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Abstract

Cellular Automata (CA) are an interesting computational model
for designing Pseudorandom Number Generators (PRNG), due to
the complex dynamical behavior they can exhibit depending on the
underlying local rule. Most of the CA-based PRNGs proposed in the
literature, however, suffer from poor diffusion since a change in a single
cell can propagate only within its neighborhood during a single time
step. This might pose a problem especially when such PRNGs are used
for cryptographic purposes. In this paper, we consider an alternative
approach to generate pseudorandom sequences through orthogonal CA
(OCA), which guarantees a better amount of diffusion. After defining
the related PRNG, we perform an empirical investigation of the maximal
cycles in OCA pairs up to diameter d = 8. Next, we focus on OCA
induced by linear rules, giving a characterization of their cycle structure
based on the rational canonical form of the associated Sylvester matrix.
Finally, we devise an algorithm to enumerate all linear OCA pairs
characterized by a single maximal cycle, and apply it up to diameter
d = 16 and d = 13 for OCA respectively over the binary and ternary
alphabets.

Keywords Cellular automata, Latin squares, Pseudorandom Number
Generators, Multipermutation, Sylvester Matrices, Polynomials

1 Introduction

Consider the following game: we are given a N ×N square, where each cell is
labelled by a pair of numbers (i, j) with i, j ∈ {1, · · · , N} = [N ]. Moreover,
we assume that each of the N2 pairs in the Cartesian product [N ] × [N ]
occurs exactly once as a label in the square. Our only move is to choose an
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initial cell; after that, we read the corresponding label (i, j), and use it as the
new row and column coordinates of the cell where to jump next. The process
is then iterated until we jump back to the initial cell, which is granted by
the assumption that the cells’ labeling is a permutation of [N ]× [N ]. The
goal of the game is to achieve the highest score, defined as the number of
distinct cells visited before returning to the initial one. Figure 1 depicts an
example of 4× 4 square where choosing any initial cell except the top left
one always yields the highest score, which is 15 in this case.

Given the rules above, “winning” the game depends on two factors: 1)
the cycle structure of the permutation that defines the cells’ labeling, and
2) the initial cell where we start from. Clearly, there is a trade-off between
these two aspects: the more the cells’ labeling permutation is composed
of few cycles having a large length, the less the position of the initial cell
matters to reach a high score. Figure 1 represents an extreme case, where
the permutation is made only of a single large cycle of length 2N − 1 and a
fixed point.

Suppose now that we add a further constraint on the labels: beside
representing a permutation of the Cartesian product [N ] × [N ], we also
require that the two projections are Latin squares of order N . This means
that if we consider only the left (respectively, the right) coordinate of each
label, we obtain a square where each number from 1 to N occurs exactly once
in each row and column. This is indeed the case of the square in Figure 1, with
the Latin squares corresponding to the left and right coordinates depicted in
Figure 2. Pairs of Latin squares of this kind (that is, whose superposition
gives a permutation over the Cartesian product of possible entries) are also
called orthogonal. From the perspective of our game, having a permutation
defined by a pair of orthogonal Latin squares implies that no two cells
separated by another one can be on the same row or column, over a cycle of
length greater than 2.

Although the game described above seems quite detached from any
real-world setting at a first glance, there are several applications for it in
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Figure 1: Example of square game. Choosing any initial cell other than the
one at the top left corner gives a maximum score of 15.
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Figure 2: Decomposition in orthogonal Latin squares.

cryptography, particularly in the context of pseudorandom number generators
(PRNGs). Indeed, the initial cell can be thought of as the seed of a PRNG,
with the generated keystream being the sequence of labels encountered along
the path where the seed lies. A desirable property in PRNGs is to generate
sequences of large periods, which is related to the game’s goal of reaching a
high score. The fact that the cells’ labels define a permutation further ensures
that the dynamics of the game is invertible, which is useful in the context
of block ciphers for decryption purposes. Finally, having a permutation
defined by a pair of orthogonal Latin squares guarantees a certain amount of
diffusion, a paramount property for stream and block ciphers to frustrate
statistical attacks. As a matter of fact, orthogonal Latin squares correspond
to a particular kind of multipermutation, which are a useful cryptographic
primitive when designing the diffusion layer of a block cipher [37].

The aim of this paper is to investigate the dynamics of the game above
when the two orthogonal Latin squares are defined by Cellular Automata
(CA). In general, CA represent an attractive approach to design PRNGs
for cryptographic purposes, for a twofold reason. First, CA can exhibit a
very complex dynamical behavior depending on the underlying local rule,
which can be exploited to generate pseudorandom sequences that are hard
to predict. Second, the shift-invariance that characterizes CA lends itself to
very efficient implementations, both in hardware and software.

Wolfram was the first researcher to propose the use of one-dimensional
CA to generate pseudorandom sequences for Vernam-like stream ciphers [38].
His idea was to initialize a CA with a random configuration (representing
the PRNG’s seed) and then iterate the CA for many time steps, taking the
trace of the CA’s central cell as a pseudorandom keystream. According to
Wolfram’s claims, the unpredictability of the keystream stemmed from the
chaotic dynamics induced by the CA, equipped with rule 30. Unfortunately,
later research showed that Wolfram’s PRNG is in fact very weak, showing
attacks to both recover the initial configuration of the CA [29] and invert
its iterations [15]. Martin [28] remarked that some of the weaknesses of
this PRNG can be traced back to the poor cryptographic properties of rule
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30 when interpreted as a Boolean function. For this reason, more recent
works [5, 17] focused on searching larger local rules with a better trade-off of
cryptographic properties, using various combinatorial search methods. Still,
this research thread does not consider another serious issue when using CA
to generate pseudorandom sequences as originally meant by Wolfram: as
identified already by Daemen in 1994 [2], CA always have poor diffusion, due
to the local nature of the model that does not allow information to spread
very far in a single iteration.

Consequently, studying the dynamics of CA that generate orthogonal
Latin squares (also called orthogonal CA, or OCA) can be regarded as an
alternative approach that starts to address the diffusion issue of classic
CA-based PRNGs. In this paper, we perform a preliminary investigation of
OCA pairs yielding sequences of maximal period, especially focusing on the
case where the underlying local rules are linear.

This work is an extended version of the paper “Hip to Be (Latin) Square:
Maximal Period Sequences from Orthogonal Cellular Automata” presented
by the author at CANDAR 2021 [20]. In particular, the new and improved
contributions with respect to the conference version are summarized as
follows:

1. We extend the exhaustive search experiments on the distribution of
maximal periods for OCA pairs defined over F2 up to diameter 6,
leveraging on the combinatorial algorithm described in [22] to efficiently
enumerate the search space. We also extend this investigation to
the OCA pairs of diameter 7 and 8 constructed in [26] by means of
evolutionary algorithms. The new results fix an inaccurate claim in
the findings of our conference paper, i.e. that the highest maximal
period of 22n − 1 is achievable only by linear OCA pairs. Indeed, the
correct results show that there are also maximal period OCA defined
by nonlinear rules already from diameter d = 5.

