, 0) → (α, β) → (α − 1, β)
α−1−−→ (0, β)

β−→ (0, 0) and the network converges
in α + β + 1 time steps. Thus, such MBNs (resp. MBNs built on BN [21, 00] by symmetry)
converge towards their unique attractor, fixed point (0, 0), in at most α+ β + 1 time steps.

Hence, all the MBNs of FP
[00]
s admit (0, 0) as their unique attractor.

Proposition 5. For any BN of FP
[00]
c , there exist delay vectors dts such that their related

MBNs admit limit cycles.

Proof. In this proof, for BNs belonging to FP
[00]
c , we exhibit delay vectors with which the

associated MBN evolves towards a limit cycle.

13



Let us now consider a MBN built on BN [6, 00]. First, suppose that α = 1. Then, for all β,
either ρ = 0 and x1 will stay fixed to 0, which leads inevitably x2 to decrease to 0 and remain
fixed in γ time steps, or ρ = 1: in this case: if γ = 0, then after one time step, x1 = 0 and we
get back to the previous case; otherwise, γ ≥ 1 and the dynamics is (1, γ)

γ−→ (1, 0) → (0, γ),
and we get back to previous item in γ + 1 time steps. As a consequence, in order for MBNs
associated with BN [6, 00] to admit limit cycles, α needs to be greater than 1 (except if β
is also equal to 1 of course). Now let us consider dt = (α ≥ 2, β) and initial configuration

(ρ = α, γ = β). Its dynamics is (α, β) → (α, β − 1)
β−1−−→ (α, 0) → (α − 1, β) → (α, β − 1).

So, there exist recurrent configurations and thus a limit cycle. Notice that this limit cycle
is of length β. Furthermore, for the same reasons as those given for the case where α = 1,
initial configurations such that ρ = 0 or (ρ = 1, γ = 0) converges towards fixed point (0, 0)
in at most β + 1 time steps. All the other configurations, i.e. those such that (ρ ≥ 2, γ ≥ 0)
and (ρ = 1, γ = 0) evolves to (α, β) and thus towards the limit cycle. By symmetry, a similar
reasoning can be used for BN [11, 00].

About MBNs built on BN [7, 00], for all (α, β), notice that by definition of f1 and because of
the positive loop, when x1 = 0, it remains fixed to 0. Moreover, when x1 = 0, it leads x2 to
decrease until it reaches 0 also. Let us now detail the dynamics of this network depending on
the initial configurations, considering 1 ≤ ρ ≤ α and 1 ≤ γ ≤ β:

• if ρ ≤ γ then (ρ, γ)
ρ−→ (0, γ − ρ)

γ−ρ−−→ (0, 0) that is reached in γ time steps.

• if ρ > γ then (ρ, γ)
γ−→ (ρ− γ, 0)→ (α, β). From configuration (α, β), we have: if α = β

then (α, α)→ (α− 1, α− 1)
α−1−−→ (0, 0) that is reached in γ +α+ 1 time steps; if α < β

then (α, β)
α−→ (0, β − α)

β−α−−−→ (0, 0) that is reached in γ + β + 1 time steps; if α > β

then (α, β)
β−→ (α− β, 0)→ (α, β), which emphasizes a limit cycle of length β.

Thus, any MBN built on BN [7, 00] such that α > β admits a limit cycle of length β. The
unique other possible attractor is fixed point (0, 0) that is reached in at most 2 max(α, β) + 1
time steps. By symmetry, a similar reasoning can be used for BN [19, 00].

Now, let us focus on BN [16, 00]. First of all, by definition of its local transition functions, it is
easy to check that for all (α, β), if ρ = γ then the configuration converges towards fixed point

(0, 0). Indeed, we have (ρ, ρ)→ (ρ− 1, ρ− 1)
ρ−1−−→ (0, 0), that is reached in ρ time steps, i.e.

in at most min(α, β) time steps. Now, let us deal with all possible α and β. First, consider
that α = β. Then, according to the initial configuration, if ρ < γ, the dynamics of (ρ, γ) is

(ρ, γ)
ρ−→ (0, γ − ρ) → (α, γ − ρ − 1)

γ−ρ−1<α−−−−−−→ (α − γ + ρ + 1, 0) → (α, α)
α−→ (0, 0) that is

reached in α+ γ + 1 time steps; otherwise, if ρ > γ, it is (ρ, γ)
γ−→ (ρ− γ, 0)→ (α, α)

α−→ (0, 0)
that is reached in α+ γ + 1 time steps. Thus, if α = β, any configuration converges towards
fixed point (0, 0) in at most 2α+ 1 = 2β + 1 time steps.

Now, consider that α > β. In this case, if ρ < γ, the dynamics of (ρ, γ) is (ρ, γ)
ρ−→ (0, γ−ρ)→

(α, γ − ρ− 1)
γ−ρ−1<α−−−−−−→ (α− γ + ρ+ 1, 0)→ (α, β)

β−→ (α− β, 0)→ (α, β); otherwise, if ρ > γ,

the dynamics of (ρ, γ) is (ρ, γ)
γ−→ (ρ − γ, 0) → (α, β)

β−→ (α − β, 0) → (α, β). Thus, when
α > β, for all initial configurations (ρ, γ), with ρ 6= γ, the network evolves towards a limit
cycle of length β.
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Now, in the case where α < β, we have:

• if ρ > γ, the dynamics is (ρ, γ)
γ−→ (ρ−γ, 0)→ (α, β). Here, suppose that α < β < 2α+1.

Then we have (α, β)
α−→ (0, β−α)→ (α, β−α− 1)

β−α−1−−−−→ (α− (β−α− 1), 0)→ (α, β).
Now, if β = 2α + 1, the trajectory of (α, β) is (α, β)

α−→ (0, β − α) → (α, β − α − 1)
α−→

(0, β − 2α − 1) = (0, 0), that is reached in at most 2β + 1 time steps. More generally,
if there exists k ∈ N such that β = k · (α + 1) − 1 then, the trajectory of (α, β) is

(α, β)
k·(α+1)−1−−−−−−→ (0, β − k · (α + 1) − 1) = (0, 0), that is reached from any (ρ, γ) in at

most 2β+ 1 time steps. Now, suppose that ∀k ∈ N, β 6= k · (α+ 1)−1 and ` the greatest
natural number such that β > ` · (α+1)−1 (i.e. ` · (α+1)−1 < β < (`+1)(α+1−1)),

then the trajectory of (α, β) is (α, β)
`·(α+1)−1−−−−−−→ (0, β − (` · (α + 1)− 1) 6= 0)→ (α, β −

` · (α+ 1))
β−`·(α+1)−−−−−−→ (α− (β − ` · (α+ 1)) 6= 0, 0)→ (α, β).

• if ρ < γ, if we suppose that γ = ρ + α + 1, the dynamics is (ρ, γ)
ρ−→ (0, γ − ρ) →

(α, γ − ρ − 1)
γ−ρ−1−−−−→ (α − γ + ρ + 1 = 0, 0), that is reached in at most β time steps.

More generally, by supposing that given k > 1 ∈ N, γ = ρ + k · (α + 1), we have

(ρ, γ)
ρ−→ (0, γ − ρ)→ (0, γ − ρ− 1)

α−→
(0, γ− ρ− 1−α)

(k−1)(α+1)−−−−−−−→ (0, γ− ρ− k · (α+ 1)) = (0, 0), that is reached in at most β
time steps. Now, suppose that ∀k ∈ N, γ 6= ρ+k·(α+1) and that ` is the greatest natural
number such that γ > ρ+`·(α+1), i.e. ρ+`·(α+1) < γ < ρ+(`+1)·(α+1), the trajectory

of (ρ, γ) is (ρ, γ)
ρ+`·(α+1)−−−−−−→ (0, γ−ρ−`·(α+1))→ (α, γ−ρ−`·(α+1)−1)

γ−ρ−`·(α+1)−1−−−−−−−−−−→
(α − (γ − ρ − ` · (α + 1) − 1) 6= 0, 0) → (α, β), for which it suffices to apply the case
discussed in the previous sub-item.

As a consequence, when α < β, initial configurations can evolve either towards the fixed
point (0, 0) in at most 2β + 1 time steps or towards a limit cycle of length β only if β 6=
k · (α+ 1)− 1,∀k ∈ N. By symmetry, a similar reasoning can be used for BN [22, 00].
Concerning MBNs built on BN [25, 00], first of all, because this network is a symmetric xor
network, it is easy to check that if ρ = γ, whatever α and γ are, the trajectory of the initial

configuration is (ρ, ρ) → (ρ − 1, ρ − 1)
ρ−1−−→ (0, 0), and converges thus towards fixed point

(0, 0) in ρ time steps, i.e. in at most min(α, β) time steps. From now on, let us focus on
initial configurations such that ρ 6= γ. Suppose that α > β. The underlying dynamics

is (ρ, γ)
min(ρ,γ)+1−−−−−−−→ (α, β)

β−→ (α − β, 0) → (α, β), which highlights a limit cycle of length β.
Symmetrically, in the case where α < β, (ρ, γ) evolves towards the cycle (α, β)

α−→ (0, β−α)→
(α, β). Lastly, if α = β, the trajectory of (ρ, γ) is (ρ, γ)

min(ρ,γ)+1−−−−−−−→ (α, α)
α−→ (0, 0), and there

is convergence towards the unique fixed point in at most 2α+ 1 time steps.

