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Abstract
This paper addresses a variant of the Job Shop Scheduling Problem with makespan minimisation where uncertainty in task

durations is taken into account and modelled with intervals. A novel Artificial Bee Colony algorithm is proposed where the

classical layout is simplified, increasing the algorithm’s speed and reducing the number of parameters to set up. We also

take into account the fundamental principles of exploration around a local solution and attraction to a global solution to

improve diversity in the hive. The increase on speed and diversity allows to include a Local Search phase to better exploit

promising areas of the search space. A parametric analysis is conducted and the contribution of the new strategies is

analysed. The results of the new approach are competitive with those obtained with previous methods in the literature, but

taking less runtime. The addition of Local Search improves the results even further, outperforming the best-known ones

from the literature. An additional sensitivity study is conducted to assess the advantages of considering uncertainty and

how increasing it affects the solution’s robustness.

Keywords Job shop scheduling � Makespan � Interval uncertainty � Artificial Bee colony � Robustness

1 Introduction

The job shop scheduling problem (JSP) is considered to be

one of the most relevant scheduling problems. It consists in

allocating a set of resources to execute a set of jobs under a

set of given constraints, with the most popular objective in

the literature being the minimisation of the project’s exe-

cution timespan, also known as makespan. Solving this

problem improves the efficiency of chain production pro-

cesses, optimising the use of energy and materials Pinedo

(2016) and having a positive impact on costs and

environmental sustainability. However, in real-world

applications, the available information is often imprecise.

Interval uncertainty arises as soon as information is

incomplete, and contrary to the case of stochastic and fuzzy

scheduling, it does not assume any further knowledge, thus

representing a first step towards solving problems in other

frameworks Allahverdi et al. (2014). Moreover, intervals

are a natural model whenever decision-makers prefer to

provide only a minimal and a maximal duration, and obtain

interval results that can be easily understood. Under such

circumstances, interval scheduling allows to concentrate on

significant scheduling decisions and to produce robust

solutions.

Contributions to interval scheduling in the literature are

not abundant. In Lei (2012), a genetic algorithm is pro-

posed for a JSP minimizing the total tardiness with respect

to job due dates with both processing times and due dates

represented by intervals. In Dı́az et al. (2022), a different

genetic algorithm is applied to the same problem, including

a study of different interval ranking methods based on the

robustness of the resulting schedules. A population-based

neighbourhood search for an interval JSP with makespan

minimisation is presented in Lei (2011). In Li et al. (2019),

a hybrid between particle swarm and a genetic algorithm is

used to solve a flexible JSP with interval processing times

& Juan José Palacios
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as part of a larger integrated planning and scheduling

problem. More recently, a genetic algorithm is applied

in Dı́az et al. (2020) to the JSP with interval uncertainty

minimizing the makespan and two different algorithms

based on artificial bee colonies are proposed in Dı́az et al.

(2022) and Dı́az et al. (2023) for the same problem.

Due to the complexity of job shop scheduling problems,

metaheuristic search methods are especially suitable to

solve them. In particular, Artificial Bee Colony (ABC) is a

swarm intelligence optimiser inspired by the intelligent

foraging behaviour of honeybees that has shown very

competitive performance on JSP with makespan minimi-

sation. For instance, Wong et al. Wong et al. (2008) pro-

pose an evolutionary computation algorithm based on ABC

that includes a state transition rule to construct the sched-

ules. Taking some principles from Genetic Algorithms,

Yao et al. Yao et al. (2010) present an Improved ABC

(IABC) where a mutation operation is used for exploring

the search space, enhancing the search performance of the

algorithm. Later, Banharnsakun et al. Banharnsakun et al.

(2012) propose an effective ABC approach based on

updating the population using the information of the best-

so-far food source. In Dı́az et al. (2022), an elitism

mechanism is introduced to increase diversity and solve an

interval job shop problem with makespan minimisation.