2. Leveraging on the theory of Linear Modular Systems (LMS), we describe
a method to compactly represent the cycle structure of linear OCA
pairs. Such a method is based on the computation of the rational
canonical form of a Sylvester matrix, and allows us to find a simple
condition to check whether an OCA pair can attain maximal period.
This boils down to verify if the minimal polynomial of the Sylvester
matrix is primitive, and it is equivalent (but more efficient, as shown
below) to the previous theoretical result of [20], where a method to
determine the upper bound on the maximal period was given in terms
of Lagrange’s theorem.

3. Based on the primitivity check above, we devise a much more time-
efficient algorithm to enumerate all linear OCA pairs of maximal
period over F2, implementing it in Magma. In this way, we are able
to enumerate all such pairs up to diameter d = 16 in a bit less than
one hour, a significant gain over the algorithm used in [20], which took

4



almost five days to arrive only up to d = 11. The downside of this new
algorithm, on the other hand, is its memory usage, with approximately
25GB required to reach d = 16. Incidentally, we also fix the counts
of Table II of [20], which were wrong due to an implementation bug,
and we provide also the numbers of maximal linear OCA pairs over
the alphabet F3, up to diameter d = 13.

The rest of this paper is structured as follows. Section 2 covers all
preliminary definitions related to CA and orthogonal Latin squares, which
are necessary to introduce the main results in the next sections. Section 3
formally defines the dynamical system based on a pair of OCA, and shows
the empirical distributions of the maximum periods up to diameter d = 8.
Section 4 focuses on linear OCA pairs, providing a characterization of their
periods in terms of the rational canonical form of the underlying Sylvester
matrix. Next, Section 5 presents an improved algorithm to enumerate all
linear OCA pairs with maximal period of a given diameter, and reports the
results up to d = 16 and d = 12 for OCA respectively over the binary and
ternary alphabets. Finally, Section 6 sums up the key contributions of the
paper, and discusses some directions for future research on the subject.

2 Preliminaries

In this section, we first recall some basic notions about the Cellular Automata
(CA) model used in the rest of this paper. We then summarize the main
results from the relevant literature related to the construction of orthogonal
Latin squares by means of bipermutive CA. As a general notation, for
any n ∈ N we denote by [N ] = {1, · · · , N} the set of all positive integer
numbers smaller than or equal to N . Further, given q = pa with p a prime
number and a ∈ N, we use Fq to denote the finite field of order q, with +
and · standing respectively for the sum and multiplication operations. In
particular, when q = 2 the sum coincides with the XOR (denoted as ⊕),
while the multiplication is the logical AND. For any n ∈ N we denote the
n-dimensional vector space over Fq by Fn

q , with vector sum and multiplication
by a scalar induced by the ground field operations in the usual way. Finally,
given the finite field Fq, the ring of polynomials in the indeterminate X with
coefficients in Fq is denoted as Fq[X].

2.1 Cellular Automata

Cellular automata are one of the oldest natural computing models studied in
the literature, and they generally consist of a regular lattice of cells, whose
states take values over a finite alphabet. Each cell updates its state in
parallel according to the same local rule evaluated over the corresponding
neighborhood. Most of the research in this field concerns the long-term
behavior and properties of CA, which in this case are considered as a
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particular type of discrete-time dynamical systems. This usually leads to the
setting where the cellular lattice is infinite, and a CA can be characterized as
a shift-invariant transformation over the full-shift space which is uniformly
continuous with respect to the Cantor distance [10]. In concrete simultations
of CA, the lattice must of course be finite, implying that the long-term
dynamics is always ultimately periodic. For our paper, we consider a finite
model that is even more constrained. In particular, we focus only on the
short-term behavior of finite CA, often by just considering a single application
of the global rule.

Formally, we define the following model of one-dimensional No-Boundary
CA (NBCA), which is adopted in [23] to introduce the CA-based construction
of orthogonal Latin squares:

Definition 1. A No-Boundary CA is a vectorial function F : Fn
q → Fn−d+1

q

defined by a local rule f : Fd
q → Fq of diameter d ≤ n, where

F (x1, · · · , xn) = (f(x1, · · · , xd), · · · , f(xn−d+1, · · · , xn)) (1)

for all x = (x1, · · · , xn) ∈ Fn
q .

From a practical perspective, the output coordinate i ∈ [n− d+ 1] of a
CA is determined by evaluating the local rule f on the neighborhood formed
by the i-th input cell and the d − 1 cells to its right. The CA is called
no-boundary since the local rule is applied only until the coordinate n−d+1,
as the remaining ones do not have enough neighbors to their right. Clearly,
this implies that the global rule of a NBCA can be iterated as long as there
are at least d cells remaining in the current cellular array. As we mentioned
above, this does not pose an issue since we will be mostly interested in the
short-term behavior arising from a single application of the global rule. In
this way, we can effectively identify a CA with the vectorial function F . For
other CA models that also contemplate boundary conditions, we refer the
reader to [13].

CA are usually considered over the binary alphabet, i.e. with q = 2. In
this case, the local rule can be interpreted as a d-variable Boolean function
f : Fd

2 → F2, and the most common way to represent it is by means of its
truth table. In particular, the truth table of f is defined as

Ωf = (f(0, · · · , 0), f(0, · · · , 1), · · · , f(1, · · · , 1)) .

Stated otherwise, Ωf is the vector that lists the value of f for all 2d input
vectors in Fd

2, assuming they are sorted in lexicographic order. The Wolfram
code of rule f corresponds to the decimal encoding of the truth table Ωf .

A second common method to uniquely identify a Boolean function is the
Algebraic Normal Form (ANF). Considering that any element x is idempotent
over F2 (i.e., x2 = x), the ANF is the following multivariate polynomial over
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1 1 1 0 0 1

f(0, 0, 1) = 1

00 1 1 0 1 0 0

(a) Local rule evaluation.

xi, xi+1, xi+2 f(xi, xi+1, xi+2)

000 0
001 1
010 0
011 1
100 1
101 0
110 1
111 0

(b) Truth table of rule 90.

Figure 3: Example of computation in a CA of length n = 8 equipped with
the linear local rule 90 of diameter d = 3.

the quotient ring F2[x1, · · · , xn]/(x21 ⊕ x1, · · · , x2n ⊕ xn):

Pf (x) =
⊕
I∈2[n]

aI

(∏
i∈I

xi

)
, (2)

where 2[n] denotes the power set of [n] = {1, · · · , n}. The algebraic degree of
f is defined in the natural way, i.e. as the number of terms in the largest
nonzero monomial of its ANF, or formally as the cardinality of the largest
subset I ∈ 2[n] such that aI 6= 0. Functions of degree at most 1 are called
affine, and affine functions whose ANF have a null constant term are called
linear. When a binary CA is defined by a linear local rule, the next state of
each cell is basically an XOR of a subset of cells in its neighborhood.

