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Abstract
In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a

population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the

indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective

immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2

in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the

impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a

progression of initial immunity ratio—the percentage of immunised individuals before patient zero starts infecting its

neighbourhood—from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the

peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this

range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the

model such as the durations of the cellular automaton states, the contamination contributions of each state and the state

transition probabilities. A collective immunity threshold of 55%� 2:5% on average was obtained from this procedure,

under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even

increasing the uncertainty of the input parameters.
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1 Introduction

The Coronavirus Disease 19 (COVID-19) is a contagious

disease which can be transmitted via interactions between

human beings, by means of particles emanated from the

respiratory system of a contaminated person to the mouth

or nose of another person. Contaminated individuals

present symptoms like fever, body aches and shortage of

breath, which are caused by the Severe Accute Respiratory

Syndrome-Coronavirus (SARS-CoV-2) (Ezhilan et al.

2021). This virus was initially found in animals, and the

origin of its transition to human beings is still unknown

(Velavan and Meyer 2020).

Generally, the mass contamination caused by this virus

began in December of 2019 in the province of Hubei,

located in the People’s Republic of China, initally diag-

nosed as a type of pneumonia. In the subsequent months,

the World Health Organisation (WHO) declared a pan-

demic state and authorities from each country began to

adopt health and safety protocols trying to contain COVID-

19’s transmission (Velavan and Meyer 2020). These

authorities have been relying on different types of quar-

antine, from social distancing to lockdowns, so that the

effects of these decisions during the last year and a half

have led to worldwide decrease in economy, poverty raise

and human lives (Ciotti et al. 2020). Consequently, many
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economic activities were affected and damaged (Ezhilan

et al. 2021), prompting political and sanitary agents, and

the population in general, to start asking when these

restrictions could be removed without causing a new wave

of infections.

Understanding when to start removing the restrictions

involves essentially understanding when and how collec-

tive immunity can be achieved (Britton et al. 2020), that is,

the individual protection from infection given by a suffi-

ciently large proportion of immune individuals in a society,

decreasing the infection rate, or the average number of

individuals infected by one infected person, to values under

1.0 (Randolph and Barreiro 2020).

Studying the behaviour of diseases in general, specially

in planning prevention measures for authorities can cost

time and human lives. But it is possible to resort to theories

and models related to epidemiological studies, to develop

mathematical and computational approaches to help predict

and test control strategies, as well as understand the impact

of immune individuals in a disease. In this context, cellular

automata based models constitute a paradigmatic example,

as their use in disease spreading studies have been shown

to be both viable and reliable (Mikler et al. 2005; Monteiro

et al. 2020; White et al. 2007; Schimit 2021).

Cellular automaton (CAs) are discrete dynamical sys-

tems defined by a regular lattice of cells, where each one is

defined by a finite number of discrete states. The dynamics

of cellular automata is defined locally, with each cell

having its state changed according to its current state and

those of its neighbouring cells. And even simple individual

cell behaviours, cellular automata may lead to arbitrarily

complex global behaviours. On their part, stochastic cel-

lular automata are the ones whose cells define their next

state based on a probability distribution.

Here, a computational model based on stochastic cel-

lular automata is proposed to aid in understanding the

COVID-19 dynamics, with a focus on collective immunity.

We describe the principles of a stochastic cellular

automaton which allows to emulate the spreading of

COVID-19 in a population, so as to obtain the proportion

of the population that has to be vaccinated, or become

naturally immunised, for collective immunity to be estab-

lished. Even though one might argue that the regular

topology of cellular automata might not be adequate to

reliably support the dynamics of a disease spreading, this

has been the case in various successful efforts in the lit-

erature (Yakowitz et al. 1990; Fuentes and Kuperman

1999; Schimit and Monteiro 2009; Holko et al. 2016;

Schimit and Monteiro 2011; Ahmed and Agiza 1998;

Sirakoulis et al. 2000). So, in tune with those, our main

goal here is to probe whether such an abstract and minimal

model could capture a fundamental aspect of the disease

like the collective immunity.