The same problem is tackled in Dı́az et al. (2023) intro-

ducing the seasonal behaviour of honeybees as part of the

onlooker bee phase.

In the following, we extend the work presented in Dı́az

et al. (2022) to solve the interval JSP with makespan

minimisation. We propose several improvements on the

introduced Elite ABC method that aim at speeding up the

algorithm while increasing its diversity. A Local Search is

then included into the ABC to exploit the new diversity and

obtain better results. The robustness study conducted

in Dı́az et al. (2022) is complemented with a new sensi-

tivity analysis to assess the quality of solutions in scenarios

of increasing uncertainty. The rest of the paper is organized

as follows: the interval JSP is presented in Sect. 2; in

Sect. 3 we describe the different components that conform

the ABC algorithm that addresses this problem; in Sect. 4

we compare these strategies and the best one is also

compared with the state of the art; a sensitivity analysis is

also included in Sect. 4.

2 The job shop problem with interval
durations

The classical job shop scheduling problem consists of a set

of resources M ¼ fM1; . . .;Mmg and a set of jobs

J ¼ fJ1; . . .; Jng. Each job Jj is organised in tasks or

operations ðoðj; 1Þ; . . .; oðj;mjÞÞ that need to be sequentially

scheduled. We assume w.l.o.g. that tasks are indexed from

1 to N ¼
Pn

j¼1 mj, so we can refer to task o(j, l) by its

index o ¼
Pj�1

i¼1 mi þ l and denote the set of all tasks as

O ¼ f1; . . .;Ng. Each task o 2 O requires the uninter-

rupted and exclusive use of a machine mo 2 M for its whole

processing time po.

A solution to this problem is a schedule s, i.e. an allo-

cation of starting times for each task, which, besides being

feasible (all constraints hold), is optimal according to some

criterion, in our case, minimal makespan Cmax.

2.1 Interval uncertainty

Following Lei (2011) and Dı́az et al. (2020), uncertainty in

the processing time of tasks is modelled using closed

intervals. Therefore, the processing time of task o 2 O is

represented by an interval po ¼ ½p
o
; po�, where p

o
and po

are the available lower and upper bounds for the exact but

unknown processing time po.

The interval JSP (IJSP) with makespan mimisation

requires two arithmetic operations: addition and maximum.

Given two intervals a ¼ ½a; a�; b ¼ ½b; b�, the addition is

expressed as ½aþ b; aþ b� and the maximum as

½maxða; bÞ;maxða; bÞ�. Also, given the lack of a natural

order in the set of closed intervals, to determine the

schedule with the ‘‘minimal’’ makespan, we need an

interval ranking method. For the sake of fair comparisons

with the literature, we shall use the midpoint method:

a�MPb , mðaÞ�mðbÞ with mðaÞ ¼ ðaþ aÞ=2. This is

used in Dı́az et al. (2020, 2022, 2023) and it is equivalent

to the ranking method used in Lei (2012) and Lei (2011).

Notice that mðaÞ coincides with the expected value of the

uniform distribution on the interval, E½a�.
A schedule s for the IJSP establishes a relative order p

among tasks requiring the same machine. Conversely,

given a task processing order p the schedule s may be

computed as follows. For every task o 2 O, let soðpÞ and

coðpÞ denote respectively the starting and completion times

of o, let PMoðpÞ and SMoðpÞ denote the predecessor and

successor tasks of o in the machine mo according to p, and
let PJo and SJo denote the tasks preceding and succeeding

o in its job. Then the starting time of o is given by

soðpÞ ¼ maxðsPJo þ pPJo ; sPMoðpÞ þ pPMoðpÞÞ, and the com-

pletion time by coðpÞ ¼ soðpÞ þ po. The makespan is

computed as the completion time of the last task to be

processed according to p thus, CmaxðpÞ ¼ maxo2OfcoðpÞg.
If there is no possible confusion regarding the processing

order, we may simplify notation by writing so, co and Cmax.