Figure 3a depicts an example of CA with n = 8 input cells, induced by
the linear local rule of diameter d = 3 with ANF f(x1, x2, x3) = x1 ⊕ x3,
i.e. only the i − th and (i + 2) − th cell in the neighborhood are XORed
together. The Wolfram code of this rule is 90, since it corresponds to the
decimal encoding of the truth table (0, 1, 0, 1, 1, 0, 1, 0), which is reported in
Figure 3a.

Further information on the ANF of Boolean functions may be found in
Carlet’s recent book [1]. In what follows, we will develop our theoretical
results for CA over a generic finite field Fq, although our empirical results
and examples will mostly refer to the binary case.

2.2 Orthogonal Latin Squares from Cellular Automata

Let us turn our attention to Latin squares, starting from the following
definition:

Definition 2. A Latin square of order N ∈ N is a N × N matrix L with
entries in [N ], such that the following two conditions hold:
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1. L(i, j1) 6= L(i, j2) for each row coordinate i ∈ [N ] and column coordi-
nates j1, j2 ∈ [N ] with j1 6= j1.

2. L(i1, j) 6= L(i2, j) for each column coordinate j ∈ [N ] and row coordi-
nates i1, i2 ∈ [N ] with i1 6= i1.

Intuitively, each number from 1 to N occurs exactly once in each row
and in each column of a Latin square of order N ; equivalently, each row and
each column forms a permutation of [N ]. The concept of orthogonality is
defined in terms of the superposition of two Latin squares:

Definition 3. Two Latin squares of order L1, L2 of order N ∈ N are called
orthogonal if for any (i1, j1) 6= (i2, j2) with i1, j1, i2, j2 ∈ [N ] it holds that

(L1(i1, j1), L2(i1, j1)) 6= (L1(i2, j2), L2(i2, j2)) .

Equivalently, L1 and L2 are orthogonal if the map H : [N ]× [N ]→ [N ]× [N ]
defined as H(i, j) = (L1(i, j), L2(i, j)) for all i, j ∈ [N ] is bijective.

From an intuitive point of view, two Latin squares are orthogonal if
and only if their superposition yields every order pair (i, j) in the Cartesian
product [N ]× [N ] exactly once. Figure 2 in the introductory section of this
paper depicts an example of two orthogonal Latin squares of order 4.

Despite their simple definition, Latin squares spawned a very broad
research field, also due to their numerous applications in statistics, cryptog-
raphy and coding theory. There exist a few known constructions for families
of Mutually Orthogonal Latin Squares (MOLS) in the literature, a good
account of which can be found in Keedwell and Denes’s book [14].

The use of CA to construct orthogonal Latin squares was originally
suggested in [23], with the original goal of designing a threshold Secret
Sharing Scheme (SSS). A (k, n)-threshold SSS is a protocol that enables a
dealer to share a secret value S among a set of n participants, in such a way
that at least k participants must combine their respective shares in order to
uniquely recover S. All coalitions of less than k participants, on the contrary,
gain no information on the value of S [33]. It can be shown that families
of n MOLS are equivalent to (2, n)-threshold SSS (see e.g. [34]). Most of
the SSS based on CA previously published in the literature, on the other
hand, feature a sequential thresold, meaning that the k shares required to
recover the secret must also be adjacent with respect to the order of the
participants [3, 24, 11].

The authors of [23] showed how to generate orthogonal Latin squares
with CA, which have later been named orthogonal CA (OCA) in [25]. The
construction entails two steps: first, one needs to determine how to define a
Latin square from a no-boundary CA. This can be done in a rather natural
way by considering CA with bipermutive local rules, which we define below:
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Definition 4. A local rule f : Fd
q → Fq is bipermutive if by fixing the leftmost

or the rightmost d− 1 coordinates to any vector x̃ ∈ Fd−1
q , the resulting left

and right restrictions fl,x̃ : Fq → Fq and fr,x̃ : Fq → Fq respectively defined
for all x′ ∈ Fq as:

fl,x̃(x) = f(x̃1, · · · , x̃d−1, x′)
fr,x̃(x) = f(x′, x̃1, · · · , x̃d−1)

are permutations of Fq.

Remark that for q = 2 a local rule f : Fd
2 → F2 is bipermutive if and only

if there exists a (d− 2)-variable function g : Fd−2
2 → F2 such that

f(x) = x1 ⊕ g(x2, · · · , xd−1)⊕ xd

for all input vectors x = (x1, x2, · · · , xd−1, xd) ∈ Fd
2. In other words, rule f

depends in a linear way from the leftmost and rightmost variables, since they
are independently XORed with a function of the central d− 2 coordinates.
For this reason, CA equipped with bipermutive local rules are also called
quasilinear in the related literature [30]. Rule 90 used in the example of
Figure 3 is bipermutive with g : F2 → F2 being the zero function.

Consider now a NBCA F : F2(d−1)
q → Fd−1

q with a local rule of diameter
d. Since the input vector is twice the size of the output, we can use the CA
to build a square matrix SF of size N ×N with N = qd−1 as follows. Given

x, y ∈ Fd−1
q , their concatenation x‖y ∈ F2(d−1)

q is used as an input vector
for the CA. Then, the output F (x‖y) computed by the CA is the entry of
the square SF where x and y represent respectively the row and column
coordinates. From a formal point of view, assume that φ : Fd−1

q → [N ] is a

one-to-one mapping from the vectors of Fd−1
q to the set of the first N positive

natural numbers, with ψ : [N ]→ Fd−1
q denoting the inverse mapping. Then,

for all i, j ∈ [N ] the entry of SF at row i and column j is defined as:

SF (i, j) = φ(F (ψ(i)‖ψ(j))) . (3)

Eloranta [4] and Mariot et al. [21] independently proved the following
sufficient condition for the square SF to be Latin:

Lemma 1. Let F : F2(d−1)
q → Fd−1

q be a NBCA defined by a bipermutive

local rule f : Fd
q → Fq of diameter d. Then, the square SF in Equation (3) is

a Latin square of order N = qd−1.

As an example, Figure 4 shows the Latin square of order N = 4 associated
to the CA F : F4

2 → F2
2 with bipermutive local rule 150, whose ANF is defined

as f150(x1, x2, x3) = x1 ⊕ x2 ⊕ x3. In this case, the mapping φ : F2
2 → [N ] is

given by φ(0, 0) = 1, φ(1, 0) 7→ 2, φ(0, 1) = 3, and φ(1, 1) = 4.
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3 2 1 4

Figure 4: Example of Latin square generated by the CA with local rule 150.

After figuring out how Latin squares can be constructed through CA,
the next step in the construction is to determine when their superposition
yields an orthogonal pair. To this end, the characterization of OCA proved
by the authors of [23] considers bipermutive local rules that are also linear.
We have already introduced above linear rules for the binary alphabet, as a
particular case of the ANF of Boolean functions. For a generic finite field
Fq a linear rule f : Fd

q → Fq is defined similarly, i.e. as the following linear
combination:

f(x1, · · · , xd) = a1x1 + · · ·+ adxd (4)

for all x ∈ Fd
q . Notice that f is bipermutive if and only if the leftmost and

rightmost coefficients are not null, that is a1 6= 0 and ad 6= 0. It is possible
to associate a polynomial of degree n = d − 1 with coefficients in Fq to a
linear rule as follows:

f 7→ Pf (X) = a1 + a2X + · · ·+ adX
n (5)

Hence, we simply use the coefficients of the linear rule reported in Equation (4)
as the coefficients of the indeterminate’s increasing powers.