In Sect. 2, the computational model based on the pro-

posed cellular automaton is discussed, and is followed by a

section on the methodology underlying the computational

experiments carried out. In Sect. 4, the results obtained are

presented and discussed, according to four distinct

parameterisations setups, hereby called Experiments.

Finally, in Sect. 5 the results obtained are discussed and

compared to related works.

2 The reference model and its
computational implementation

2.1 The reference model

During the ongoing COVID-19 pandemic, the following

four conditions were observed in contaminated individuals,

related to the duration and the intensity of the disease,

according to COVID-19 related literature at the beginning

of the pandemic (Ferguson et al. 2020; Lauer et al. 2020;

Liu et al. 2020; Wölfel et al. 2020):

– No symptoms Individuals who do not present any

symptoms of the disease but can contaminate others

through social interactions;

– Moderate symptoms Describing the ones who present

a few symptoms but quickly become immune, but still

with the possibility of contaminating others through

social interactions;

– Severe symptoms Those who have to be hospitalised

and present a moderate death risk;

– Critical symptoms Individuals in need of hospitalisa-

tion in an Intensive Care Unit (ICU), maintained by

forced ventilation, and presenting a high death risk.

Figure 1 presents the reference model we rely upon (due

to Rahmé 2020), based on Ferguson et al. (2020), Lauer

et al. (2020), Liu et al. (2020). It illustrates the four pre-

vious possible dynamics of the disease after contagion and

divides COVID-19 in terms of the stages of the disease, as

it progresses. On the left-hand side, the figure displays the

proportions of the population following each dynamics,

which can be viewed as a trail followed over time, from

contagion to full recovery (or death), with their durations,

and correlated to the severity of the symptoms. Also, as

severity rises, the recovery is not a single destination but a

branch with two possibilities, one of them being the death

of an individual, which occur at the different death rates

expressed on the rightmost part of the figure. After

recovery from the symptoms, the figure also shows the

periods where the remaining viruses in an individual can

still contaminate others, while their antibodies combat the

disease. Each trail shown in the figure has internal seg-

ments regarding incubation period, manifestation of
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symptoms, hospitalisation and recovery, with their

respective durations; for example, the period associated

with No Symptoms, which describes the incubation period

of the disease, takes around five days to end.

As patient zero starts interacting with other members of

a population, the disease will start spreading and, after

some time, every person will be contaminated and undergo

COVID-19 effects. Some will become immune, others will

die, and others will not even be contaminated. The

dynamics proposed and described by this reference model

are experienced individually.

The model can be couched in terms of a stochastic

cellular automaton (White et al. 2007; Mikler et al. 2005),

by representing the variety of possibilities elicited in Fig. 1

as the states of a cell of the CA, the probabilities therein as

those governing the state transitions among the states and

each day of the timeline expressed as a time step of the

automaton. The details about how we go about it are

described in the next section.

2.2 Representing COVID-19 dynamics
with a stochastic cellular automaton

2.2.1 The states

Let us consider a closed population with n� n individuals

allocated over a two-dimensional lattice, each one

interacting only within those in its direct neighbourhood of

the eight surrounding individuals (i.e., in a Moore neigh-

bourhood). Also, let us assume the population has fixed

boundaries, assuming a no interactions state to missing

neighbours. In other words, the interactions will only be

among the cells in a Moore nighbourhood of unitary radius

and, if a cell is at the boundary of the lattice, its neigh-

bourhood will only include those inside the lattice.

Consider that one of the individuals is arbitrarily con-

taminated with SARS-CoV-2 and becomes patient zero for

COVID-19, thus entering one of the trails mentioned above

(no symptoms, moderate symptoms, severe symptoms or

critical symptoms).

Let us represent the cell states of the cellular automaton

by the notation Stid, with t being the state duration in terms

of the number of time steps of the automaton’s temporal

evolution; id being just a state identificator; and S standing

for the type of state class it belongs to, out of the possi-

bilities Susceptible, Infected and Removed. Notice that

these are the same alternatives that define a SIR model of

epidemic dynamics (Blavatska and Holovatch 2021).