Proposition 5 emphasizes that adding delays to BNs to make them become MBNs can lead to
the creation of limit cycles in the set of network attractors. Now, let us focus on the class
LC[00].
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3.1.2 Analysis of LC[00]

By definition, the BNs that belong to LC[00] have the feature of having, besides the fixed
point (0, 0), a limit cycle. This limit cycle is of length 2 for [{9, 13, 14, 15, 18, 20, 23, 26, 27}, 00]
and of length 3 for [{17, 24}, 00]. Often, in BN models of real genetic regulatory networks,
the biological meaning comes from the fixed point. Indeed, except in networks modeling
biological rhythms sustained oscillations in which limit cycles are of course meaningful, the
latter correspond to spurious asymptotic behaviors. Thus, in a modeling framework, finding
a way of removing limit cycles can be particularly relevant. Classically, it is done by using an
asynchronous updating mode. As Example 3 highlighted it, adding delays can serve in this
context. More generally, we will see that changing BNs into MBNs may allow to obtain this
desirable property of avoiding spurious attractors. More precisely, for all the BNs that belong
to LC[00], we analyze the delay parameter space for knowing the regions in which the limit
cycle disappears. This analysis is presented by the following propositions.

Proposition 6. Every MBN built on BN [9, 00] (resp. on [20, 00]) admits a limit cycle that
is reached by all configurations such that ρ ≥ 1 (resp. γ ≥ 1).

Proof. Consider a MBN built on BN [9, 00]. Whatever α and β are, by definition of f1, x1 is
maintained by the positive loop. As a consequence: if ρ = 0, the network converges towards
the fixed point (0, 0) in γ time steps, i.e. in at most β time steps; if ρ ≥ 1, by definition of

f2, the initial configuration (ρ, γ = β) has the following dynamics: (ρ, β) → (ρ, β − 1)
β−1−−→

(ρ, 0) → (ρ, β). Thus, any configuration (ρ ≥ 1, γ) belongs to a limit cycle of length β. By
symmetry, a similar reasoning can be used for BN [20, 00].

Proposition 7. Consider a MBN M based on BN [13, 00]. We have:

1. If M is such that gcd(α + 1, β + 1) = 1, all its configurations converge towards fixed
point (0, 0).

2. If M is such that gcd(α+1, β+1) > 1, any configuration (ρ, γ) such that ρ+`0(α+1) =
γ+k0(β+1), with 0 ≤ k0 ≤ k and 0 ≤ `0 ≤ ` with `(α+1) = k(β+1) = lcm(α+1, β+1),
converges towards fixed point (0, 0). Otherwise, it evolves towards a limit cycle of length
lcm(α+ 1, β + 1).

Proof. In this proof, we deal with the two distinct items of the statement separately.

1. Let us first consider a MBN such that gcd(α + 1, β + 1) = 1 and such that α < β. Let
(ρt, γt) be the configuration obtained after t ∈ N time steps from any possible initial
configuration (ρ, γ). In this case, inevitably, there exists t, with 0 ≤ t < (α+ 1) · β + 1,
such that ρt = γt. Indeed, suppose on the contrary that ∀t ∈ N such that 0 ≤ t <
(α + 1) · β + 1, ρt 6= γt. Then, we know that there exist (α + 1) · β different ordered
pairs of integers (i.e. configurations) such that ρt 6= γt. Thus, necessarily, there exist
i 6= j ∈ {0, . . . , (α+ 1) · β} such that (ρi, γi) = (ρj , γj), which implies the existence of a
limit cycle of length |i− j|. More precisely, given 0 ≤ h ≤ β, k < α+ 1 and ` < β + 1,
we have:

(ρi, γi)
|i−j|−−−→ (ρi, γi) =⇒ (α, β − h)

|i−j|=`(α+1)=k(β+1)−−−−−−−−−−−−−−→ (α, β − h),
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which implies that α+1 and β+1 are not coprime, which is a contradiction. Therefore,
there exists a time step t at which ρt = γt. Now, given the local transition functions, it
is easy to remark that all the configurations whose two terms are equal converge towards
fixed point (0, 0).

By symmetry of the rule, the same reasoning applies for the case where α > β. Moreover,
by the hypothesis highlighting that gcd(α + 1, β + 1) = 1, the case where α = β does
not exist.

2. Now, let us consider a MBN such that gcd(α + 1, β + 1) = λ > 1. Consider an initial
configuration (ρ, γ) and distinguish two cases:

• (ρ, γ) satisfies
ρ+ `0(α+ 1) = γ + k0(β + 1) (1)

for some k0, `0 such that 0 ≤ k0 ≤ k, 0 ≤ `0 ≤ `, with `(α + 1) = k(β + 1) =
lcm(α + 1, β + 1). First of all, as evoked above in the previous item, given the
nature of the MBN, it is trivial to remark that for all dt = (α, β), an initial
configuration such that ρ = γ (this initial condition satisfies Equation 1 above

with k0 = `0 = 0) admits the trajectory (ρ, ρ) → (ρ − 1, ρ − 1)
(ρ−1)−−−→ (0, 0), and

converges towards fixed point (0, 0) in ρ time steps, i.e. in at most min(α, β) time
steps. Now, let us admit that α < β and that ρ > γ. If the lower values of k0
and `0 satisfying Equation 1 are both equal to 1 then the configuration admits the

following trajectory: (ρ, γ)
γ−→ (ρ−γ, 0)→ (ρ−γ−1, β)

ρ−γ−1−−−−→ (0, β−(ρ−γ−1))→
(α, β−(ρ−γ) = α). Moreover, if the lower values of k0 and `0 satisfying Equation 1
are such that k0 > 1 and `0 ≥ 1 then the configuration admits the following

trajectory: (ρ, γ)
ρ+1+(`0−1)(α+1)=γ+1+k0(β+1)−(α+1)−−−−−−−−−−−−−−−−−−−−−−−−−−→ (α, α). Hence, in both cases,

(ρ, γ) converges towards fixed point (0, 0).

With the same reasoning, it can be shown that the result holds also for initial
configurations such that ρ < γ. Furthermore, by symmetry of the rule, the same
reasoning applies for the case where α > β. Moreover, if α = β, the only way for
Equation 1 to hold is when ρ = γ and this case has already been dealt with.

• (ρ, γ) satisfies ρ+ `0(α+ 1) 6= γ + k0(β + 1) for some k0, `0 such that 0 ≤ k0 ≤ k,
0 ≤ `0 ≤ `, with `(α + 1) = k(β + 1) = lcm(α + 1, β + 1). First, let us consider
the case where α = β. In this case, the only way for the negation of Equation 1
to hold is when ρ 6= γ. So, let us consider a configuration where ρ > γ. Its

trajectory is (ρ, γ)
γ−→ (ρ − γ, 0) → (ρ − γ − 1, α)

ρ−γ−1−−−−→ (0, α − (ρ − γ − 1)) →
(α, α− (ρ− γ))

α−(ρ−γ)−−−−−→ (ρ− γ, 0), which highlights a limit cycle of length α+ 1.
With the same reasoning, we can show that a configuration such that ρ < β evolves
also towards a limit cycle of length α+1. Now, let us consider the case where α < β.
By the hypothesis stating that ρ + `0(α + 1) 6= γ + k0(β + 1), the trajectory of

a configuration such that ρ > γ is (ρ, γ)
γ−→ (ρ − γ, 0) → (ρ − γ − 1, β)

ρ−γ−1−−−−→
(0, β − (ρ − γ − 1)) → (α, β − (ρ − γ))

`(α+1)=k(β+1)−−−−−−−−−−→ (α, β − (ρ − γ)), which
corresponds to a limit cycle of length lcm(α + 1, β + 1). In other terms, if α + 1
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and β + 1 are not coprime and if ρ + `0(α + 1) 6= γ + k0(β + 1) then the network
admits a limit cycle.

With the same reasoning, it can be shown that the result holds also for initial
configurations such that ρ < γ. Furthermore, by symmetry of the rule, the same
reasoning applies for the case where α > β.

Proposition 8. Let S = {[9, 00], [13, 00], [20, 00]}. Every MBN built on a BN belonging to
LC[00] \ S admits a limit cycle that is reached by all configurations except (0, 0).

Proof. Let us consider a MBN built on [14, 00] and an initial configuration such that ρ ≥ 1
and γ ≥ 2. By definition of f2, x2 is set and stays at β while x1 is positive. Notice also
that x1 decreases until reaching 0 by definition of f1. Thus, we have the following trajectory:

(ρ, γ) → (ρ − 1, β)
ρ−1−−→ (0, β) → (α, β − 1) → (α − 1, β)

α−1−−→ (0, β), which highlights the
evolution towards a limit cycle of length α + 1. Now, let us focus on an initial configuration

defined as (ρ ≥ 1, γ = 0). Its trajectory is (ρ, 0) → (ρ − 1, β)
ρ−1−−→ (0, β) → (α, β − 1) →

(α − 1, β)
α−1−−→ (0, β). As a consequence, for any MBN built on BN [14, 00] (resp. on BN

[15, 00] by symmetry), all configurations except fixed point (0, 0) evolves towards a limit cycle
of length α+ 1 (resp. β + 1).
Notice that a similar reasoning applies for MBNs based on BNs [17, 00], [23, 00], [26, 00], and
for their respective symmetric BNs [24, 00], [18, 00] and [27, 00].

Thanks to Propositions 4 to 8 above, we obtain the following theorem that recapitulates all
the results that characterize the dynamical behaviors of all MBNs that can be constructed
from BNs of size 2 having the unique fixed point (0, 0).