The characterization of linear OCA proved in [23] can be stated as follows:

Theorem 2. Let F,G : F2n
q → Fn

q be two NBCA defined by linear bipermutive

local rules f, g : Fd
q → Fq of diameter d, with n = d− 1. Then, the two Latin

squares of order N = qn generated by F and G are orthogonal if and only if
the polynomials Pf (X), Pg(X) ∈ Fq[X] of degree n respectively associated to
f and g are coprime.

Therefore, given two linear bipermutive rules f, g of diameter d, it suffices
to compute the greatest common divisor of the two associated polynomials
Pf and Pg. By Theorem 2, the Latin squares Sf and Sg are orthogonal if
and only if the GCD of Pf and Pg is 1.

As an example, the two polynomials over F2 associated to the local
rules 90 and 150 of diameter d = 3 are respectively Pf (X) = X2 + 1 and
Pg(X) = X2 +X+ 1. Clearly one has gcd(Pf , Pg) = 1 since Pg is irreducible,
and thus the corresponding Latin squares SF and SG of order 4 are orthogonal.
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Indeed, these squares are depicted in the example of Figure 2 featured in the
Introduction.

3 Dynamical Systems Induced by OCA

In this section, we start by formally defining the dynamical system to generate
pseudorandom sequences by employing a pair of OCA. Next, we present
the results of our empirical search experiments on the maximum periods
attainable by such a system. These include both an exhaustive search
approach up to diameter d = 6, and an analysis of OCA constructed with
Evolutionary Algorithms (EA) for diameters d = 7 and d = 8.

3.1 Formalization and Problem Statement

We discussed earlier in Section 2.1 that a no-boundary CA can be iterated
only for a finite number of steps, due to the fact that the size of the cellular
array shrinks by d− 1 cells after each evaluation of the global rule F . Hence,
although a NBCA equipped with a bipermutive local rule generates a Latin
square on account of Lemma 1, it is not possible to use it directly for the
generation of pseudorandom sequences. Indeed, a pseudorandom number
generator can be viewed as a discrete-time dynamical system S = 〈A, f〉
where A is a (finite) set representing the phase space of the system, while
f : A→ A is an endofunction which maps the current state s(t) ∈ A at time
step t ∈ N into the next one s(t+ 1) ∈ A at time step t+ 11.

For this reason, the main idea of our pseudorandom generator is to take
a pair of local rules f, g : Fd

q → Fq, instead of a single one. Both rules
are applied to the same initial configuration s of length 2n = 2(d − 1), as
in the case of orthogonal Latin squares. Hence, one obtains two output
vectors z = F (s), w = G(s) of length n, generated by the NBCA F and G
respectively defined by f and g. Next, we construct a new configuration of
length 2n by concatenating z and w. Therefore, the outputs of the NBCA
F,G are used respectively as a new row and a new column coordinate, which
will in turn point to a new pair of entries given by F and G. Considering the
superposed representation of the Latin squares generated by F and G, this
operation can be conceived as starting from the pair of entries occurring at
the coordinates indexed by the initial configuration s, and using them as the
new coordinates where to “jump” next (see Figure 1 in the Introduction).

We now formally define the dynamical system S intuitively described
above.

1Usually, the general definition of a dynamical system also requires that A is a metric
space and that f is continuous with respect to the topology induced by the distance over
A [16]. However, since we deal only with the case where the phase space is finite, every
update function is trivially continuous.
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2(d−1)
z }| {

| {z }

d−1

.

.

.

.

.

.

s(0) = x(0) y(0)

F (x(0); y(0)) = x(1)

y(1) = G(x(0); y(0))

s(1) = x(1) y(1)

F (x(1); y(1)) = x(2)

y(2) = G(x(1); y(1))

s(t) = x(t) y(t)

F (x(t); y(t)) = x(t+ 1)

y(t+ 1) = G(x(t); y(t))

Figure 5: Block diagram for the dynamical evolution of the system starting
from the initial state s(0) = (x(0)‖y(0)) ∈ F2n

q .

Definition 5. Let d ∈ N with d > 1 and n = d − 1, and let q = pa be a
power of a prime number. Additionally, let F,G : F2n

q → Fn
q be two OCA

defined by bipermutive local rules of diameter d. Then, the dynamical system
induced by F and G is defined as S = 〈A,H〉, where:

• A = F2n
q , i.e. the phase space is the 2n-dimensional vector space over

Fq.

• H : F2n
q → F2n

q is the update function defined for all x, y ∈ Fn
q as:

H(x‖y) = F (x‖y)‖G(x‖y) . (6)

In other words, the state of the system is always separated in two equal-
sized parts. When updating the state through H, the left part comes from
the application of the first NBCA on the whole state in the previous step,
whereas the right part is defined analogously as the result of the second
NBCA evaluated on the previous state. Figure 5 depicts the block diagram
for the dynamical evolution of the system starting from an initial state
s(0) = x(0)‖y(0). In principle, one could sample the orbit arising from
the iteration of Equation (6) as a pseudorandom sequence, starting from a
random initial configuration s(0) ∈ F2n

q . However, pseudorandom sequences
adopted in domains such as cryptography need to satisfy several stringent
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properties, which implies that randomly selecting the local rule is not a good
option. The motivation by which we require that the Latin squares generated
by the NBCA F and G are also orthogonal in Definition 5 is twofold.

First, as recalled in Section 2.2, a pair of orthogonal Latin squares of order
N defines a permutation over the Cartesian product [N ]× [N ]. It follows that
the update function defined in Equation (6) is bijective. Thus, the resulting
system is reversible, or equivalently its trajectories are all disjoint cycles,
without transient parts. In practice, reversibility implies that the system can
also be run backward in time, by applying the inverse permutation. Such a
property is important in certain cryptographic primitives (e.g., SPN block
ciphers) where, beside generating pseudorandom sequences, there is also the
need of inverting the global state of the cipher to ensure decryption. In
the particular setting of OCA, one could invert the system by using the
algorithm based on coupled de Bruijn graphs described in [25].

Second, orthogonal Latin squares coincide with a particular kind of Max-
imum Distance Separable (MDS) codes, which are of great importance in
the design of diffusion layers for block ciphers. The reason is that layers
based on MDS codes spread the statistical structure of the plaintext over the
ciphertext in an optimal way, providing resistance against differential crypt-
analysis. In particular, as shown by Vaudenay [37], the function H defined in
Equation (6) corresponds to a (2, 2)−multipermutation, i.e. any distinct pair
of input/output tuples (x, y, F (x, y), G(x, y)) and (x′, y′, F (x′, y′), G(x′, y′))
cannot agree on any 2 coordinates. Thus, such tuples must be at Hamming
distance at least 3.