To illustrate this, we consider a problem with n ¼ 3 jobs

and mj ¼ m ¼ 2; j 2 f1; 2; 3g machines. The following
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matrices show for each operation o(j, l) its processing time

(p(j, l)) and its required machine (mðj; lÞ):

p ¼
½3; 7� ½3; 7�
½4; 6� ½2; 3�
½1; 4� ½3; 6�

0

B
@

1

C
A m ¼

M1 M2

M2 M1

M2 M1

0

B
@

1

C
A

Following the notation introduced above, the second

operation of job J3, o(3, 2), can be referred to as o ¼ 6, so

p6 ¼ pð2; 3Þ ¼ ½3; 6� and m6 ¼ mð2; 3Þ ¼ M1. Given the task

processing order p ¼ ð1; 3; 5; 4; 2; 6Þ, operation 1 (o(1, 1))

is scheduled first. Since it has no job or machine prede-

cessor, it is scheduled at instant s1 ¼ ½0; 0� and

c1 ¼ s1 þ p1 ¼ ½3; 7�. The same occurs with operation 3

(o(2, 1)): s3 ¼ ½0; 0� and c3 ¼ ½4; 6�. Operation 5 (o(3, 1))

requires the same machine as the already scheduled oper-

ation 3 (M2), so PM5 ¼ 3. Since o ¼ 5 has no job prede-

cessor, s5 ¼ s3 þ p3 ¼ ½0; 0� þ ½4; 6� ¼ ½4; 6� and

c5 ¼ ½5; 10�. Operation 4, with PJ4 ¼ 3, requires the same

machine as operation 1, so PM4 ¼ 1 and s4 ¼ maxðs3 þ
p3; s1 þ p1Þ ¼ maxð½4; 6�; ½3; 7�Þ ¼ ½4; 7� (c4 ¼ ½6; 10�).
Scheduling the remaining operations following p, we

obtain that s2 ¼ ½5; 10�, c2 ¼ ½8; 17�, s6 ¼ ½6; 10�,
c6 ¼ ½9; 16�. Consequently, the makespan is Cmax ¼
maxo2Ofcog ¼ ½9; 17� and its midpoint, mðCmaxÞ ¼ 13

A Gannt chart of the schedule that results from the

processing order p can be seen in Fig. 1. It adapts the

chart to the interval framework, in the same manner as it is

proposed to do in Fortemps and Roubens (1996) for fuzzy

processing times.

2.2 Robustness on interval JSP

In a solution to the IJSP, the makespan value is not an exact

value, but an interval. It is only after the solution is exe-

cuted on a real scenario that actual processing times for

tasks Pex ¼ fpexo 2 ½p
o
; po�; o 2 Og are known. Therefore, it

is not until that moment that the actual makespan Cex
max 2

½Cmax;Cmax� can be found. It is desirable that this executed

makespan Cex
max does not differ much from the expected

value of the makespan according to the interval Cmax.

This is the idea behind the concept of �-robustness first

proposed in Bidot et al. (2009) for stochastic scheduling,

and later adapted to the IJSP in Dı́az et al. (2020). For a

given �� 0, a schedule with makespan Cmax is considered

to be �-robust in a real scenario Pex if the relative error

made by the expected makespan E½Cmax� with respect to

the makespan Cex
max of the executed schedule is bounded by

�, that is:

jCex
max � E½Cmax�j
E½Cmax�

� �: ð1Þ

Clearly, the smaller the bound �, the more robust the

interval schedule is. This measure of robustness is depen-

dent on a specific configuration Pex of task processing

times obtained upon execution of the predictive schedule s.