Theorem 1. Table 2 gives the dynamical behavior of any MBN built on the basis of a BN
belonging to FP(0, 0), with delays dt = (α, β), initial condition 0 ≤ ρ ≤ α, 0 ≤ γ ≤ β and
k, ` ∈ N.

Now the dynamical properties of MBNs of size 2 with a unique fixed point have been charac-
terized, let us pay attention to MBNs of the same size with two fixed points.

3.2 Networks admitting two fixed points

In this section, we focus on the MBNs that can be built on the basis of BNs of size 2 that
admit two fixed points. First of all, let us notice that there exist 6 distinct classes of such
networks, each of which being composed of 9 networks. As what has been presented above,
let us introduce the following notations.

Notation 3. [k, x, y], with k ∈ {1, . . . , 9} and x, y ∈ B2, denotes the network of size 2 whose
local transition functions are represented by k and defined by their truth tables in Tables 3, 4, 5
and 6 and that admits x and y as its fixed points (represented as binary words).

Let us also denote by F[x, y] the set composed of all BNs that admit x and y as their unique
fixed points, FP[x, y] ⊆ F[x, y] the set of BNs for which x and y are the unique attractors,
LC[x, y] ⊆ F[x, y] the set of BNs that admits at least a limit cycle.
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Rules Attractors Delays dt = (α, β) Initial conditions (ρ, γ)

[1, 00], [2, 00],
[3, 00], [4, 00],
[5, 00], [8, 00],
[10, 00], [12, 00],
[21, 00]

FP ∀(α, β) ∀(ρ, γ)

LC ∅ ∅

[6, 00]
FP α = 1 ∀(ρ, γ)

∀(α, β) (ρ = 1 ∧ γ = 0) ∨ (ρ = 0 ∧ γ ≥ 0)
LC (α, β) ≥ (2, 1) (ρ ≥ 2 ∧ γ ≥ 0) ∨ (ρ = 1 ∧ γ = 1)

[11, 00]
FP β = 1 ∀(ρ, γ)

∀(α, β) (ρ = 0 ∧ γ = 1) ∨ (ρ ≥ 0 ∧ γ = 0)
LC (α, β) ≥ (1, 2) (ρ ≥ 0 ∧ γ ≥ 2) ∨ (ρ = 1 ∧ γ = 1)

[7, 00]
FP α ≤ β ∀(ρ, γ)

α > β ρ ≤ γ
LC α > β ρ > γ

[19, 00]
FP α ≥ β ∀(ρ, γ)

α < β ρ ≥ γ
LC α < β ρ < γ

[9, 00]
FP ∀(α, β) ρ = 0
LC ∀(α, β) ρ ≥ 1

[20, 00]
FP ∀(α, β) γ = 0
LC ∀(α, β) γ ≥ 1

[13, 00]

FP gcd(α+ 1, β + 1) = 1 ∀(ρ, γ)
gcd(α+ 1, β + 1) > 1 ρ+ `0(α+ 1) = γ + k0(β + 1)

with 0 ≤ k0 ≤ k, 0 ≤ `0 ≤ `,
`(α+ 1) = k(β + 1) = lcm(α+ 1, β + 1)

LC gcd(α+ 1, β + 1) > 1 ρ+ `0(α+ 1) 6= γ + k0(β + 1)
with 0 ≤ k0 ≤ k, 0 ≤ `0 ≤ `,

`(α+ 1) = k(β + 1) = lcm(α+ 1, β + 1)

[14, 00], [15, 00],
[17, 00], [18, 00],
[23, 00], [24, 00],
[26, 00],[27, 00]

FP ∀(α, β) (ρ, γ) = (0, 0)

LC ∀(α, β) (ρ, γ) 6= (0, 0)

[16, 00]

FP α < β (ρ = γ) ∨ (ρ+ k(α+ 1) = γ)∨
(β + 1 = k(α+ 1))

α = β ∀(ρ, γ)
α > β ρ = γ

LC α < β (ρ < γ) ∧ (γ 6= ρ+ k · (α+ 1))∧
(β + 1 6= k(α+ 1))

α < β (ρ > γ) ∧ (β + 1 6= k(α+ 1))
α > β ρ 6= γ

[22, (0, 0)]

FP α < β ρ = γ
α = β ∀(ρ, γ)
α > β (ρ = γ) ∨ (γ + k(β + 1) = ρ)∨

(α+ 1 = k(β + 1))
LC α < β ρ 6= γ

α > β (ρ > γ) ∧ (ρ 6= γ + k · (β + 1))∧
(α+ 1 6= k(β + 1))

α > β (ρ < γ) ∧ (α+ 1 6= k(β + 1))

[25, 00]
FP α = β ∀(ρ, γ)

α 6= β ρ = γ
LC α 6= β ρ 6= γ

Table 2: Dynamical behaviors of all the MBNs built on the basis of the BNs belonging to
FP(0, 0), with delays dt = (α, β), initial condition 0 ≤ ρ ≤ α, 0 ≤ γ ≤ β and k, ` ∈ N.
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x [1, 00, 01] [2, 00, 01] [3, 00, 01] [4, 00, 01] [5, 00, 01] [6, 00, 01] [7, 00, 01] [8, 00, 01] [9, 00, 01]

00 00 00 00 00 00 00 00 00 00
01 01 01 01 01 01 01 01 01 01
10 00 00 00 01 01 01 11 11 11
11 00 01 10 00 01 10 00 01 10

x [1, 00, 10] [2, 00, 10] [3, 00, 10] [4, 00, 10] [5, 00, 10] [6, 00, 10] [7, 00, 10] [8, 00, 10] [9, 00, 10]

00 00 00 00 00 00 00 00 00 00
01 00 00 00 10 10 10 11 11 11
10 10 10 10 10 10 10 10 10 10
11 00 01 10 00 01 10 00 01 10

Table 3: Truth tables of all the 9 BNs that admit (up) fixed points (0, 0) and (0, 1) and (down)
fixed points (0, 0) and (1, 0).

3.2.1 MBNs based on F[00, 01] and F[00, 10]

Concerning the classes of BNs F[00, 01] and F[00, 10], notice first that they are symmetric.
Thus, all the results obtained for F[00, 01] have their symmetric that hold for F[00, 10]. So,
let us focus only on F[00, 01].

Remark 1. For every network of F[00, 01], since (0, 0) and (0, 1) are fixed points, whatever
α and β are, configuration (0, 0) cannot change, admits the following trajectory (0, 0) 	 and
is a fixed point, and the trajectory of any initial configuration such that ρ = 0 and γ ≥ 1 is
(0, γ)→ (0, β) 	 that leads to fixed point (0, β).

Therefore we analyze the dynamical behavior of all the initial configurations of the form
(ρ, γ) where ρ 6= 0. From Table 3 (up), a basic enumeration gives that FP[00, 01] = F[00, 01]\
{[9, 00, 01]}, and LC[00, 01] = {[9, 00, 01]}. Now, let us partition FP[00, 01] into the following

two sub-classes: FP
[00,01]
s = {[1, 00, 01], . . . , [5, 00, 01], [8, 00, 01]}, and FP

[00,01]
c = FP[00, 01] \

FP
[00,01]
s = {[6, 00, 01], [7, 00, 01]}. Proposition 9 below shows that MBNs based on BNs of

FPs[00, 01] admits only two fixed points, (0, 0) and (0, β).

Proposition 9. For any delay vector dt, every MBN built on a BN that belongs to FP
[00,01]
s

admits only two attractors, fixed points (0, 0) and (0, β).

Proof. Let us first consider MBNs built on BNs [1, 00, 01], [2, 00, 01] or [3, 00, 01]. Table 3 (up)
shows that they are decreasing networks. As a consequence, by Proposition 3, they admit
only fixed points that are (0, 0) and (0, β) by definition of the local transition functions. All
the MBNs built on [1, 00, 01], [2, 00, 01] (resp. on [3, 00, 01]) converge in at most α (resp.
α+ β) time steps.

Moreover, Table 3 (up) highlights also that the interaction graph of BN [5, 00, 01] does not
induce cycles except a positive loop on vertex 2. Thus, by Proposition 2, any MBN built on
[5, 00, 01] admits only fixed points that are (0, 0) and (0, β). More precisely, for any delay

vector dt = (α, β) and ρ ≥ 1, we have the following trajectory: (ρ, γ)
ρ−→ (0, β) 	 that is

reached in at most α time steps.

Consider a MBN built on BN [4, 00, 01]. Let (ρ, γ) be any initial configuration. If ρ = γ, its

trajectory is (ρ, ρ)
ρ−→ (0, 0) 	 and the network converges in at most min(α, β) time steps. If

ρ < γ, its trajectory is (ρ, γ)
ρ−→ (0, γ − ρ) → (0, β) 	 and the network converges in α + 1 at

20



most. Now, if ρ > γ, the trajectory begins by (ρ, γ)
γ−→ (ρ − γ, 0) → (ρ − γ − 1, β), and the

trajectory of (ρ − γ − 1, β) is either (ρ − γ − 1, β)
ρ−γ−1−−−−→ (0, β) 	 if ρ − γ 6= k(β + 1), or

(ρ− γ − 1, β)
ρ−γ−1−−−−→ (0, 0) 	 otherwise. Thus the network converges towards these two fixed

points in at most α time steps.