The aim of this work is to investigate the cyclic structure of the dynamical
system S, paying particular attention to cycles of maximal period. Given a
state s ∈ F2n

q , the (minimum) period of s under S is the smallest positive
integer p such that Hp(s) = s. In other words, p is the smallest number
of iterations of H after which the state of the system returns to the initial
condition s. Pseudorandom sequences with very large periods are usually
sought in cryptography especially in the context of stream ciphers [35].
Indeed, if a pseudorandom sequence used as a keystream has a shorter period
than the plaintext length, an adversary can mount certain attacks based on
frequency analysis. Ideally, the dynamics of a pseudorandom generator used
in cryptography should be composed of a single large cycle that visits (in a
non-trivial and unpredictable way) all states in the phase space.

We conclude this section by formally stating the problem addressed in
the rest of this paper:

Problem 1. Let d ∈ N and q be a power of a prime number, and let n = d−1.
What is the largest period attainable by the system S = 〈F2n

q , H〉, with H
defined as in Equation (6), when F and G are OCA?
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3.2 Empirical Search Results

We begin our study of the periods of OCA by performing an empirical
search, focusing on the case of the binary alphabet, i.e. q = 2. The number
of all Boolean functions of d variables is 22

d
, since one can assign either

0 or 1 to each of the 2d input vectors in the truth table. This prevents
any exhaustive search already for d > 5 variables. However, concerning
Problem 1 we are only interested in those dynamical systems S defined by
two NBCA of diameter d whose local rules are bipermutive Boolean functions.
A bipermutive function of d variables is effectively defined by the generating
function of the d− 2 central cells, and thus the total number of bipermutive
functions to enumerate is 22

d−2
. Since we consider pairs of bipermutive local

rules, we have that the search space is composed of 22
d−2 × 22

d−2
= 22

d−1

feasible solutions. This allows to stretch the exhaustive search approach
up to d = 6, since in that case we have at most 22

6−1 ≈ 4.3 · 109 pairs to
enumerate. Further, Mariot et al. [22] gave a necessary condition on the
local rules of two OCA, showing that their truth tables must be pairwise
balanced. This allows us to further reduce the search space to about 6.3 · 107

pairs, using the combinatorial algorithm described in [22].
Beyond diameter d = 6 exhaustive search becomes unfeasible. For this

reason, to expand the scope of our empirical search (especially with respect
to our previous conference paper [20]), we also considered two samples of
OCA pairs of diameters d = 7 and d = 8. Such samples are taken from
the paper [26], where the authors employed Genetic Algorithms (GA) and
Genetic Programming (GP) to construct OCA pairs, and they are composed
respectively of 68 pairs for d = 7 and 50 pairs for d = 8.

For each pair f, g : Fd
2 → F2 of bipermutive local rules considered in our

empirical search, we need to perform the following steps:
1. Check if the Latin squares generated by the NBCA F,G : F2n

2 → Fn
2

respectively defined by f and g are orthogonal. Of course, this step
is optional for the samples of d = 7 and d = 8, since there we already
know that all pairs induce OCA.

2. If the two NBCA are orthogonal, compute the cycle decomposition of
the dynamical system S = 〈F2n

2 , H〉 with H defined as in Equation (6).
3. Find the length of the largest cycle(s) in S.

It makes sense to start our empirical search from diameter 3: in fact, there
are no OCA pairs of diameter 2, since there do not exist orthogonal Latin
squares of order 22−1 = 2 in general, be them induced by CA or not. For
diameter d = 3, a total of 8 OCA pairs result from the search over all 16
pairs of bipermutive rules. All these OCA pairs yielded the same cycle
decomposition structure, i.e. one fixed point and a single maximal cycle of
length 15. This is expected, since for d = 3 only linear OCA pairs exist, and
they are all equivalent by three symmetry relations observed in [22], namely
swap, complement and reflection. In particular, the swap symmetry changes
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Figure 6: Distribution of maximum cycle lengths for OCA of diameters
4 ≤ d ≤ 8.

the order of the local rules in a pair, the complement negates the truth tables
of both rules, and reflection evaluates them on the input in reversed order.
Each of these symmetries is an equivalence relation which halves the search
space of local rules pairs. Hence, the number all OCA pairs can actually be
divided by 8, meaning that there exists only a single OCA pairs of diameter
d = 3 up to swap, complement and reflection. This explains why the 8 pairs
mentioned above all exhibit the same dynamics.

We refer to the boxplots in Figure 6 for a general outlook of the dis-
tributions of maximal cycle lengths for diameters 4 ≤ d ≤ 8. Figures 7a
and 7b depict more in detail the distributions of diameters d = 4 and d = 5
as histograms. We omitted the histograms for the remaining diameters since
they could not be displayed properly, due to either too dense (for d = 6) or
too sparse (for d = 7 and d = 8) distributions. As a general remark, one can
notice that the distributions up to d = 6 all have a very small minimum value.
This is reasonable, since in all those cases we were able to perform an ex-
haustive search, meaning that we are considering the complete distributions,
instead of a sample. Hence, our exhaustive search finds several OCA pairs
characterized by many cycles of small length, or even by many fixed points.
In any case, it is interesting to observe that the interquartile range is always
compressed towards the maximum value, meaning that the great majority
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Figure 7: Distribution of maximum cycle lengths for OCA of diameter
d = 4, 5.

of OCA pairs have a large maximum period. This trend is confirmed also
for the distributions of d = 7 and d = 8. Indeed, here the minimum values
are way above those of d ≤ 6, which suggests that the GA and GP proposed
in [26] are able to sample OCA pairs with large maximum cycle lengths. A
third interesting remark, moreover, is that the largest maximum cycle length
observed in our experiments is 22n − 1. In other words, we found no OCA
pairs giving a “pure cycle” of length 22n which generates the whole phase
space F2d

2 . The best possible setting seems always to be the case where an
OCA visit all cells in the superposed squares except one, that represents a
fixed point.