In the absence of real data, as is the case with the usual

synthetic benchmark instances for job shop, we may resort

to Monte-Carlo simulations. We simmulate K possible

configurations Pk ¼ fpko 2 ½p
o
; po�; o 2 Og using uniform

probability distributions to sample durations for every task

and compute for each configuration k ¼ 1; . . .;K the exact

makespan Ck
max that results from executing tasks according

to the ordering provided by s. Then, the average �-robust-

ness of the predictive schedule across the K possible con-

figurations, denoted �, can be calculated as:

� ¼ 1

K

XK

k¼1

jCk
max � E½Cmax�j
E½Cmax�

: ð2Þ

This value provides an estimate of how robust the solution

s is across different processing times configurations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time units

Cmax

J1 o(1, 1) o(1, 2)

J2 o(2, 1) o(2, 2)

J3 o(3, 1) o(3, 2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time units

Cmax

J1 o(1, 1) o(1, 2)

J2 o(2, 1) o(2, 2)

J3 o(3, 1) o(3, 2)

Fig. 1 Gantt Chart representing

a solution to an IJSP instance
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3 Fast elitist artificial Bee colony

The Artificial Bee Colony Algorithm is a bioinspired

swarm metaheuristic for optimisation based on the foraging

behaviour of honey bees. Since it was introduced in Kar-

aboga (2005) it has been successfully adapted to a variety

of problems Karaboga et al. (2014).

Typically, the ABC starts by generating and evaluating

an initial hive H0 of random food sources. The best food

source Best is assigned to the hive’s queen. Then, the

algorithm iterates over a number of cycles, each consisting

of three phases mimicking the behaviour of three types of

foraging bees: employed, onlooker and scout. In the

employed bee phase, each food source is assigned to one

employed bee, who explores a new candidate food source

between its own food source and the queen’s one. In the

onlooker bee phase, each bee chooses a food source and

tries to find a better one in its neighbourhood. At the end of

each phase, the newly-found food source is evaluated. If it

is equivalent to the queen’s one (i.e. the best food source

found so far), it is discarded for the sake of maintaining

diversity in the hive. Otherwise, if it is better than the food

source of the bee that generated it, it replaces it. If it cannot

improve the original food source, then its fs.numTrials

counter is increased by one. In the scout bee phase, if the

number of improvement trials of a food source fs.numTri-

als reaches a given threshold NTmax, the scout bee deter-

mines a new food source to replace the former one in the

hive of solutions. Typically, this is done by replacing the

exhausted food source by a randomly generated one. The

algorithm terminates when a certain stopping condition is

met. In Dı́az et al. (2022), this condition is met after a

number maxIter of consecutive iterations without finding a

food source that improves the queen’s one.

In this general schema, diversity is mainly controlled by

two mechanisms: modifying a random part of a food source

to obtain a trail solution in the onlooker bee phase, or

replacing a whole solution by a new one during the scout

bee phase. Although it can be argued that these mecha-

nisms help to avoid premature convergence, practical

experiments have determined that this might not be the

case for the IJSP Dı́az et al. (2022). The employed and

onlooker bee phases generate new solutions at each itera-

tion, but they are included in the hive only if they can

improve the food source from which they were generated.

This may lead to a high selective pressure and facilitate

getting trapped in local optima. When that happens,

injecting a randomly generated solution in the scout bee

phase with poor quality may not contribute enough to

obtain better results. On the other hand, the current schema

has up to three evaluation rounds, one at the end of each of

the main phases. When diversity issues are present, most of

these evaluations are useless, since new solutions won’t be

accepted, making the algorithm unnecessarily slow.

To increase diversity, an elitist selection mechanism was

introduced in Dı́az et al. (2022) so the employed bee phase

does not always choose the queen’s food source to explore,

but a solution from a set of promising ones. In Dı́az et al.

(2023), an ESABC method is proposed where the onlooker

bee phase is redefined based on the seasonal behaviour of

honeybees to also increase the exploration capabilities of

ABC. However, this seasonal behaviour is somehow similar

to a Simulated Annealing method, so it increases the

number of evaluations performed by the algorithm and

therefore its overall complexity.