Consider finally a MBN built on BN [8, 00, 01]. For any delay vector dt = (α, β), we have: if

ρ ≥ 1 and γ ≥ 1 then (ρ, γ)→ (ρ− 1, β)
ρ−1−−→ (0, β) 	 that is reached in ρ time steps, and if

ρ ≥ 1 and γ = 0 then (ρ, 0) → (α, β)
α−→ (0, β) 	 that is reached in α + 1 time steps. Thus,

the network admits only the two fixed points (0, 0) and (0, β) and its convergence time is at
most α+ 1 time steps.

Proposition 10 shows that there exist specific conditions under which MBNs built on BNs
belonging to FPc[00, 01] evolve towards a limit cycle.

Proposition 10. For all the BNs of FPc[00, 01], there exist delay vectors dts such that any
associated MBN admits a limit cycle.

Proof. Consider BN [6, 00, 01]. Let us consider two cases for α and begin with α > 1. The

different possible evolutions are: if ρ ≥ 1, γ ≥ 1 then (ρ, γ)
γ−→ (α, 0) → (α − 1, β) →

(α, β − 1)
β−1−−→ (α, 0), which emphasizes a limit cycle of length β + 1; if ρ > 1, γ = 0 then

(ρ, 0)→ (ρ− 1, β)→ (α, β− 1)
β−1−−→ (α, 0) that belongs to a limit cycle of length β+ 1; if ρ =

1, γ = 0 then (1, 0) → (0, β) 	. Now, consider that α = 1. The different possible evolutions

are: if ρ = 1, γ = 0 then (1, 0)→ (0, β) 	; if ρ = 1, γ ≥ 1 then (1, γ)
γ−→ (1, 0)→ (0, β) 	 and

reaches its fixed point in γ + 1 time steps. Thus, the MBNs built on BN [6, 00, 01] converge
to their fixed points in at most β + 1 time steps and can admit a limit cycle of length β + 1.

Now, consider BN [7, 00, 01]. Let us consider three cases depending on the initial configuration

(ρ, γ). First, if ρ > γ, we have: if α > β then (ρ, γ)
γ−→ (ρ−γ, 0)→ (α, β)

β−→ (α−β, 0)→ (α, β),

which emphasizes a limit cycle of length β + 1; if α < β then (ρ, γ)
γ−→ (ρ− γ, 0)→ (α, β)

α−→
(0, β − α) → (0, β) 	, and reaches its fixed point in α + γ + 2 time steps; if α = β then

(ρ, γ)
γ−→ (ρ − γ, 0) → (α, α)

α−→ (0, 0) 	, and reaches its fixed point in α + γ + 1 time steps.

Now, whatever dt is: if ρ < γ then (ρ, γ)
ρ−→ (0, γ − ρ)→ (0, β) 	, and reaches its fixed point

in ρ+ 1 time steps; if ρ = γ then (ρ, ρ)
ρ−→ (0, 0) 	, and reaches its fixed point in ρ time steps.

Thus, the MBNs built on BN [7, 00, 01] converge to their fixed points in at most α + β + 2
time steps and can admit a limit cycle of length β + 1.

Proposition 11 shows the same principle for [0, 00, 01] ∈ LC[00, 01].

Proposition 11. Considering [9, 00, 01] the unique element of FPc[00, 01], for all delay vec-
tors dt, there exist initial conditions such that any associated MBN admits a limit cycle.

Proof. Consider any dt and an initial configuration such that ρ ≥ 1. We have: if γ = 0 then

(ρ, 0) → (α, β)
β−→ (α, 0) → (α, β), which emphasizes a limit cycle of length β + 1; if γ ≥ 1

then (ρ, γ)
γ−→ (α, β) that belongs to a limit cycle of length β + 1. Thus, the MBNs built on

BN [9, 00, 01] converge to their fixed points in at most 1 time step and can admit a limit cycle
of length β + 1.
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x [1, 00, 11] [2, 00, 11] [3, 00, 11] [4, 00, 11] [5, 00, 11] [6, 00, 11] [7, 00, 11] [8, 00, 11] [9, 00, 11]

00 00 00 00 00 00 00 00 00 00
01 00 00 00 10 10 10 11 11 11
10 00 01 11 00 01 11 00 01 11
11 11 11 11 11 11 11 11 11 11

Table 4: Truth tables of all the 9 BNs that admit fixed points (0, 0) and (1, 1).

3.2.2 MBNs based on F[00, 11]

The class of BNs F[00, 11] does not admit a symmetric class and what follows gives a charac-
terization of the dynamics of MBNs built on it.

Remark 2. For every network of F[00, 11], since (0, 0) and (1, 1) are fixed points, whatever
α and β are, configuration (0, 0) cannot change, admits the following trajectory (0, 0) 	 and
is a fixed point, and any initial configuration such that ρ ≥ 1 and γ ≥ 1 admits the following
trajectory (ρ, γ)→ (α, β) 	 that leads to fixed point (α, β).

Therefore we analyze the dynamical behavior of all the initial configurations of the form
(0, γ) where γ 6= 0 and (ρ, 0) where ρ 6= 0. From Table 4, a basic enumeration gives that
FP[00, 11] = F[00, 11]\{[5, 00, 11]}, and LC[00, 11] = {[5, 00, 11]}. Proposition 12 below shows
that all the MBNs built on BNs of FP[00, 11] converge towards fixed points (0, 0) and (α, β)
that are the only attractors.

Proposition 12. For any delay vector dt, every MBN built on a BN that belongs to FP[00, 11]
admits only two attractors, fixed points (0, 0) and (α, β).

Proof. First, from Table 4, it derives that network [1, 00, 11] (resp. [9, 00, 11]) is decreasing
(resp. increasing). So, from Proposition 3, any MBN based on it (resp. on [9, 00, 11]) converges
towards its two fixed points (0, 0) and (α, β). It does so in at most max(α, β) time steps (resp.
1 time step).

Furthermore, the interaction graph of network [3, 00, 11] (resp. [7, 00, 11] by symmetry) is
acyclic. So, from Proposition 2, any MBN based on it (resp. on [7, 00, 11]) converges towards
the two fixed points and it does so in at most β (resp. α) time steps.

Moreover, it is easy to see also that network [6, 00, 11] (resp. [8, 00, 11] by symmetry) is
a positive disjunctive BN. So, from Proposition 1, any MBN based on it (resp. based on
[8, 00, 11]) converges towards the two fixed points. It does so in at most β + 1 (resp. α + 1
and 1) time steps.

Let us now focus on the MBNs built on BN [2, 00, 11], given any delay vector dt. We have: if

ρ = 0 and γ ≥ 1 then (0, γ)
γ−→ (0, 0) 	 that is a fixed point reached in γ time steps; if ρ = 1

and γ = 0 then (1, 0)→ (0, β)
β−→ (0, 0) 	 that is a fixed point reached in β + 1 time steps; if

ρ > 1 and γ = 0 then (ρ, 0) → (ρ − 1, β) → (α, β) 	 that is a fixed point reached in 2 time
steps. So, every MBN based on BN [2, 00, 11] (resp. on BN [4, 00, 11] by symmetry) admits
only two attractors, fixed points (0, 0) and (α, β), and its convergence time is at most β + 1
(resp. α+ 1) time steps.

Now, Proposition 13 shows that there exist specific conditions under which MBNs built on
BN [5, 00, 11] of LC[00, 11] evolve towards a limit cycle.
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Proposition 13. The only MBN built on BN [5, 00, 11] that admits a limit cycle is set with
α = β = 1, i.e. BN [5, 00, 11] itself. Any other MBN built [5, 00, 11] admits only two attractors,
fixed points (0, 0) and (α, β).

Proof. When α = β = 1, the dynamics of this MBN is trivially the same as that of BN
[5, 00, 11]. The network admit three attractors, fixed points (0, 0) and (1, 1) and limit cycle
(0, 1) � (1, 0). Now, let us consider MBNs such that α > 1 or β > 1. We have: if α > 1
and ρ ≥ 2 then (ρ, 0) → (ρ − 1, β) → (α, β) 	; if ρ = 1 and β > 1 then (1, 0) → (0, β) →
(α, β − 1) → (α, β) 	; if β > 1 and γ ≥ 2 then (0, γ) → (α, γ − 1) → (α, β) 	; if γ = 1
and α > 1 then (0, 1) → (α, 0) → (α − 1, β) → (α, β) 	. Hence, only the MBN that is BN
[5, 00, 11] itself can admit a limit cycle of length 2. All the others converge towards (0, 0) and
(α, β) in at most 3 time steps.

3.2.3 MBNs based on F[01, 10]

As F[00, 11], the class of BNs F[01, 10] does not admit a symmetric class and what follows
gives a characterization of the dynamics of MBNs built on it.

Remark 3. For every network of F[01, 10], since (0, 1) and (1, 0) are fixed points, whatever
α and β are, we have: if ρ ≥ 1 and γ = 0 then (ρ, 0) → (α, 0) 	 that is a fixed point, and
conversely, if ρ = 0 and γ ≥ 1 then (0, γ)→ (0, β) 	 that is a fixed point.

Therefore we analyze the dynamical behavior of all the initial configurations of the form
(0, 0) and (ρ, γ) where ρ, γ 6= 0. From Table 5, a basic enumeration gives that FP[01, 10] =
F[01, 10] \ {[7, 01, 10]}, and LC[01, 10] = {[7, 01, 10]}. Proposition 14 below shows that all the
MBNs built on BNs of FP[01, 10] converge towards fixed points (0, β) and (α, 0) that are the
only attractors.

Proposition 14. For any delay vector dt, every MBN built on a BN that belongs to FP[01, 10]
admits only two attractors, fixed points (0, β) and (α, 0).