Based on the previous notation, the reference model of

Fig. 1 can now be expressed as follows. The durations of

specific states with time dependent transition are obtained

from the reference model, also being the mean values of

probability distributions (further on this will be addressed

in Sect. 3.3). These mean times are obtained from the time

Fig. 1 Timeline, progression and mortality of COVID-19, from

Rahmé (2020), based on Ferguson et al. (2020), Lauer et al. (2020),

Liu et al. (2020), Wölfel et al. (2020). This chart describes the

general scheme supporting the present work. The values were taken

by the disease references at the time the chart was created, in 2020
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axis at the bottom of the chart expressed in days. For

example, the duration 13 for state I13
6 corresponds to

duration of the magenta ICU/VENTILATION segment, just

above the time axis in Fig. 1; the segment starts at day 8

and ends at day 21, thus resulting in the state duration of 13

days (to be translated to 13 times steps in the computational

model).

• S type state:

– SUSCEPTIBLE (S
f ðPcÞ
0 ): Individuals (cells) capable of

being contaminated, during as long the neighbour-

hood contamination probability Pc is enough to

cause a change to the next state.

• I type states:

– NO SYMPTOMS (I5
1): Absence of symptoms during the

incubation period;

– MODERATE SYMPTOMS (I5
2): Moderate symptoms

manifestation;

– SEVERE SYMPTOMS (I3
3): Severe symptoms

manifestation;

– CRITICAL SYMPTOMS (I3
4): Critical symptoms

manifestation;

– HOSPITALISED (I12
5 ): Hospitalisation period after sev-

ere symptoms;

– ICU/VENTILATION (I13
6 ): Hospitalisation in intensive

care unit, after the manifestation of critical

symptoms;

– CONTAGIOUS WITHOUT SYMPTOMS (I10
7 ): Disease effects

ceased, but it is still possible to contaminate others;

– CONTAGIOUS WITH MODERATE SYMPTOMS (I11
8 ): Disease

effects ceased, but it is still possible to contaminate

others after moderate symptoms;

– CONTAGIOUS WITH SEVERE SYMPTOMS (I4
9): Disease

effects ceased, but it is still possible to contaminate

others after hospitalisation;

– CONTAGIOUS WITH CRITICAL SYMPTOMS (I5
10): Disease

effects ceased, but it is still possible to contaminate

others after intensive care unit internation.

• R type states:

– DECEASED (R1
11): Individuals who did not resist the

disease effects and were permanently removed from

the population, thus no longer interacting;

– IMMUNE (R1
12): Immunised individuals who cannot be

contaminated again and do not contaminate others.

2.2.2 Contamination contributions

Notice that each state has its own contamination contri-

bution, which indicates how much a cell can infect a

neighbouring cell in the SUSCEPTIBLE state, at each timestep.

For example, an individual who did not have symptoms,

after the incubation period (NO SYMPTOMS state) would stay

for some time contagious, even possibly unaware of it. For

this state, the contamination contribution could be con-

sidered 100%. The following provides the whole picture

we assumed:

– SUSCEPTIBLE, DECEASED and IMMUNE states were assumed

to have 0% contamination contribution;

– HOSPITALISED and ICU/VENTILATION states were assigned

10% contamination contribution (a small rate, since the

individuals in these states are under the more controlled

conditions of a hospital);

– The remaining states were considered with 100%

contamination contribution.

2.2.3 State transitions

It is necessary to define and describe the state transitions

between states. If any individual in a population gets

infected, independently of the dynamics followed, he/she is

capable of affecting the neighbourhood, with the contri-

butions expressed in Sect. 2.2.2. In the same way, the

neighbourhood is capable of afecting the individual, indi-

cating that there is a correlation between the size of the

neighbourhood and the probability of getting ill.

Accordingly, the transitions associated to the SUSCEPTI-

BLE state are defined by the neighbourhood contamination

probability Pc, which is drawn from the average of the

contamination contributions of each neighbour in a Moore

neighbourhood of unitary radius (the sum of the contami-

nation contributions defined by the current states of the

eight neighbourhood cells divided by eight). For the other

states, the state transitions are governed by the durations

of the states (defined in days in the reference model and in

time steps of the automaton).