In Karaboga and Akay (2009), ABC is compared with

other metaheuristics such as genetic algorithms (GA),

differential evolution (DE) or particle swarm (PSO). In

general, the exploration idea on these methods consists in

altering all individuals of the population, or creating new

ones, with a certain probability. Then the new set of

solutions is evaluated and some type of replacement

strategy is applied. This allows to first explore, and then

apply the selective pressure through replacement. We

propose to adapt this strategy to the setting of the ABC to

increase diversity of solutions while keeping a reasonable

complexity. The general layout of our proposal is inspired

by the structure of Particle Swarm Optimization Kennedy

and Eberhart (1995) in the sense that food sources can be

understood as the local best position of a bee, and the

queen’s source would be the global best. At each iteration,

bees explore new food sources (solutions) influenced both

by the best sources of the hive (global best) and its current

food source (local best). Thus, the employed bee phase and

the onlooker bee phase are fused into one exploration step.

At the end of the cycle, all new solutions are evaluated.

Each bee moves to its new food source only if it is different

from the queen’s and better than its local best. If the new

food source is not accepted, the bee increases its counter of

trials fs.numTrials and when it exceeds the threshold

NTmax, the bee moves to a random food source emulating

scout bees. Allowing the bees to move more freely before

evaluation can increase population’s diversity and reduce

the complexity of the ABC, going from three evaluation

phases per iteration to only one. Furthermore, having only

one replacement phase decreases the overall count of

improvement trials and the number of random solutions

introduced in the scouting section. We refer to this new

algorithm as Fast Elitist Artificial Bee Colony (fEABC in

short). To exploit the diversity and speed of the new

structure, we propose to incorporate a new Local Search

step before evaluation and do a further empirical evaluation

on its advantages. The general structure of the algorithm is

given in Algorithm 1. Each step is detailed in the following

subsections.
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123



Algorithm 1 Schema of the fEABC Algorithm
Require: An IJSP instance
Ensure: A schedule
1: /*Initial hive, see Section 3.1*/
2: Generate and evaluate a hive H0 of food sources
3: Best ⇐ Best food source in H0
4: numIter ⇐ 0
5: i ⇐ 0
6: while numIter < maxIter do
7: for each food source fs in Hi do
8: /*Exploration, see Section 3.2*/
9: gBest ⇐ Select a solution from Hi using Elite3

10: newfs ⇐ Find a neighbour of fs
11: new′

fs ⇐ Apply recombination to (newfs , gBest)
12: Evaluate new′

fs
13: /*Local search, see Section 3.3*/
14: new′

fs ← Apply Local Search to new′
fs

15: /*Replacement, see Section 3.4*/
16: if new′

fs is better than Best then
17: fs ⇐ new′

fs
18: Best ⇐ new′

fs
19: numIter ⇐ 0
20: else
21: numIter ⇐ numIter + 1
22: if new′

fs is better than fs and different than Best then
23: fs ⇐ new′

fs
24: else
25: fs.numTrials ⇐ fs.numTrials + 1
26: end if
27: end if
28: if fs.numTrials > NTmax then
29: fs ⇐ Generate random solution
30: Evaluate fs
31: fs.numTrials ⇐ 0
32: end if
33: end for
34: i ← i + 1
35: end while
36: return Best

3.1 Codification and initialization

We adopt the codification strategy from Dı́az et al. (2020),

where solutions are encoded using permutations with rep-

etition Bierwirth (1995). Each solution s is represented by

its task processing order p, but each operation o(i, j) in p is

replaced by its job number i. For example, for a problem

with n ¼ 3 jobs and m ¼ 2 machines, a schedule with p ¼
ðoð1; 1Þ; oð2; 1Þ; oð1; 2Þ; oð3; 1Þ; oð3; 2Þ; oð2; 2ÞÞ is encoded
as (1, 2, 1, 3, 3, 2). To decode a solution, each value i in