Proof. First of all, let us focus on BN [3, 01, 10]. Its interaction graph does not induce cycles
except one positive loop. So, by Proposition 2, any MBN built on it only admit fixed points.
More precisely, whatever α and β are, configuration (0, 0) converges towards (0, β) in 1 time
step. Any other configuration such that ρ, γ ≥ 1 admits the following trajectory: (ρ, γ) →
(α, γ−1)

γ−1−−→ (α, 0) 	 that is reached in γ time steps. Thus, any MBN built on BN [3, 01, 10]
(resp. on BN [5, 01, 10] by symmetry) converges towards two attractors, fixed points (0, β)
and (α, 0), and does so in at most β (resp. α) time steps.

Now, consider BN [1, 01, 10]. If ρ > γ then the trajectory is (ρ, γ)
γ−→ (ρ−γ, 0)→ (α, 0) 	 that

is reached in γ+1 time steps. Conversely, if ρ ≤ γ then the trajectory is (ρ, γ)
ρ−→ (0, γ−ρ)→

x [1, 01, 10] [2, 01, 10] [3, 01, 10] [4, 01, 10] [5, 01, 10] [6, 01, 10] [7, 01, 10] [8, 01, 10] [9, 01, 10]

00 01 01 01 10 10 10 11 11 11
01 01 01 01 01 01 01 01 01 01
10 10 10 10 10 10 10 10 10 10
11 00 01 10 00 01 10 00 01 10

Table 5: Truth tables of all the 9 BNs that admit fixed points (0, 1) and (1, 0).

23



(0, β) that is reached in ρ + 1 time steps. Thus, any MBN built on BN [1, 01, 10] (resp. on
BN [4, 01, 10] by symmetry) converges towards two attractors, fixed points (0, β) and (α, 0),
and does so in at most max(α, β) + 1 time steps.

Concerning BN [2, 01, 10], for all delay vector dt, (0, 0) converges towards (0, β) in one time
step. Any other initial configuration (ρ, γ) such that ρ, γ ≥ 1 admits the following trajectory:

(ρ, γ) → (ρ − 1, β)
ρ−1−−→ (0, β) 	 that is reached in at most ρ time steps. Thus, any MBN

built on BN [2, 01, 10] (resp. on BN [6, 01, 10] by symmetry) converges towards two attractors,
fixed points (0, β) and (α, 0), and does so in at most α (resp. β) time steps.

Lastly, concerning BN [8, 01, 10], for all delay vector dt, (0, 0) admits the following trajectory:
(0, 0)→ (α, β)

α−→ (0, β) 	 that is reached in α+ 1 time steps. Any other initial configuration

(ρ, γ) such that ρ, γ ≥ 1 admits the following trajectory: (ρ, γ)→ (ρ−1, β)
ρ−1−−→ (0, β) 	 that

is reached in ρ time steps. Thus, any MBN built on BN [8, 01, 10] (resp. on BN [9, 01, 10] by
symmetry) converges towards two attractors, fixed points (0, β) and (α, 0), and does so in at
most α+ 1 (resp. β + 1) time steps.

Now, Proposition 15 shows that there exist specific conditions under which MBNs built on
BN [7, 01, 10] of LC[01, 10] evolve towards a limit cycle.

Proposition 15. Every MBN built on BN [7, 01, 10] with α = β admits a limit cycle. Any
other admits only (0, β) and (α, 0) as its unique attractors.

Proof. Consider first that α = β and that ρ = γ. Then we have: (ρ, ρ)
ρ−→ (0, 0) → (α, α)

α−→
(0, 0), which emphasizes a limit cycle of length α. Now, consider that α 6= β and that ρ = γ.

We have the following trajectory: if α > β then (ρ, ρ)
ρ−→ (0, 0) → (α, β)

β−→ (α − β, 0) →
(α, 0) 	 that is reached in ρ + β + 2 time steps; if α < β then (ρ, ρ)

ρ−→ (0, 0) → (α, β)
α−→

(0, β−α)→ (0, β) 	 that is reached in ρ+α+ 2 time steps. The last case to consider is when

ρ 6= γ whatever α and β, for which we have: if ρ > γ then (ρ, γ)
γ−→ (ρ− γ, 0)→ (α, 0) 	 that

is reached in γ + 1 time steps; if ρ < γ then (ρ, γ)
ρ−→ (0, γ − ρ)→ (0, β) 	 that is reached in

ρ + 1 time steps. Hence, when built on BN [7, 01, 10], only MBNs such that α = β admit a
limit cycle of length α that can only be reached by configurations such that ρ = γ. All the
others converge only towards (0, 0) and (α, β) in at most α+ max(α, β) + 2 time steps.

3.2.4 MBNs based on F[01, 11] and F[10, 11]

Concerning the classes of BNs F[01, 11] and F[10, 11], notice first that they are symmetric.
Thus, the results obtained for F[01, 11] have their symmetric that hold for F[10, 11]. So, let
us focus only on F[01, 11].

Remark 4. For every network of F[01, 11], since (0, 1) and (1, 1) are fixed points, whatever
α and β are, configurations (0, γ), with γ ≥ 1, converge towards (0, β) in one time step, and
any initial configuration such that ρ ≥ 1 and γ ≥ 1 converges towards (α, β) in one time step.

Therefore we analyze the dynamical behavior of all the initial configurations of the form (ρ, 0),
where ρ ≥ 0. From Table 6 (up), a basic enumeration gives that FP[00, 01] = F[00, 01] \
{[4, 00, 01]}, and LC[00, 01] = {[4, 00, 01]}. Proposition 16 below shows that all the MBNs
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x [1, 01, 11] [2, 01, 11] [3, 01, 11] [4, 01, 11] [5, 01, 11] [6, 01, 11] [7, 01, 11] [8, 01, 11] [9, 01, 11]

00 01 01 01 10 10 10 11 11 11
01 01 01 01 01 01 01 01 01 01
10 00 01 11 00 01 11 00 01 11
11 11 11 11 11 11 11 11 11 11

x [1, 10, 11] [2, 10, 11] [3, 10, 11] [4, 10, 11] [5, 10, 11] [6, 10, 11] [7, 10, 11] [8, 10, 11] [9, 10, 11]

00 01 01 01 10 10 10 11 11 11
01 00 10 11 00 10 11 00 10 11
10 10 10 10 10 10 10 10 10 10
11 11 11 11 11 11 11 11 11 11

Table 6: Truth tables of all the 9 BNs that admit (up) fixed points (0, 1) and (1, 1) and (down)
fixed points (1, 0) and (1, 1).

built on BNs of FP[01, 11] converge towards fixed points (0, β) and (α, β) that are the only
attractors.

Proposition 16. For any delay vector dt, every MBN built on a BN that belongs to FP[01, 11]
admits only two attractors, fixed points (0, β) and (α, β).

Proof. First of all, consider BNs [3, 01, 11], [6, 01, 11] and [9, 01, 11] that are increasing accord-
ing to their definition. So, by Proposition 3, all of the MBNs built on them admit only fixed
points.
Concerning MBNs built on [3, 01, 11], whatever α and β are, configuration (0, 0) converges
towards (0, β) in 1 time step. Any other configuration such that (ρ, 0), with ρ ≥ 1, admits
the following trajectory: (ρ, 0) → (α, β) 	 that is reached in 1 time step. Thus, any MBN
built on BN [3, 01, 11] admits only two attractors, fixed points (0, β) and (α, β), and converge
to them in at most 2 time steps.
Concerning MBNs built on [6, 01, 11], whatever α and β are, configuration (0, 0) becomes
(α, 0) in one time step. Moreover, any configuration (ρ, 0), with 1 ≤ ρ ≤ α, converges towards
(α, β) in one time step. Thus, any MBN built on BN [6, 01, 11] admits only two attractors,
fixed points (0, β) and (α, β), and converge to them in at most 2 time steps.

Concerning MBNs built on [9, 01, 11], whatever α and β are, any configuration such that
(ρ, 0), with ρ ≥ 0 converges towards (α, β) in 1 time step. So, such networks admit only two
attractors, fixed points (0, β) and (α, β), and converge to them in at most 1 time step.

Now, let us focus on BN [2, 01, 11]. Its interaction graph does not induce cycles except one
positive loop. So, by Proposition 2, any MBN built on such a BN only admits fixed points.
More precisely, whatever α and β are, configurations (0, 0) and (1, 0) converge towards (0, β)
in 1 time step. Any other configuration such that (ρ, 0), with ρ ≥ 2, admits the following
trajectory: (ρ, 0) → (ρ − 1, β) → (α, β) 	 that is reached in 2 time steps. Thus, any MBN
built on BN [2, 01, 11] admits only two attractors, fixed points (0, β) and (α, β), and converge
to them in at most 2 time steps.

Let us focus on BN [1, 01, 11]. Whatever α and β are, any configuration (ρ, 0), with ρ ≥ 0,

admits the following trajectory: (ρ, 0)
ρ−→ (0, 0)→ (0, β) 	 that is reached in ρ+ 1 time steps.

Thus, any MBN built on BN [1, 01, 11] admits only two attractors, fixed points (0, β) and
(α, β), and converge to them in at most α+ 1 time steps.