So, we can define the state transitions as follows:

– If a cell is in the SUSCEPTIBLE state, the next state will be

NO SYMPTOMS with probability Pc;

– The NO SYMPTOMS state will remain for five time steps.

The next possible states are CONTAGIOUS WITHOUT

SYMPTOMS with 30% probability, MODERATE SYMPTOMS

with 55%, SEVERE SYMPTOMS with 10% and CRITICAL

SYMPTOMS with 5%;

– The transitions for the remaining states are defined just

by the duration in time steps and can be better observed

in Fig. 1. As stablished earlier, these durations are
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defined by probability distributions, as addressed in

Sect. 3.3);

– The transition to the IMMUNE or DECEASED states is also

defined by the previous state durations but with a

probability for each one. If the cell is in CONTAGIOUS

WITHOUT SYMPTOMS or CONTAGIOUS WITH MODERATE SYMP-

TOMS states, the probability of moving to IMMUNE state is

100%; if the cell is in HOSPITALISED state, its probability

to change to the IMMUNE state is 85% and to DECEASED is

15%; if the cell is in ICU/VENTILATION state the

probability of turning to the IMMUNE state is 50% and

to DECEASED is 50%.

The resulting state transition diagram of the model

describing each probability and each state transition can be

seen in Fig. 2.

3 Methodology of the computational
experiments

3.1 Preliminaries

With the state transitions and probabilities defined, the

proposed cellular automaton can be implemented and

simulated, ending its iterations when a global convergence

is achieved. This steady state condition is defined by a

global configuration with all the cells in the states SUSCEP-

TIBLE, DECEASED or IMMUNE. The initial configuration of the

lattice is assumed to contain a randomly chosen single cell

in the NO SYMPTOMS state, surrounded by cells in the SUS-

CEPTIBLE state or the IMMUNE state also randomly distributed

(this will be better described in Sect. 3.2).

The characterisation of the dynamics of the temporal

evolution of the cellular automaton can then be obtained by

monitoring data such as:

– The number of cells in SUSCEPTIBLE state, representing

the number of individuals not contaminated;

– The number of cells in DECEASED state, representing the

number of deceased individuals;

– The number of cells in IMMUNE state, representing the

number of recovered individuals;

– The number of cells at the other states, representing the

infected individuals.

Consequently, the previous data provides what is needed to

study the collective immunity effect related to COVID-19

in a population, specially the estimate of the necessary

immunity ratio to achieve collective imunity.

3.2 Analysing collective immunity

With the computational model, the impact of immune

individuals can then be studied by varying the initial global

Fig. 2 State transition diagram of the proposed cellular automaton.

The durations of each state, superscripted in each state identification,

are directly obtained from the reference model, but they really

correspond in the computational experiments to the mean value of a

probability distribution. At the time a state should transit to the next,

this occurs with 100% probability, unless multiple different states

might follow; in these cases, the transition probabilities are divided

among the possible next states. States involved: SUSCEPTIBLE (S
f ðPcÞ
0 );

NO SYMPTOMS (I5
1); MODERATE SYMPTOMS (I5

2); SEVERE SYMPTOMS (I3
3);

CRITICAL SYMPTOMS (I3
4); HOSPITALISED (I12

5 ); ICU/VENTILATION (I13
6 );

CONTAGIOUS WITHOUT SYMPTOMS (I10
7 ); CONTAGIOUS WITH MODERATE

SYMPTOMS (I11
8 ); CONTAGIOUS WITH SEVERE SYMPTOMS (I4

9); CONTAGIOUS

WITH CRITICAL SYMPTOMS (I5
10); DECEASED (R1

11); and IMMUNE (R1
12)
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configuration of the lattice, which is done by supposing that

a vaccination campaign has been performed, that leads to

the increase of the initial number of IMMUNE cells; its effect

is then monitored by four control variables, as mentioned

below.