the permutation is replaced by the j-th task of that job,

where j is the number of times the job has appeared so far

in the permutation (e.g. the second time the value 1

appears, it refers to task o(1, 2)). To build a schedule from

the permutation, we consider two decoding strategies. The

strategy described in Sect. 2.1 can be seen as an adaptation

to intervals of the concept of Semi-active Schedule Gen-

eration Scheme, or Semi-active SGS, introduced in Palacios

et al. (2014) for the JSP with fuzzy durations. In this set-

ting, the starting time so of each task o corresponds to the

Earliest feasible Appending Starting time (ESAo), and the

resulting schedule is said to be Semi-active based on the

definition from Sprecher et al. (1995). In an Insertion SGS,

the starting time so of each task o in p is calculated as its

Earliest feasible Insertion Starting time (ESIo). Let k ¼ mo
be the machine where o needs to be processed, PJo the

tasks preceding o in its job and rk ¼
ð0; rð1; kÞ; . . .; rðgk; kÞÞ the sequence of tasks already

scheduled in machine mo. A feasible insertion position

q; 0� q\gk for o verifies that maxfcrðq;kÞ; cPJog þ

Fast Elitist ABC for makespan optimisation... 649
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po � srðqþ1;kÞ and maxfcrðq;kÞ; cPJog þ p
o
� srðqþ1;kÞ. If such

position exists, ESIo ¼ maxfcrðq�;kÞ; cPJog, where q� is the

smallest feasible insertion position. If there is no feasible

insertion position, then ESIo ¼ ESAo. The schedules that

can be obtained with this decoding mechanism fall into the

definition of Active schedules given in Sprecher et al.

(1995); Palacios et al. (2014). The set of active schedules is

smaller than the set of semi-active schedules and both are

guaranteed to contain the optimal solution. This can be

seen as an advantage, since reducing the search space

makes it faster to navigate, but it can also decrease diver-

sity in meta-heuristics working on that space. An empirical

analysis is needed to find the best option.

To generate an initial hive H0 for the algorithm, a set of

food sources is created by randomly generating permuta-

tions with repetition that are feasible for the problem.

These permutations are later decoded and evaluated using

of the described SGS. When comparing the richness of two

different food sources, the fitness function is used. Given

two food sources fs and fs0 encoding two schedules s and s0

respectively, we consider that fs is better than fs0 if

CmaxðsÞ�MPCmaxðs0Þ.

3.2 Exploration strategy

At each iteration, each bee begins by exploring the

neighbourhood around its currently-assigned food source

fs. To generate new food sources in the surroundings of fs,

a small change is performed using one of the following

operators for permutations: Swap, Inversion or Insertion.

Given the small magnitude of the changes, it is reasonable

to expect that new solutions do not differ much from fs in

terms of makespan but provide enough of a difference to

increase diversity while maintaining the average quality of

the population.

After moving to a neighbouring food source newfs, the

bee begins the exploration towards the best food sources

known by the hive. In the classical ABC, the best food

source is selected at the beginning of the iteration and is

later used by all employed bees. In this work, each bee

selects a food source gBest to move towards to. Selecting

the best food source in the hive (the queen’s) can lead to a

shorter execution time derived from the lack of diversity in

the solution bank Banharnsakun et al. (2012). Two alter-

natives were tested in our preliminary work in Dı́az et al.

(2022) to avoid this issue. Elite2 consists on selecting the

best food source among the group of sources with the

highest number of improvement trials Garcı́a-Álvarez et al.

(2018). On the other hand, Elite3 selects at random one of

the best N food sources existing at the time, being N a

configurable value. After an experimental study, the latter

appears to be the most prominent strategy. Moreover, the

fact of being able to configure the size of that set allows to

balance exploration and exploitation. Therefore, we choose

Elite3 as selection strategy for each bee in our method.