25



Consider BN [5, 01, 11]. Whatever α and β are, configuration (1, 0) converges towards (0, β) in
1 time step. Configuration (0, 0) follows the trajectory (0, 0)→ (α, 0)→ (α−1, β)→ (α, β) 	

that is reached in 3 time steps. Any other configuration such that (ρ, 0), with ρ ≥ 2, admits
the following trajectory: (ρ, 0)→ (ρ− 1, β)→ (α, β) 	 thay is reached in 2 time steps. Thus,
any MBN built on BN [5, 01, 11] admits only two attractors, fixed points (0, β) and (α, β),
and converge to them in at most 3 time steps.

Consider BN [7, 01, 11]. Whatever α and β are, any configuration (ρ, 0), with ρ ≥ 0, admits

the following trajectory: (ρ, 0)
ρ−→ (0, 0)→ (α, β) 	 that is reached in ρ+ 1 time steps. Thus,

any MBN built on BN [7, 01, 11] admits only two attractors, fixed points (0, β) and (α, β),
and converge to them in at most α+ 1 time steps.

Let us finally focus on BN [8, 01, 11]. Whatever α and β are, configuration (0, 0) (resp. (1, 0))
converges towards (α, β) (resp. (0, β)) in 1 time step. Any other configuration such that
(ρ, 0), with ρ ≥ 2, admits the following trajectory: (ρ, 0) → (ρ − 1, β) → (α, β) 	 that is
reached in 2 time steps. Thus, any MBN built on BN [8, 01, 11] admits only two attractors,
fixed points (0, β) and (α, β), and converge to them in at most 2 time steps.

Now, Proposition 17 shows that there exist specific conditions under which MBNs built on
BN [4, 01, 11] of LC[01, 11] evolve towards a limit cycle.

Proposition 17. Every MBN built on BN [4, 01, 10] admits a limit cycle that is reached by
any configuration (ρ, 0), with 0 ≤ ρ ≤ α.

Proof. First, let us consider any configuration (ρ, 0), with ρ ≥ 0. Such a configuration follows

the trajectory (ρ, 0)
ρ−→ (0, 0)→ (α, 0)→ (α− 1, 0)

α−1−−→ (0, 0), which emphasizes a limit cycle
of length α composed of all the configurations (ρ, 0). Thus, any MBN built on BN [4, 01, 10]
admits three attractors, the two fixed points (0, β) and (α, β) that are reached in 1 time step,
and a limit cycle of length α.

3.3 Networks admitting three fixed points

In this section, we focus on the MBNs that can be built on the basis of BNs of size 2 that
admit three fixed points. First of all, let us notice that there exist 4 distinct classes of such
networks, each of which being composed of 3 networks. As what has been presented above,
let us introduce the following notations.

Notation 4. [k, x, y, z], with k ∈ {1, . . . , 3} and x, y, z ∈ B2, denotes the network of size
2 whose local transition functions are represented by k and defined by their truth tables in
Tables 7 and 8, and that admits x, y and z as its fixed points (represented as binary words).

Let us also denote by F[x, y, z] the set composed of all BNs that admit x, y and z as their
unique fixed points.

MBNs based on F[00, 01, 10] and F[01, 10, 11]

Concerning the classes of BNs F[00, 01, 10] and F[01, 10, 11], notice first that they are sym-
metric. Thus, all the results obtained for F[00, 01, 10] have their symmetric that hold for
F[01, 10, 11]. So, let us focus only on F[00, 01, 10].
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Remark 5. For every network of F[00, 01, 10], since (0, 0), (0, 1) and (1, 0) are fixed points,
whatever α and β are, we have: if ρ = γ = 0 then there is trivially convergence towards fixed
point (0, 0); if ρ = 0 and γ ≥ 1 then (0, γ)→ (0, β) 	 that is a fixed point; if ρ ≥ 1 and γ = 0
then (ρ, 0)→ (α, 0) 	 that is a fixed point.

Therefore, we analyze the dynamical behavior of all the initial configurations of the form
(ρ, γ), where ρ ≥ 1 and γ ≥ 1. Proposition 18 below shows that all the MBNs built on BNs of
F[00, 01, 10] converge towards fixed points (0, 0), (0, β) and (α, 0) that are the only attractors.

x [1, 00, 01, 10] [2, 00, 01, 10] [3, 00, 01, 10]

00 00 00 00
01 01 01 01
10 10 10 10
11 00 01 10

x [1, 01, 10, 11] [2, 01, 10, 11] [3, 01, 10, 11]

00 01 10 11
01 01 01 01
10 10 10 10
11 11 11 11

(a) (b)

Table 7: (a) Truth tables of all the 3 BNs that admit fixed points (0, 0), (0, 1) and (1, 0); (b)
Truth tables of all the 3 BNs that admit fixed points (0, 1), (1, 0) and (1, 1).

Proposition 18. For any delay vector dt, every MBN built on a BN that belongs to F[00, 01, 10]
admits only three attractors, fixed points (0, 0), (0, β) and (α, 0).

Proof. Consider first BN [1, 00, 01, 10]. Whatever α and β are, given ρ ≥ 1 and γ ≥ 1, we

have: if ρ < γ then (ρ, γ)
ρ−→ (0, γ − ρ) → (0, β) 	 that is reached in ρ + 1 time steps; if

ρ > γ then (ρ, γ)
γ−→ (ρ − γ, 0) → (α, 0) 	 that is reached in γ + 1 time steps; if ρ = γ then

(ρ, ρ)
ρ−→ (0, 0) 	 that is reached in ρ time steps. Thus, any MBN built on BN [1, 00, 01, 10]

admits three attractors, fixed points (0, 0), (0, β) and (α, 0) that are reached in at most
max(α, β) + 1 time steps.

Concerning BN [2, 00, 01, 10], whatever α and β are, any initial configuration such that ρ ≥ 1

and γ ≥ 1 admits the following trajectory: (ρ, γ) → (ρ − 1, β)
ρ−1−−→ (0, β) 	 that is reached

in ρ time steps. Thus, any MBN built on BN [2, 00, 01, 10] (resp. on BN [3, 00, 01, 10] by
symmetry) admits three attractors, fixed points (0, 0), (0, β) and (α, 0), and converges to
them in at most α (resp. β) time steps.

MBNs based on F[00, 01, 11] and F[00, 10, 11]

Concerning the classes of BNs F[00, 01, 11] and F[00, 10, 11], notice first that they are sym-
metric. Thus, all the results obtained for F[00, 01, 11] have their symmetric that hold for
F[00, 10, 11]. So, let us focus only on F[00, 01, 11].

Remark 6. For every network of F[00, 01, 11], since (0, 0), (0, 1) and (1, 1) are fixed points,
whatever α and β are, we have: if ρ = γ = 0 then there is trivially convergence towards fixed
point (0, 0); if ρ = 0 and γ ≥ 1 then (0, γ)→ (0, β) 	 that is a fixed point; if ρ ≥ 1 and γ ≥ 1
then (ρ, γ)→ (α, β) 	 that is a fixed point.
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Therefore, we analyze the dynamical behavior of all the initial configurations of the form
(ρ, γ), where ρ ≥ 1 and γ = 0. Proposition 19 below shows that all the MBNs built on BNs of
F[00, 01, 11] converge towards fixed points (0, 0), (0, β) and (α, β) that are the only attractors.

Proposition 19. For any delay vector dt, every MBN built on a BN that belongs to F[00, 01, 11]
admits only three attractors, fixed points (0, 0), (0, β) and (α, β).

Proof. Consider first BN [1, 00, 01, 11]. Whatever α and β are, given ρ ≥ 1 and γ = 0,

configuration (ρ, 0) admits the following trajectory: (ρ, 0) → (ρ − 1, 0)
ρ−1−−→ (0, 0) 	 that is

reached in ρ time steps. Thus, any MBN built on BN [1, 00, 01, 11] admits three attractors,
fixed points (0, 0), (0, β) and (α, β) that are reached in at most α time steps.

Concerning BN [2, 00, 01, 11], whatever α and β are, given ρ ≥ 1 and γ = 0, we have: if ρ = 1
then (1, 0)→ (0, β) 	 that is reached in 1 time step; if ρ > 1 then (ρ, 0)→ (ρ−1, β)→ (α, β) 	

that is reached in 2 time steps. Thus, any MBN built on BN [2, 00, 01, 11] admits three
attractors, fixed points (0, 0), (0, β) and (α, β) that are reached in at most 2 time steps.

Concerning BN [3, 00, 01, 11], whatever α and β are, given ρ ≥ 1 and γ = 0, any configuration
(ρ, 0) converges towards (α, β) in 1 time step.

x [1, 00, 01, 11] [2, 00, 01, 11] [3, 00, 01, 11]

00 00 00 00
01 01 01 01
10 00 01 11
11 11 11 11

x [1, 00, 10, 11] [2, 00, 10, 11] [3, 00, 10, 11]

00 00 00 00
01 00 10 11
10 10 10 10
11 11 11 11

(a) (b)

Table 8: (a) Truth tables of all the 3 BNs that admit fixed points (0, 0), (0, 1) and (1, 1); (b)
Truth tables of all the 3 BNs that admit fixed points (0, 0), (1, 0) and (1, 1).

To conclude on this theoretical analysis, let us simply add that it is trivial to show that MBNs
of size 2 that are built on the only BN with 4 fixed points cannot admit limit cycle. Their
attractors are fixed points (0, 0), (α, 0), (0, β) and (α, β). Furthermore, as it could have been
predicted, the more BNs admit degree of freedom (i.e. the less they admit fixed points), the
more MBNs built on them may have complex behaviors. Eventually, as it has been highlighted
in [22, 23], this section has formally shown that, for networks of size 2, higher delays results
in longer limit cycles. However, it has also been shown that it is not true in general that the
more the maximum delay value, the less the network admits attractors. Indeed, we have seen
that this property holds in some cases but that there exist also networks for which increasing
delays can create limit cycles asymptotically.