Initially, a lattice with n� n cells in the SUSCEPTIBLE state

is created. Then, a single cell is randomly chosen to be in

the NO SYMPTOMS state, therefore becoming patient zero and

a proportion of the remaining cells is randomly chosen to

be in the IMMUNE state. In tune with the latter, we define

immunity ratio of the lattice as the number of cells changed

to the IMMUNE state initially, at time step zero, in compar-

ison with the number of cells of the lattice. The rest of them

stays in the SUSCEPTIBLE state. Since the automaton is

stochastic, a number of 10 simulations is performed, each

one running until convergence; along the process, the

variables below are monitored, and their values averaged

over the 10 simulations:

– The proportion of cells in SUSCEPTIBLE state at final

convergence;

– The maximum proportion of infected cells during a run;

– The proportion of cells in DECEASED state at final

convergence;

– The number of time steps counted at final convergence.

In the sequence, this procedure is repeated with increasing

values of immunity ratio, i.e., the inital proportion of cells

in the IMMUNE state. We rely on an immunity ratio range

from 0% to 95%, with 5% steps. This procedure should be

capable of allowing the analysis of the impact of the

immunity ratio in the mentioned variables. Also, it enables

the possibility of observing how each variable performs

when immunity rises.

3.3 Estimating collective immunity
with different parameters

Aiming at strengthening the model’s flexibility, the con-

tamination contributions, the durations of each state and

the transition probabilities were defined as input parame-

ters of the model, not constants. This approach was adopted

to allow testing the impact of these parameters on the

estimates of collective immunity. So, additionally to the

procedure proposed, related to varying the initial immu-

nity, four parameterisations are adopted to make a proper

comparison of collective immunities obtained from each

one.

The first one—that we refer herein as defining the

computational Experiment I—is the same as the one we

used previously in Lima and Balbi (2021) and considers the

contamination contributions for each state as constants

with the values proposed in Sect. 2.2.2. Also, the durations

of each state follows a uniform distribution around the

values shown in Fig. 2, here considered as means, �20%.

The second setting—defining computational Experi-

ment II—increases the degree of uncertainty of the

automaton. The contamination contributions are then

defined by a Gaussian distribution truncated by three

standard deviations with the mean value equal to the con-

tamination contribution (item 2.2.2). The deviation con-

sidered was 3.33%, so the probabilities of contamination

for each state can variate by �10%. The durations follow

the same logic, being defined by a Gaussian distribution

truncated by three standard deviations with the mean value

equal to the duration given by Fig. 2. The standard devi-

ation considered was 6.67%, so the probabilities of con-

tamination for each state could vary by �20%.

The third parameterisation—related to computational

Experiment III—expands the range of values applied by

the previous one, by doubling their variances. The con-

tamination contributions were considered with a variation

of �20% and the durations were considered with a varia-

tion of �40%.

The fourth parameterisation—related to computational

Experiment IV—turns the variation of the remaining

parameters involved in the reference model also as

stochastic. So, it improves the previous experiment by

defining the transition probabilities (Pt) from NO SYMPTOMS

state also as Gaussian distributions truncated by three

standard deviations with the mean value equal do the

probabilities shown in Fig. 2. The deviation considered as

3.33%, so the variance was �10% .

Table 1 presents a briefing of each parameterisation,

also with the range of possible values regarding the dis-

tribution and variance of each experiment.

4 Results

The proposed procedure was executed and monitored,

comparing the average value of each variable between the

ten simulations for each immunity ratio. Considering the

range of immunity proposed and the simulations performed

for each immunity, as well the four experiments, a total

number of 800 simulations was obtained from the model.

This implementation was written in Wolfram language,

native of the software Mathematica.

4.1 Experiment I

Figure 3 displays the impact of the immunity ratio on the

population main metrics (remaining susceptibles, infection

peak, deceaseds and total time steps) considering Experi-

ment I (Table 1). First, this impact can be seen in the

number of susceptibles at the final convergence (in other
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words, the ones who did not get ill). In a first and brief

look, it is predictable that more immune individuals means

less susceptibe individuals, which describes a negative

linear correlation. This effect becomes perceptible after

around 60% immunity. Before 50%, the final number of

susceptibles is near zero, and starts to increase as immunity

rises.