Once the bee has selected its global best gBest, it applies

a recombination operator to move from newfs to gBest,

obtaining a new source new0
fs containing information of

both solutions. This focuses the exploration towards more

promising areas of the search space. We test three different

recombination operators especially tailored to Job Shop

Scheduling Problems: Job-Order Crossover (JOX) Ono

et al. (1996), Generalised Order Crossover (GOX) Bier-

wirth (1995) and Precedence Preservative Crossover (PPX)

Bierwirth et al. (1996). Only after the bee has explored

both its neighbouring food source and a solution towards

the hive’s bests, the newly food source newf s
0 is evaluated.

3.3 Local search

The diversity derived from the previous steps, and the

reduction on the number of evaluations per iteration, cre-

ates an opportunity to include more exploitation-driven

strategies such as Local Search. Local search techniques

focus on exploitation to offer further improvements of

solutions resulting from schedule generation heuristics. In

our context, after the exploration phase of the bee is

completed and a new solution new0
fs is evaluated, the bee

may decide to carry an intense search in the vicinity of the

new food source before moving on to the next iteration.

We take the neighbourhood structure defined in Van

Laarhoven et al. (1992) as reference. There, a neighbour is

generated by reversing a critical arc in the solution graph

GðsÞ representing schedule s. That is a graph where each

task is represented as a node. There is an arc from node x to

node y, if and only if, x ¼ PJy or x ¼ PMy. Additionally,

there are two dummy nodes, 0 and E, such that there is arc

from 0 to the first task of each job, and also from the last

task of each job to E. Each arc (x, y) is labelled with the

processing time px. A critical path in G(s) is the longest

path from 0 to E and its length determines the makespan.

All arcs that belong to a critical path are called critical arcs.

In González Rodrı́guez et al. (2008), this idea is adapted

and extended to the Fuzzy JSP by using three parallel

graphs, where arcs on each one of them are labelled with

each of the components of the Triangular Fuzzy Numbers

(TFN). Within this neighbourhood structure, all neighbours

are feasible and the connectivity property holds. For our

algorithm, we take that idea and adapt it to the framework

of interval uncertainty by using two parallel graphs G1, G2

to represent each solution. The former labels the arcs with

the lower bound of the processing times and the latter with

the upper bounds. Therefore, critical paths in G1 and G2

determine Cmax and Cmax respectively. We define our
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neighbourhood as the set of solutions that result from

reversing an arc (x, y) that is critical in G1 or G2 (or both).

Given that the aim is to maintain a good solution

diversity in our solving method, we use a simple hill-

climbing algorithm to guide the search. In this approach,

neighbours of the current solution are explored in a random

order until we find one that improves the current solution.

That neighbour becomes the new current solution and the

process is repeated until a solution with no improving

neighbours is found. This method is among the fastest in

the family of Local Search, since it does not necessarily

evaluate all neighbours of each solution and it does not

provide too much exploitation, thus helping us improve our

solutions without losing much diversity.

3.4 Scouting and replacement

After each bee has found and evaluated a new food source,

and the Local Search has been applied to it if the option is

available, it shares the new solution with the rest of the

hive. If the new food source is equivalent to the queen’s

one (i.e. the best food source found so far), it is discarded

for the sake of maintaining diversity in the pool. Otherwise,

if it improves the food source currently assigned to the bee,

the bee moves to the new food source for the upcoming

iteration. Similarly, if it is better than the best food source

found so far, it replaces it and it is assigned to the queen.

On the other hand, if it cannot improve the current food

source of the bee, the number of improvement trials

fs.numTrials of the food source is increased by one.

If the food source reaches the maximum number of

improvement trials NTmax, it is discarded and the bee is in

charge of finding a replacement. In this case, a random

solution is generated following the same criteria as in

Sect. 3.1 and the bee is assigned to it.

4 Experimental results

In this section, the proposed fast Elite ABC algorithm

(fEABC) is evaluated and compared with the state-of-the-

art methods. Firstly, a parametric tuning is carried out to

find the best setup for the algorithm. Once found, it is

compared to best known methods from the literature for the

Interval JSP. Finally, a sensitivity analysis is conducted to

assess the behaviour of the algorithm on instances with

different amounts of uncertainty. We evaluate our method

over 12 instances from the literature Dı́az et al. (2020).