4 Application to specific genetic regulation networks

4.1 Immunity control in bacteriophage λ

In [48], Thieffry and Thomas proposed a logical model based on the Thomas’ method [45,
47, 46] in order to analyze and achieve a better understanding of the role that specific genes
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have in the decision between lysis and lysogenization in bacteriophage λ. Notably, they
first introduced an interaction graph, composed of four genes cI, cII, cro and N, that they
voluntarily simplified in a two-genes model in order to focus especially on the interactions
existing between cI and cro. Without entering neither into the details of the Thomas’ method
nor into those of the model itself (they can be obtained in the original paper), let us just give
in Figure 7 the main static and dynamical features of the latter, in which we can see that
the chosen modeling is not in the Boolean setting but in a discrete one. Indeed, although
gene cI is associated with a Boolean variable, gene cro is associated with a variable taking
values into {0, 1, 2}. In this modeling, the network converges towards two attractors, a stable
configuration (1, 0), whose corresponding expression pattern is cI expressed and cro inhibited
that stands for the bacterium lysing, and a stable oscillation (0, 1) � (0, 2) that stand for the
bacterium becoming lysogenic.
From this model, considering that when gene cro is at its maximum expression level, it
inevitably tends to decrease to its medium expression level whatever that of cI, it is trivial to
reduce this model into the Boolean setting by merging states 1 and 2 of cro, without loss of
qualitative information from the biological standpoint because two attractors are conserved
exactly, through the two stable configurations (1, 0) and (0, 1). Hence, from Figure 7.b, it
is easy to obtain the truth table of the Boolean local transition functions of cI and cro and
consequently the associated BN. Then, we can obviously build the related interaction and
transitions graphs (see Figure 8).
Now, considering this network set in the MBN context, we obtain Theorem 2 below.

Theorem 2. Any MBN built on the BN of the immunity control of the bacteriophage λ admits
fixed points (dtcI, 0) and (0, dtcro). Only those such that dtcI = dtcro can admit a limit cycle
of length dtcI.

Proof. First, for all dtcI and dtcro and initial configurations such that ρ 6= γ, we have: if ρ > γ
then (ρ, γ)

γ−→ (ρ− γ, 0)→ (dtcI, 0) 	 that is reached in at most dtcro time steps, and if ρ < γ

then (ρ, γ)
ρ−→ (0, γ − ρ)→ (0, dtcro) 	 that is reached in at most dtcI time steps. Now, let us

consider that ρ = γ and compute its trajectory depending on dtcI and dtcro:

−

cI cro+ −

−

cI cro fcI fcro

0 0 1 1
0 1 0 2
0 2 0 1
1 0 1 0
1 1 0 0
1 2 0 1

(a) (b)

Figure 7: (a) Interaction graph of the gene regulation network implying genes cI and cro
in the immunity control of the bacteriophage λ introduced in [48]; (b) Table presenting the
dynamical behavior of this network inferred from the phase diagram given by Thieffry and
Thomas.
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cI cro fcI fcro

0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0

−

cI cro

−
00 01

10 11

(a) (b) (c)

Figure 8: (a) Truth table of the Boolean local transition functions of cI and cro inferred from
the Thomas’ model of the immunity control of the bacteriophage λ; (b) Related interaction
graph; (c) Related transition graph.

• if dtcI = dtcro then (ρ, ρ)→ (ρ− 1, ρ− 1)
ρ−1−−→ (0, 0)→ (ρ, ρ), which emphasizes a limit

cycle of length dtcI.

• if dtcI > dtcro then (ρ, ρ)
ρ−→ (0, 0)→ (dtcI, dtcro)

dtcro−−−→ (dtcI − dtcro, 0)→ (dtcI, 0) 	 that
is reached in at most 2dtcro + 2 time steps.

• if dtcI < dtcro then (ρ, ρ)
ρ−→ (0, 0)→ (dtcI, dtcro)

dtcro−−−→ (0, dtcro−dtcI)→ (0, dtcro) 	 that
is reached in at most 2dtcI + 2 time steps.

Remark 7. As Theorem 2 states, in the case where dtcI = dtcro and α = β, the behavior of
the network evolves towards a limit cycle. This limit cycle is a spurious asymptotic behavior
induced by the perfect synchronicity created by both the parallel updating mode and the equality
of all the control parameters dtcI, dtcro, α and β. These parameters could be useful to control
synchronicity loss in genetic regulatory networks.

4.2 Floral morphogenesis of Arabidopsis thaliana

In [30], Mendoza and Alvarez-Buylla introduced a network of the genetic control of the floral
morphogenesis of the plant Arabidopsis thaliana. The mathematical model that they used to
study the dynamical behavior of this network was that of threshold BNs. Threshold BNs are
particular BNs in which every local transition function fi(x) is a threshold Boolean function
defined as:

fi(x) = I(
∑
j∈V

wi,j · xj − θi),

where θi is the activation threshold of node i, wi,j ∈ R is the interaction weight that node j has
on node i, and I : R→ B is the Heaviside function defined as I(x) = 0 if x ≤ 0 and 1 otherwise.
A very relevant result obtained by Mendoza and Alvarez-Buylla was that the dynamical
behavior of this network, according to a specific block-sequential (or series-parallel) updating
mode (see [40] for more details about this kind of updating mode), converges towards six fixed
points among which four corresponds to the four floral cellular types: carpels, stamens, petals
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W̃ =



emf1 tfl1 lfy ap1 cal lug ufo bfu ag ap3 pi sup
emf1 1 0 0 0 0 0 0 0 0 0 0 0
tfl1 1 0 −2 0 0 0 0 0 0 0 0 0
lfy 0 0 0 0 0 0 0 0 0 0 0 0
ap1 −2 0 5 0 0 0 0 0 −2 0 0 0
cal 0 0 2 0 0 0 0 0 0 0 0 0
lug 0 0 0 0 0 0 0 0 0 0 0 0
ufo 0 0 0 0 0 0 0 0 0 0 0 0
bfu 0 0 0 0 0 0 0 0 0 1 1 0
ag 0 −2 1 −2 0 −1 0 0 0 0 0 0
ap3 0 0 3 0 0 0 2 1 0 0 0 −2
pi 0 0 4 0 0 0 1 1 0 0 0 −1
sup 0 0 0 0 0 0 0 0 0 0 0 0



Figure 9: Symmetric version of the regulation network modeling the genetic control of Ara-
bisopsis thaliana floral morphogenesis pointing out the dynamical role of the two strongly
connected components C1 and C2.

and sepals. The two other fixed points are respectively related to inflorescence and mutant
cellular types.
In [11], the authors emphasized that this network, when subjected to the parallel updating
mode, has also seven limit cycles of size 2. Basing themselves on the results obtained by
Goles in [17] about the convergence of symmetric threshold BNs, they showed that this original
network was actually equivalent to another simpler one. The latter is simpler in the sense that
its dynamical richness is entirely governed by two strongly connected components C1 and C2,
of respective sizes 2 and 3 and such that VC1 = {AG,AP1} and VC2 = {AP3,BFU,PI}. This
network, together with its related interaction matrix W̃ and threshold vector Θ̃ is pictured
in Figure 9. From the analysis of the dynamical behavior of this network given in [11], we
derive Theorem 3 below.

Theorem 3. Suppose that every node that does not belong to neither C1 nor C2 is at state 0.
The following holds:

i) Any MBN associated with C1 admits the two fixed points (dtAG, 0) and (0, dtAP1). Only
those such that dtAG = dtAP1 can admit a limit cycle.

ii) For the C2 component, the behavior of any MBN built on it is the following:
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• If dBFU ≥ 2, then the set of attractors of the network is composed of two fixed
points, (0, 0, 0) and (dAP3, dBFU, dPI).

• If (dtBFU = 1) ∧ (dtAP3 ≥ 2) ∧ (dtPI ≥ 2) then the set of attractors of the network
is composed of two fixed points, (0, 0, 0) and (dtAP3, dtBFU, dPI).

• If (dBFU = 1)∧((dAP3 = 1)∨(dPI = 1))) then the set of attractors of the network is
composed of two fixed points, (0, 0, 0) and (dtAP3, dtBFU, dPI), and of a limit cycle
of length 2.

Proof. Let us work on both sub-networks.

i) The proof is the same as that of Theorem 2.

ii) Let us denote by (ρ, δ, γ) the initial configuration. First, notice that whatever the delay
vector, if the state of BFU is 0 and at least one of the other two is also 0 in the
initial configuration then the latter converges towards the fixed point (0, 0, 0). Indeed,

(0, 0, γ) → (0, 0, γ − 1)
γ−1−−→ (0, 0, 0) 	 that is reached in γ time steps, i.e. in at most

dtPI time steps. Similarly, (ρ, 0, 0) → (ρ − 1, 0, 0)
ρ−1−−→ (0, 0, 0) 	 that is reached in γ

time steps, i.e. in at most dtPI time steps.

Consider now that it is not the case so that the central site and one of its neighbors are
not both at state 0 at the same time. Three cases are possible:

(a) dtBFU ≥ 2. Then, for 1 ≤ δ ≤ dtBFU and for any ρ, γ ≥ 0 we have:

• if ρ = 0 or γ = 0 then (ρ, δ, γ)→ (dtAP3, δ − 1, dtPI). If δ − 1 = 0 then

– if dtAP3 = dtPI = 1 then (dtAP3, 0, dtPI)→ (0, dtBFU, 0)→ (dtAP3, dtBFU−
1, dtPI)→ (dtAP3, dtBFU, dtPI) 	.