Second, the infection peak is also affected by immunity,

describing the peak value of active cases. There is a neg-

ative correlation between immunity ratio and the infection

peak which comes near to zero when immunity achieves

65%. Last, the death rate behaves similarly to the infection

peak, coming down close to zero at 65% of immunity.

Figure 4 gives an idea about the emulated pandemic

duration according to immunity ratio. Apparently, ratios

Table 1 Parameterisations

employed in the experiments
Parameter Parameterisations

Experiment I Experiment II Experiment III Experiment IV

Name Symbol Range PD Range PD Range PD Range PD

T S
f ðPcÞ
0

1 U 1 G 1 G 1 G

I5
1

[4,6] [4,6] [3,7] [3,7]

I5
2

[4,6] [4,6] [3,7] [3,7]

I3
3

[2,4] [2,4] [2,6] [2,6]

I3
4

[2,4] [2,4] [2,4] [2,4]

I10
7

[8,12] [8,12] [7,17] [7,17]

I12
5

[10,14] [10,14] [8,20] [8,20]

I13
6

[10,16] [10,16] [6,14] [6,14]

I11
8

[9,13] [9,13] [9,21] [9,21]

I4
9

[3,5] [3,5] [3,7] [3,7]

I5
10

[4,6] [4,6] [2,6] [2,6]

R1
11 1 1 1 1

R1
12 1 1 1 1

Pc S
f ðPcÞ
0

0% n 0% G 0% G 0% G

I5
1

100% [80%,100%] [60%,100%] [60%,100%]

I5
2

100% [80%,100%] [60%,100%] [60%,100%]

I3
3

100% [80%,100%] [60%,100%] [60%,100%]

I3
4

100% [80%,100%] [60%,100%] [60%,100%]

I10
7

100% [80%,100%] [60%,100%] [60%,100%]

I12
5

10% [0%,20%] [0%,40%] [0%,40%]

I13
6

10% [0%,20%] [0%,40%] [0%,40%]

I11
8

100% [80%,100%] [60%,100%] [60%,100%]

I4
9

100% [80%,100%] [60%,100%] [60%,100%]

I5
10

100% [80%,100%] [60%,100%] [60%,100%]

R1
11 0% 0% 0% 0%

R1
12 0% 0% 0% 0%

Pt I5
1 ! I5

2
30% n 30% n 30% n [20%,40%] G

I5
1 ! I3

3
55% 55% 55% [45%,65%]

I5
1 ! I3

4
10% 10% 10% [0%,20%]

I5
1 ! I10

7
5% 5% 5% [0%,15%]

Key to the table: T: Duration of the states (1 time step = 1 day); Pc: Neighbourhodd contamination

probability; Pt: State transition probability; PD: Type of probability distribution; U: Uniform probability

distribution; G: Gaussian probability distribution; Range: The interval from the values are chosen

according to the distribution adopted, with notation [min, max]; n: Fixed value
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under 55% lead to a positive correlation, or a tendency of

the pandemic to take more time to end as the immunity

rises. In other words, the remaining number of susceptibles

do not receive protection against contamination and the the

disease takes longer to spread. The maximum average time

steps taken to convergence are near 640 steps at 55%,

starting to decrease for bigger immunities.

4.2 Experiment II

Figure 5 depicts the impact of immunity ratio on the

population main metrics considering Experiment II

(Table 1). The effect previously mentioned related to the

decrease of susceptibles with the increase of immunes

becomes perceptible after precisely 60% immunity. Before

50%, the final number of susceptibles is near zero, starting

to increase as immunity rises.

The infection peak presents the same negative correla-

tion between immunity ratio and the infection peak which

comes near to zero when immunity achieves 60%. The

death rate behaves similarly to the infection peak,

approaching zero at 60% immunity rate.

Figure 6 presents the amount of time steps taken to

convergence, with ratios under 55% presenting a positive

correlation. The maximum average time steps taken to

convergence are near 720 steps at 55%, starting to decrease

for bigger immunities.