For each diameter 2 ≤ d ≤ 6, Table 1 reports the results of our exhaustive
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Table 1: Exhaustive search results for OCA pairs of diameter 2 ≤ d ≤ 6.

d n 2n Bd B2d OCAd #mOCAd #mNOCAd #mLOCAd

2 1 2 2 4 0 0 0 0
3 2 4 4 16 8 8 0 8
4 3 8 16 256 72 8 0 8
5 4 16 256 65536 1704 36 12 24
6 5 32 65536 6.3 · 107 533480 1968 1840 128

search concerning those OCA pairs reaching a maximum cycle length of 22n−1.
In particular, the first six columns from left to right report respectively the
diameter d and n = d− 1, the order of the corresponding Latin squares 2n,
the number of bipermutive local rules Bd = 22

d−2
, the number of ordered

pairs B2d visited by our exhaustive search algorithm, and the number of
pairs which generate OCA OCAd (taken from [22]). Finally, the last three
columns report the total number #mOCAd of OCA pairs having a maximum
cycle length of 22n − 1, and then their classification in nonlinear and linear
pairs, respectively denoted as #mNOCAd and #mLOCAd. Remark that
the numbers in the last four columns of Table 1 are not normalized up to the
three symmetry relations mentioned above. The values given in the seventh
column of the table show that the number of OCA pairs with a maximum
cycle length of 22n−1 represent a very small fraction of all OCA pairs, which
moreover becomes even smaller as the diameter increases. Further, contrary
to what we reported in our previous conference work [20], there do exist
nonlinear OCA pairs of maximum cycle length 22n − 1. Our previous claim
was wrong (i.e., we reported that only linear pairs achieved the maximum
observed cycle length) due to a bug in the Java code used to decompose the
cycles of OCA pairs, which has been located and fixed after our conference
paper was published in CANDAR 2021. Indeed, by extending the search
to d = 6 (while in [20] we arrived at d = 5), one can even see that the
proportion of linear OCA is quite small compared to that of nonlinear OCA.
Nevertheless, in what follows we focus on the linear OCA since in that case
it is possible to use results from linear algebra over finite fields to give a
precise characterization of their cycle structures.

4 Periods of Linear OCA

We now focus on the linear case, describing a method to completely determine
the cycle structure of a pair of linear OCA. This improves on the previous
results of our conference paper [20], where only an upper bound on the
maximal period of linear OCA was given. As it often happens when studying
the behavior of dynamical systems governed by a linear transformation, our
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method leverages on linear algebra methods, and in particular on the theory
of Linear Modular Systems (LMS). A good overview of the results that we
use in this section can be found in Lidl and Niederreiter’s book on finite
fields [18].

Let f, g : Fd
q → Fq be two linear bipermutive local rules of diameter

d. Following the notation recalled in Section 2, we assume that the linear
combinations defining f and g are respectively given by the two vectors
a = (a1, · · · , ad) ∈ Fd

q and b = (b1, · · · , bd) ∈ Fd
q , where a1, b1, ad, bd are all

nonzero to ensure bipermutivity. In particular, we assume that ad = bd = 1
to obtain monic polynomials, which simplifies our calculations. Therefore,
suppose that Pf (X), Pg(X) ∈ Fq[X] are the monic polynomials of degree
n = d− 1 and nonzero constant term associated to f and g. By Theorem 2
f and g induce a pair of OCA if and only if their polynomials Pf (X) and
Pg(X) are relatively prime. As proved in [23], this characterization stands on
the fact that the transformation which associates the CA input configuration
x‖y ∈ F2n

q to the output F (x‖y)‖G(x‖y) is defined by the following 2n× 2n
Sylvester matrix :

Mf,g =



a1 · · · ad 0 · · · · · · · · · · · · 0
0 a1 · · · ad 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 a1 · · · ad
b1 · · · bd 0 · · · · · · · · · · · · 0
0 b1 · · · bd 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 b1 · · · bd


. (7)

In particular, the two rules generate a pair of OCA if and only if the
transformation Mf,g · (x, y)> is bijective, or equivalently if and only if Mf,g

is invertible. It is a well known fact that the determinant of a Sylvester
matrix—also called the resultant—is not null if and only if Pf (X) and Pg(X)
do not have any factor in common [7]. Hence, the authors’ focus in [23] was
to count the number of linear OCA pairs by counting the number of invertible
Sylvester matrices defined by linear bipermutive rules, or equivalently the
number of pairs of coprime polynomials with degree n and nonzero constant
term over Fq.

As it usually happens when dealing with a dynamical system whose
updating function is described by a matrix, the t-th iterate of the system S
defined in Section 3.1 consists of multiplying the t-th power of the Sylvester
matrix Mf,g by the initial state vector, as shown in the next lemma:

Lemma 3. Given d ∈ N and n = d− 1, let S = 〈F2n
q , H〉 be the dynamical

system defined by the update function in Equation (6), where the CA F,G :
F2n
q → Fn

q are defined by two bipermutive linear rules f, g : Fd
q → Fq of
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diameter d, with coprime associated polynomials Pf (X), Pg(X) ∈ Fq[X].
Then, for any initial state s(0) = x(0)‖y(0) ∈ F2n

q , the state of S at time
t ∈ N is given by:

s(t) = x(t)‖y(t) = M t
f,g · s(0) = M t

f,g · (x(0)‖y(0))> . (8)

Proof. We proceed by induction on t ∈ N. The base case t = 1 corresponds
to the observation above about Theorem 2: a single application of the map
H : F2n

2 → F2n
2 defined in Equation (6) corresponds to the matrix-vector

multiplication Mf,g · (x(0)‖y(0))>. Let us assume now that the claim is valid
for any t ∈ N, and consider the case t+ 1: this is equivalent to iterating H
for t+ 1 steps starting from s(0), which can be written equivalently as the
composition of H with its t-th iterate Ht:

s(t+ 1) = Ht+1(s(0)) = H ◦Ht(s(0)) . (9)

By induction hypothesis, we know that Ht(s(0)) = M t
f,g · s(0)>, and that a

single application of H amounts to multiplying Mf,g with the current state
vector. Hence, we can rewrite Equation (9) as follows:

Ht+1(s(0)) = H ◦Ht(s(0)) = Mf,g · (M t
f,g · s(0)>)> , (10)

from which we conclude that

s(t+ 1) = M t+1
f,g · s(0)> = M t+1

f,g · (x(0), y(0))>.

Concerning Problem 1, Lemma 3 implies that the maximum length of
the cycles in system S are bounded above by the order of the associated
Sylvester matrix Mf,g, considered as an element of the general linear group
GL(2n,Fq). The general linear group GL(2n,Fq) is defined as the set of all
invertible matrices of size 2n× 2n with entries in F2, equipped with matrix
multiplication as a group operation. Indeed, the orthogonality requirement
forces Mf,g to be invertible, and Lemma 3 establishes that the t-th iterate of
the transformation H corresponds to the t-th power of such matrix. Thus,
determining the upper bound for the maximum cycle length is equivalent to
finding the minimum t ∈ N such that M t

f,g = I2n, i.e. the t-th power of Mf,g

which transforms it into the identity matrix of order 2n. This is, in turn,
equivalent to determining the order of the cyclic subgroup generated by Mf,g

in GL(2n,Fq). It is a well-known fact (see e.g. [12, 31]) that the order of the
general linear group GL(2n,Fq), or equivalently its cardinality, is equal to:

#GL(2n,Fq) = (q2n − 1)(q2n − q)(q2n − q2) · · · (q2n − q2n−1) . (11)

Let us now recall Lagrange’s theorem [6]: the order of any subgroup
H ≤ G of a finite group G must divide the order of G. This means that the
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order of the cyclic subgroup generated by the Sylvester matrix can only be a
divisor of #GL(2n,Fq) as defined in Equation (11). Moreover, we know that
the maximum period reachable by a pair of OCA can be at most q2n, due to
the fact that the phase space F2n

2 of S is composed of q2n elements, and the
null vector is always a fixed point (because the underlying system is linear).
Thus, we have concluded that the order of the Sylvester matrix can be at
most q2n − 1, therefore obtaining an upper bound for the maximum cycle
length achievable by a pair of linear OCA. To summarize, we have proved
the following result:

Lemma 4. Let d ∈ N, n = d− 1 and S = 〈F2n
q , H〉 be the dynamical system

where H is defined as in Equation (6), with OCA F,G : F2n
q → Fn

q generated

by a pair of linear bipermutive rules f, g : Fd
q → Fq. Then, the period p of

any state s ∈ F2n
q is at most p ≤ q2n − 1.