– if dtAP3 = 1 ∧ dtPI > 1 then (dtAP3, 0, dtPI) → (0, dtBFU, dtPI − 1) →
(dtAP3, dtBFU − 1, dtPI)→ (dtAP3, dtBFU, dtPI) 	.

– if dtAP3 > 1 ∧ dtPI = 1 then (dtAP3, 0, dtPI) → (dtAP3 − 1, dtBFU, 0) →
(dtAP3, dtBFU − 1, dtPI)→ (dtAP3, dtBFU, dtPI) 	.

– if dtAP3 > 1 ∧ dtPI > 1 then (dtAP3, 0, dtPI)→ (dtAP3−1, dtBFU, dtPI−1)→
(dtAP3, dtBFU, dtPI) 	.

If δ − 1 ≥ 1 then (dtAP3, δ − 1, dtPI)→ (dtAP3, dtBFU, dtPI) 	.

• if ρ ≥ 1 and γ ≥ 1 then it is trivial that (ρ, δ, γ) converges directly towards
(dtAP3, dtBFU, dtPI).

Now, if ρ ≥ 1, δ = 0 and γ ≥ 1 then

• if ρ = γ = 1 then (1, 0, 1) → (0, dtBFU, 0) → (dtAP3, dtBFU − 1, dtPI) →
(dtAP3, dtBFU, dtPI) 	.

• if ρ = 1 ∧ γ ≥ 2 then (1, 0, γ)→ (0, dtBFU, γ−1)→ (dtAP3, dtBFU−1, dtPI)→
(dtAP3, dtBFU, dtPI) 	.

• if ρ ≥ 2 ∧ γ = 1 then (ρ, 0, 1)→ (ρ−1, dtBFU, 0)→ (dtAP3, dtBFU−1, dtPI)→
(dtAP3, dtBFU, dtPI) 	.

• if ρ ≥ 2 ∧ γ ≥ 2 then (ρ, 0, γ)→ (ρ−1, dtBFU, γ−1)→ (dtAP3, dtBFU, dtPI) 	.
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Thus, when dtBFU ≥ 2, the network admits only two attractors, fixed point (0, 0, 0)
(resp. (dtAP3, dtBFU, dtPI)) towards which it converges in at most max(dtAP3, dtPI)
(resp. 4) time steps.

(b) dtBFU = 1 and (dtAP3 ≥ 2) and (dtPI ≥ 2). Given an initial configuration (ρ, δ, γ),
we have:

• if δ = 0 and ρ ≥ 1 and γ ≥ 1 then:

– if ρ = γ = 1 then (1, 0, 1)→ (0, 1, 0)→ (dtAP3, 0, dtPI).

– if ρ = 1 ∧ γ ≥ 2 then (1, 0, γ)→ (0, 1, γ − 1)→ (dtAP3, 0, dtPI).

– if ρ ≥ 2 ∧ γ = 1 then (ρ, 0, 1)→ (ρ− 1, 1, 0)→ (dtAP3, 0, dtPI).

– if ρ, γ ≥ 2 then (ρ, 0, γ)→ (ρ− 1, 1, γ − 1)→ (dtAP3, 0, dtPI).

Now, notice that (dtAP3, 0, dtPI)→ (dtAP3−1, 1, dtPI−1)→ (dtAP3, dtBFU, dtPI) 	.

• if δ = 1 and ρ ≥ 1 and γ ≥ 1 then it is trivial that there is a direct convergence
towards (dtAP3, dtBFU, dtPI).

Thus, when dtBFU = 1 and dtAP3 ≥ 2 and (dtPI ≥ 2), the network necessar-
ily converges towards either (0, 0, 0) in at most max(dtAP3, dtPI) time steps or
(dtAP3, dtBFU, dtPI) in at most 4 time steps.

(c) dtBFU = 1 and ((dtAP3 = 1) ∨ (dtPI = 1)). Let us first suppose that dtAP3 = 1
and dtAP3 ≥ 2 and consider an initial configuration (ρ, δ, γ). We have:

• if δ = 0 and ρ = 1 and γ ≥ 1 then (1, 0, γ)→ (0, 1, γ − 1)→ (dtAP3, 0, dtPI) �
(0, 1, dtPI − 1), which highlights a limit cycle of length 2.

• if δ = 1 then:

– ∀ρ, γ such that ρ = 0 or γ = 0, (ρ, 1, γ)→ (dtAP3, 0, dtPI) � (0, 1, dtPI−1),
which highlights a limit cycle of length 2.

– if ρ = 1 and γ ≥ 1 then (1, 1, γ)→ (dtAP3, dtBFU, dtPI) 	.

The cases where (dtAP3 ≥ 2 ∧ dtAP3 = 1), and where dtAP3 = dtAP3 = 1 can be
treated similarly.

Theorem 3 shows that both components C1 and C2 that are the engines of the dynamical
behavior of the network admit a limit cycle. However, here again, these two limit cycles are
spurious in the sense that only very specific initial conditions allow to capture them. Further-
more, both of these components admit two fixed points: (xAG = dtAG, xAP1 = 0) and (xAG =
0, xAP1 = dtAP1) for C1, and (xAP3 = 0, xBFU = 0, xPI = 0) and (xAP3 = dtAP3, xBFU =
dtBFU, xPI = dtPI). By combining them by making vectors (xAG, xAP1, xAP3, xBFU, xPI), we
obtain four possible fixed points:

fp1 = (dtAG, 0, 0, 0, 0), fp2 = (0, dtAP1, 0, 0, 0),

fp3 = (dtAG, 0, dtAP3, dtBFU, dtPI) and fp4 = (0, dtAP1, dtAP3, dtBFU, dtPI),

that correspond exactly to the floral organs (sepals, petals, carpels and stamens) according
to the ABC model [8, 32].
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5 Conclusion and perspectives

This paper aimed at studying from the theoretical point of view the GPBN model of Graudenzi
and Serra in [21, 22, 23]. This mathematical model was introduced as an extension of BNs
allowing to consider nodes representing both genes (as Boolean variables) and proteins (as
discrete decay times of their concentrations). By using an intermediary model, that we call
MBNs, we first obtained a result emphasizing that GPBNs are computationally speaking
equivalent to BNs. Indeed, given an arbitrary GPBN, it is possible to construct an dynamically
equivalent BN composed of more nodes. This result led us to focus on theoretical properties
of MBNs. For this model in general, we proved that: (i) positive disjunctive MBNs, as well
as locally monotonic MBNs (i.e. MBNs whose global transition function is either decreasing
or increasing for all x), necessarily converge towards fixed points; (ii) the only attractors that
MBNs whose underlying interaction graphs do not induce any cycle except possible loops may
have are fixed points. Then, before we presented applications to two well know examples of
real genetic regulation networks, we analyzed exhaustively the possible dynamical behaviors
of MBNs composed of two nodes. The underlying idea aimed at obtaining a subtle knowledge
about the dynamical and computational properties of simple biological patterns. It led us to
highlight the conditions under which this or that pattern admits only fixed points or limit
cycles as limit behaviors. Moreover, it led us to show that adding memory to BNs is a
pertinent way to freeze some cyclic behaviors, which is particularly interesting in the case of
spurious complex attractors, but that it is also a way to create complex attractors in very
specific networks having few attractors in their initial Boolean form. The features of such
BNs would deserve to be studied more generally.

This work opens the following perspectives:

• about other applications: One of the first perspectives would be to use MBNs to model
other networks known to model genetic controls in living systems. Among the networks
that we think of are the embryonic segmentation of Drosophila melanogaster [2], B-cell
differentiation [29] and the fission yeast cell cycle network [26].

• about larger networks: A natural opening of this work is to focus on the theoretical
properties of the dynamics and the complexity of networks of larger sizes. A first axis
would be to maintain our interest in biological patterns by paying attention to networks
of size 3 and 4. Because of the intrinsic complexity (regarding the size of the phase
space) of such a work, it would be judicious to focus on specific patterns that have
been highlighted to be either statistically well represented in biological networks [33] or
of specific importance such as regulons or feed-forward coherent and incoherent cycles.
Moreover, of course, another axis should naturally be articulated around larger networks
whose interaction graphs belong to specific classes, such as cycles and more generally
graph family like cacti and caterpillars.

• about synchronicity : As evoked in Remark 7, MBNs get interesting features to un-
derstand the role of synchronicity and asynchonicity on the dynamics of regulatory
networks. Indeed, when we work on BNs, the way to study and understand the in-
fluence of synchronicity is to play with the updating mode (parallel, block-sequential,
sequential, randomly sequential, fair, asynchronous...). However, although there exist
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a lot of results in this domain, the comparison of their impact on networks is very
tricky for mainly two reasons: the infinite number of possible updating modes in the-
ory and their mathematical nature (i.e. deterministic vs non-deterministic, periodic
vs non-periodic...). Here, with MBNs, while we keep the parallel updating mode, we
can directly change synchronicity through initial configurations that play the role of
synchronicity control parameters. From the biological point of view, this is of pecu-
liar interest because in most cases, the synchronicity induced by the use of the parallel
updating mode (that the most basic mathematically speaking) tends to produce cyclic
attractors with no biological meaning. In this framework, future works will be oriented
towards the characterizations of delays for distinct classes of MBNs ensuring to filter
such spurious attractors by freezing the networks.
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