4.3 Experiment III

Figure 7 presents the impact of immunity ratio on the

population main metrics considering Experiment III

(Table 1). The effect previously mentioned related to the

decrease of susceptibles with the increase of immunes

becomes perceptible after precisely 60% immunity rate.

Before 45%, the final number of susceptibles is near zero,

starting to increase as immunity rises, but rising faster than

in the previous experiments.

The infection peak shows the same negative correlation

between immunity ratio and the infection peak, which

Fig. 3 Remaining susceptibles,

deaths and infection peak as a

function of the immunity ratio

considering Experiment I

Fig. 4 Variation in the number

of time steps necessary to final

convergence as a function of the

immunity ratio considering

Experiment I
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comes near to zero when immunity achieves 60%. The

death rate behaves similarly to the infection peak, reaching

near zero at 60% immunity.

Figure 8 presents the amount of time steps taken to

convergence, with ratios under 55% presenting a positive

correlation. The maximum average time steps taken to

Fig. 5 Remaining susceptibles,

deaths and infection peak as a

function of the immunity ratio

considering Experiment II

Fig. 6 Variation in the number

of time steps necessary to final

convergence, as a function of

the immunity ratio, for

Experiment II

Fig. 7 Remaining susceptibles,

deaths and infection peak, as a

function of the immunity ratio,

for Experiment III
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convergence are near 820 steps at 55%, starting to decrease

for bigger immunities.

4.4 Experiment IV

Figure 9 presents the impact of immunity ratio on the

population main metrics considering Experiment IV

(Table 1). The effect previously mentioned related to the

decrease of susceptibles with the increase of immunes

becomes perceptible after precisely 60% immunity rate.

Before 50%, the final number of susceptibles is near zero,

starting to increase as immunity rises.

The infection peak shows the same negative correlation

between immunity ratio and the infection peak, which

approaches zero when immunity achieves 60%. The death

rate behaves similarly to the infection peak, getting close to

zero at 60% immunity.

Figure 10 displays the number of time steps taken to

convergence, with ratios under 50% showing positive

correlation. The maximum average time steps taken to

convergence are near 720 steps at 50%, starting to decrease

for bigger immunities.

5 Conclusions

A stochastic cellular automaton based framework was built

to perform estimates of the collective immunity of COVID-

19 in a given population of static individuals interacting

socially only with their neighbours in a Moore neigh-

bourhood of unitary radius. The main idea was to evaluate

the impact of immune individuals, from zero to 95% of the

population, in the dynamics of propagation of SARs-CoV-

2, by observing the remaining susceptibles, the infection

peak, the number of deaths and the time taken for the

disease spread to end, thus estimating the collective

immunity of COVID-19.

Fig. 8 Variation in the number

of time steps necessary to final

convergence as a function of the

immunity ratio, for Experiment
III

Fig. 9 Remaining susceptibles,

deaths and infection peak, as a

function of the immunity ratio,

for Experiment IV
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Additionally, the proposed model was implemented

considering some input parameters regarding the duration

of the infected states of COVID-19 and the contamination

contributions for these states. Four different parameterisa-

tions were applyed to the model, which allowed to compare

the collective immunities:

– Experiment I led collective immunity to lie between

50% and 65% immunity rate. The peak of remaining

susceptibles was found at 60% but the major shift in

their increase began at 50%. The infection peak and the

death rate approached zero at 65%. The big picture, in

this case, shows collective immunity of 57.5% on

average;

– Experiment II entailed collective immunity in the

slightly smaller range between 50% and 60% immunity

rate. The peak of remaining susceptibles was found at

60%, with the major shift in their increase also

beginning at 50%. The infection peak and the death

rate came down close to zero at 60%. Overall, this case

also points collective immunity of 55% on average;

– Experiment III induced collective immunity to stay

between 45% and 60% immunity rate. The peak of

remaining susceptibles was found at 60% but the major

shift in their increase started earlier than in the previous

experiments, at 45%. The infection peak and the death

rate went close to zero at 60%. Once again, the present

case also makes it evident the onset of collective

immunity of 52.5% on average.