It is important to stress that the bound above is not always reached.
Indeed, it might be the case that even though the Sylvester matrix has
maximum order q2n−1, the cycle structure of two linear OCA is characterized
by shorter periods. In particular, assume that the system S = 〈F2n

q , H〉 has
cycles of periods t1, · · · , tk. Then, the order of the Sylvester matrix Mf,g is
actually the least common multiple of t1, · · · , tk. As a matter of fact, assume
that t is the order of Mf,g: we have that M t

f,g · s> for any state s ∈ F2n
q .

Thus, t must be a multiple of l = lcm(t1, · · · , tk). Moreover, (Al− I) · s> = 0
for all s ∈ F2n

q , where I denotes the identity matrix. Therefore, we obtain

that Al = I, which means that l ≥ t, and thus t = lcm(t1, · · · , tk).
To give a more precise characterization of the cycle structure of the

system S in the linear case, we introduce the following cycle sum notation
following [18]: ∑

(S) = (n1, t1) + (n2, t2) + · · ·+ (nk, tk) . (12)

This is a formal sum which indicates that S has ni cycles of length ti, for all
i ∈ [k]. A summand in (12) is also called a cycle term.

Recall that the characteristic polynomial of a square matrix A over Fq is
defined as the determinant of XI −M , while the minimal polynomial of A
is the monic polynomial m(X) ∈ Fq[X] of smallest degree such that m(M)
is the zero matrix. A monic polynomial g(X) = Xk + ak−1X

k−1 + · · · a1X +
a0 ∈ Fq[X] is the characteristic and minimal polynomial of its associated
companion matrix M(g(X)). In particular, the characteristic polynomial
of any square matrix A over Fq is the product of its elementary divisors
g1(X), · · · , gr(X), and the rational canonical form of A is the matrix A∗
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defined as:

A∗ =


M(g1(X)) 0 · · · 0

0 M(g2(X)) · · · 0
...

...
. . .

...
0 0 · · · M(gr(X))

 , (13)

where M(gi(X)) denotes the companion matrix of the elementary divisor
gi(X). The two matrices A and A∗ are related by the equation A = P−1AP ,
where P is an invertible matrix over Fq.

The cycle structure of a linear modular system defined by a transition
matrix A can be expressed in terms of the orders of the elementary divisors
occurring in its rational canonical form A∗. In particular, given a linear OCA
pair defined by a nonsingular Sylvester matrix Mf,g ∈ GL(2n,Fq), the cycle
sum of the corresponding dynamical system S = 〈F2n

q , H〉 can be determined
using the following procedure described in [18]:

1. Determine the elementary divisors g1(X), · · · , gr(X) of the Sylvester
matrix Mf,g, where gi(X) = fi(X)mi with fi(X) monic and irreducible
over Fq for all i ∈ [r].

2. Determine the orders t
(i)
1 = ord(fi(X)) of the polynomials fi(X).

3. Compute the orders t
(i)
h = ord(fi(X)h) for i ∈ [r] and h ∈ [mi].

4. Find the cycle sum
∑

(Si) of the system defined by the elementary
block M(gi(X)), for i ∈ [r], using Theorem 9.96 in [18].

5. Determine the cycle sum of the whole system S as the product of the
cycle sums

∑
(Si), for i ∈ [r].

The details to compute the product of cycle sums in the last step of the
procedure are omitted for the sake of brevity, but can be found in [18].

5 Enumeration Algorithms and Results

Given a pair of linear OCA, the procedure described at the end of the
previous section can be used to completely determine the cycle structure of
the associated dynamical system S. In this last section, we are interested
in determining when the order of the Sylvester matrix Mf,g is exactly the
maximum allowed by Lemma 4, i.e. q2n − 1. Recall that an irreducible
polynomial p(X) ∈ F[X] of degree d is called primitive if it is a generator
of the multiplicative group of the extension field Fqd . Then, one has the
following result (see e.g. [8] for a proof):
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Theorem 5. Let A ∈ GL(2n,Fq) be a 2n× 2n nonsingular matrix over Fq,
and let t be the order of A, i.e. the smallest t ∈ N such that At = I. Then,
t = q2n − 1 if and only if its minimal polynomial mA(X) is primitive.

Hence, to enumerate all linear OCA pairs whose associated Sylvester
matrix has maximum order q2n−1, we can determine its minimal polynomial
and check whether it is primitive. This strategy is summarized in the
following procedure:

• Set n = d− 1.

• For each pair of polynomials Pf (X), Pg(X) ∈ Fq[X] with degree n and
nonzero constant term do:

– if gcd(Pf (X), Pg(X)) = 1 then:

∗ Determine the minimal polynomial m(X) of Mf,g

∗ If m(X) is primitive print the pair Pf (X), Pg(X)

Remark that this enumeration algorithm is different from the one proposed
in our previous conference paper [20]: there, we employed a different method
to determine the order of the Sylvester matrix, namely relying on Lagrange’s
theorem to check only the divisors of the order of GL(2n,Fq).

We implemented the procedure above in Magma, and applied it to
enumerate Sylvester matrices of maximum order q2n − 1 for q = 2. In
particular, this improved enumeration algorithm turned out to be much more
efficient than our previous version, since we managed to enumerate all such
matrices for linear OCA pairs up to diameter d = 16 in a bit less than an
hour, using a 64-bit Linux machine with a 16-core AMD Ryzen processor
running at 3.5 GHz and 48 GB of RAM. In contrast, our previous algorithm
based on Lagrange’s theorem implemented in Java took almost 5 days to
enumerate all such pairs only up to d = 11, using the same machine. The
bottleneck of our new algorithm, on the other hand, becomes the memory:
the check of primitivity is likely the step where Magma consumes the most
memory, and for d = 16 it reached 25 GB. We did not manage to go further
since for the next instance of d = 17 we ran out of memory. Beside this
experiment, we also applied our improved algorithm to enumerate invertible
Sylvester matrices over a ternary alphabet, i.e. with q = 3. In this case,
the time becomes again the bigger bottleneck before the memory does: the
enumeration for diameter d = 14 did not finish within 10 days of computation,
hence we stopped at d = 13.

Table 2 reports the numbers obtained from the two experiments described
above. The third and fourth column give for each diameter the maximum
possible order for Sylvester matrices of size 2n respectively over F2 and F3.
The fifth and the sixth column, likewise, report the number of Sylvester
matrices reaching those orders. Remark that the column M2 reporting the
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Table 2: Number of invertible 2n× 2n Sylvester matrices of maximum order
over Fq, with q = 2, 3.

d n 22n − 1 32n − 1 M2 M3

2 1 3 80 0 0
3 2 15 728 1 0
4 3 63 6560 1 3
5 4 255 59048 3 15
6 5 1023 531440 17 216
7 6 4095 4782968 34 1001
8 7 16383 43046720 191 14168
9 8 65535 387420488 500 77890
10 9 262143 387420488 1886 652603
11 10 1048575 3486784400 5981 5108147
12 11 4194303 31381059608 30120 55906579
13 12 16777215 2.54 · 1012 68813 296956782
14 13 67108863 - 429937 -
15 14 268435455 - 1185306 -
16 15 1073741823 - 4447563 -

numbers of maximum order invertible Sylvester matrices over F2 differs from
the column #mLOCAd in Table II of our conference paper [20]. Indeed, the
latter is wrong, due to an error in how the order of the Sylvester matrix was
computed in our previous Java implementation. Our new results in Table 2
have been double-checked by running the same algorithm in Magma and
computing the order of the matrix instead of checking the primitivity of the
minimal polynomial, and we obtained the same results. Hence, we can be
confident that the new counts reported in Table 2 are correct.

6 Conclusions

In this paper, we investigated a novel approach to generate pseudorandom
sequences by means of cellular automata, namely by defining a dynamical
systems based on two orthogonal CA. The trajectories of this system can be
visualized as “jumps” over the superposed orthogonal Latin squares generated
by the two CA, using the entries in each visited cell as the new set of row
and column coordinates for the next cell. Remarking that two orthogonal
CA induce a bijective superposition, the dynamics of the system is reversible
and thus composed only of disjoint cycles. For this reason, we set up our
investigation to search for OCA pairs that produce the largest cycles possible,
which is a desirable property when considering pseudorandom generators
for cryptographic applications. Further, the fact that the system is defined
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by a pair of orthogonal Latin squares implies that the update function is a
multipermutation, which is a useful primitive when designing the diffusion
layers of block ciphers.

We first performed an empirical search for the maximum cycle lengths
of OCA pairs over the binary alphabet. This entailed first an exhaustive
enumeration approach up to diameter d = 6, and then an analysis of a
sample of OCA pairs produced by the evolutionary algorithms described
in [26] for d = 7 and d = 8. The results showed that there are both linear
and nonlinear OCA pairs reaching the maximum possible cycle length of
22n − 1. Subsequently, we described a method to completely determine the
cycle structure of linear OCA pairs, using the rational canonical form of the
Sylvester matrix associated to the two linear rules. Further, observing that
a Sylvester matrix has a maximum order of q2n− 1 if and only if its minimal
polynomial is primitive, we devised an improved enumeration algorithm to
generate them all for q = 2 and q = 3, respectively up to diameter d = 16
and d = 13. In doing that, we also fixed the numbers of such matrices for
the binary case, which were reported incorrectly in the conference version of
our paper [20].

There are several interesting directions and open problems for future
research on this topic. The condition granted by Theorem 5 surely gives
a better way to determine if a Sylvester matrix has maximum order than
using Lagrange’s theorem. However, it would be nice to give a precise
characterization of when the minimal polynomial of a Sylvester matrix is
primitive, which would probably yield a more efficient condition to check.
The same goes also for a more precise characterization of the cycle sum of a
Sylvester matrix. This would allow not only to determine the order of the
matrix, but even to give a complete characterization of the cycles of a linear
OCA pair. We are not aware of any result on the minimal polynomial or the
rational canonical form of a Sylvester matrix, and we think this might be a
good starting point for further research. Possibly, the minimal polynomial
and rational canonical form in this case are related to the two polynomials
that defines the Sylvester matrix.

A second interesting direction is to broaden the scope of the investigation
to the more general nonlinear case. As we have seen in Section 3.2, there
exist also nonlinear OCA pairs that achieve a maximum cycle length of
22n − 1. One way to approach this problem would possibly be to consider
the ANF of the local rules, and define a system of (multivariate) polynomial
equations whose associated matrix resembles a Sylvester matrix, or one of
its generalizations [7]. The study of nonlinear OCA pairs would also be
interesting from a practical point of view. As a matter of fact, diffusion layers
in block ciphers are usually implemented through linear transformations.
Recently, however, there has been also an interest in nonlinear diffusion
layers [19], which also provides a certain degree of confusion. Nonlinear
OCA pairs could be considered for the design of such layers. More in general,
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one could also consider the use of nonlinear OCA pairs to design S-boxes,
which constitutes the confusion layer of block ciphers. There is quite an
extensive body of literature concerning the design of S-boxes with good
cryptographic properties based on CA, see for instance [36, 32, 9, 27]. Most
of these works focus on the trade-off between reaching a high nonlinearity
and a low differential uniformity to withstand certain attacks. In this respect,
it would be interesting to determine whether the vectorial function H defined
by two nonlinear OCA pairs has also a good nonlinearity, and if the property
of being a multipermutation positively affects the differential uniformity.

Appendix: Source Code and Experimental Data

The source code of the algorithm and the experimental data discussed in this
paper are available at https://github.com/rymoah/hip-to-be-latin-square.
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[3] Á. M. del Rey, J. P. Mateus, and G. R. Sánchez. A secret sharing scheme
based on cellular automata. Appl. Math. Comput., 170(2):1356–1364,
2005.

[4] K. Eloranta. Partially permutive cellular automata. Nonlinearity,
6(6):1009, 1993.

[5] E. Formenti, K. Imai, B. Martin, and J. Yunès. Advances on random
sequence generation by uniform cellular automata. In C. S. Calude,
R. Freivalds, and K. Iwama, editors, Computing with New Resources -
Essays Dedicated to Jozef Gruska on the Occasion of His 80th Birth-
day, volume 8808 of Lecture Notes in Computer Science, pages 56–70.
Springer, 2014.

[6] J. Gallian. Contemporary abstract algebra. Nelson Education, 2012.

[7] I. M. Gelfand, M. Kapranov, and A. Zelevinsky. Discriminants, resul-
tants, and multidimensional determinants. Springer Science & Business
Media, 2008.

25

https://github.com/rymoah/hip-to-be-latin-square


[8] S. R. Ghorpade, S. U. Hasan, and M. Kumari. Primitive polynomials,
singer cycles and word-oriented linear feedback shift registers. Des.
Codes Cryptogr., 58(2):123–134, 2011.

[9] A. Ghoshal, R. Sadhukhan, S. Patranabis, N. Datta, S. Picek, and
D. Mukhopadhyay. Lightweight and side-channel secure 4 × 4 s-
boxes from cellular automata rules. IACR Trans. Symmetric Cryptol.,
2018(3):311–334, 2018.

[10] G. A. Hedlund. Endomorphisms and automorphisms of the shift dy-
namical systems. Math. Syst. Theory, 3(4):320–375, 1969.
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