– Experiment IV induced collective immunity to stay

between 50% and 60% immunity rate. The peak of

remaining susceptibles was found at 60%, with the

major shift in their increase also beginning at 50%. The

infection peak and the death rate went close to zero at

60%. So, the present case also makes it evident the

onset of collective immunity at 55% on average.

So, considering the four experiments performed, the aver-

age collective immunity is 55% with a variance of �2:5%.

The estimation of the collective immunity seems to be

suitable to this framework, since it is little affected by the

input parameters.

A difference between the parameterisations adopted was

related to the maximum number of time steps taken to final

convergence. In terms of collective immunity, all four led

to a peak duration at 55% with a big decrease at 60%, but

as randomness increased in the parameterisations, the

emulated pandemic took more time to end, except for the

last experiment, which presented a minor duration than the

previous one. This could be explained by the combinations

between lower contamination contributions and lower state

durations, which would make it difficult for the virus to

spread, while maintaining the main characteristics of the

pandemic (infection peaks, death rates and maximum

remaining susceptibles), but for the last experiment an

additional explanation could be that the variations in the

transition probabilities from the NO SYMPTOMS state some-

how compensate the variations in durations and contami-

nation contributions. So, the estimation of the pandemic

duration is more affected by the input parameters, thus

rendering its estimation an unsuitable application to this

framework.

The calculated collective immunity at 55% �2:5% rate

is close to the estimated value of 60% or little more found

in the literature (Aguas et al. 2020; Jones 2020), also very

close to the results in Lima and Balbi (2021), whose value

was 60%. But it is important to remember that the col-

lective immunity of COVID-19 is becoming more uncer-

tain as new variants of SARS-CoV-2 appear (Garcı́a-

Garcı́a et al. 2022).

So, the stochastic cellular automaton architecture

defined showed a fair degree of robustness regarding the

Fig. 10 Variation in the number

of time steps necessary to final

convergence as a function of the

immunity ratio, for Experiment
IV
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parameter values we tested. In order to further probe our

approach, it is appealing to perform additional experiments

considering larger variations for the contamination contri-

butions and durations, as well some degree of asymmetry

in the Gaussian distributions to improve the model sensi-

bility in terms of time steps taken to final convergence. On

the other hand, the model could be improved to cope with

new variants of SARS-CoV-2 infection capability by

modifying the cells neighbourhood size and distribution.

Another aspect that can be improved in the model is

changing the IMMUNE (R1
12) state from a sink state to a time-

dependent state, considering that COVID-19 immunity has

been proven not to be permanent, so that re-infections are

possible, approximating the approach to a SIRS model

(Fuentes and Kuperman 1999). This could be addressed by

creating new state transitions back to the SUSCEPTIBLE

(S
f ðPcÞ
0 ) state.

So, considering all above, it is fairer and more realistic

to consider the results we presented as more related to the

original, pre-delta variants of the SARS-CoV-2. However,

as we argued, the model itself can be easily modified so as

to account also for the more recent and important variants,

such as omicron (Callaway 2022; Willyard 2022).

The chosen number of simulations per immunity ratio,

10, also seemed few to average the sthocastic simulations,

but this choice is directly related to the computational

effort to perform all the procedure (10 simulations for each

immunity ratio), which takes almost four hours to be

completed. More simulations to average the outputs will

certainly require more computational capability or opt-

mization of the procedure, such like a larger immunity

interval, for example 10% instead of 5%.

Finally, the cellular atomaton has regularities which

decreases its reliability in emulating the spreading of

COVID-19, such like the size and distribution of the

neighbourhood and the immobility of the cells. This could

be adapted by performing random connections between

cells, instead of the rigid Moore neighbourhood with uni-

tary radius, like small-world type networks (Schimit and

Monteiro 2009); and representing the mobility of the

individuals in the population, thus increasing the parame-

ters of the model (Sirakoulis et al. 2000). These are the

directions we are taking.
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