Namely FT10 (10� 10), FT20 (20� 5), La21, La24, La25

(15� 10), La27, La29 (20� 10), La38, La40 (15� 15),

ABZ7, ABZ8, and ABZ9 (20� 15). Values in brackets

denote the instance size (n� m). All experiments are done

using a C?? implementation on a PC with Intel Xeon

Gold 6132 processor at 2.6 Ghz and 128 Gb RAM with

Linux (CentOS v6.10). For every experiment, we consider

30 runs of the method on each instance, so the resulting

data are representative of the method’s performance.

4.1 Parameter setup

For the parameter setup, we perform two different tuning

processes depending on the use or not of Local Search. To

differentiate them, we refer to the variant with Local

Search as fEABCLS, while we use simply fEABC for the one

without the Local Search. The stopping criterion is set in

both cases to maxIter ¼ 25 consecutive iterations without

improving the best solution found so far and the population

size is set to 250 individuals according to the results

obtained in Dı́az et al. (2022) for ABCE3. For the remain-

ing parameters, the following values are tested:

• Decoding SGS: Semi-active, Insertion (see Sect. 3.1)

• Local exploration: Insertion, Inversion, Swap (see

Sect. 3.2)

• Global attraction: GOX, JOX, PPX (see Sect. 3.2)

• Max. number of trials fs.numTrials: 10, 15, 20

• Elite size: 40, 50, 60

We begin the parameter tuning using a default setup with

the values highlighted in bold in the list. Then we follow a

sequential process where we select a parameter and test all

its possible values. Once the best value for that parameter

is found, it is set and the process repeats until all param-

eters have been established. Table 1 displays the best

resulting configuration for each variant.

Regarding the use of Semi-active SGS or Insertion SGS,

our results show that using an insertion strategy, and thus

moving in the search space of active schedules, is better in

general. In fact, the best setup for fEABC using the Inser-

tion SGS obtains makespan values that are 7.2% better in

average than those obtained with the best setup using the

Semi-active SGS. When including Local Search, using

Semi-active schedules brings more diversity, which could

potentially benefit the exploitation of LS. However, this is

not the case, and using the Insertion SGS still gets results

that are 5.0% better than using the Semi-active SGS.

Table 1 Parameter setup for each variant of fEABC

Instance fEABC fEABCLS

Decoding SGS Insertion Insertion

Local exploration Insertion Swap

Global attraction JOX JOX

Improvement trials 20 15

Elite size 40 40

Fast Elitist ABC for makespan optimisation... 651

123



4.2 Comparison with state-of-the-art methods

To the best of our knowledge, the most successful algo-

rithms in the literature for solving the Interval JSP are the

genetic algorithm from Dı́az et al. (2020) (GA), the ABCE3

from Dı́az et al. (2022), and the more recent ESABC

from Dı́az et al. (2023).

Our first target is to assess if the new method increases

the population’s diversity enough to allow the algorithm to

converge for more iterations and reach better areas of the

search space. To do so, in Table 2 we compare the fEABC

without the Local Search, with GA and the ABCE3 method

that defines the starting point for this work. For each

instance, the best-known Lower Bound (LB) for the

expected makespan is reported Dı́az et al. (2022). For each

method, the table displays the Relative Error (RE) with

respect to LB of the expected makespan of the best solution

obtained in 30 runs, together with the average relative error

(standard deviation in brackets) among those runs and the

average runtime in seconds. Best average values are

highlighted in bold. We can see that in average, fEABC

obtains the best results in 10 out of 12 instances. Not only

that, but in average, the relative errors obtained by fEABC

are 7.2% better than those obtained with ABCE3, and 39.1%

better than the GA.

Regarding runtime, despite reducing the number of

evaluations in the proposed method, it takes 16% longer in

average to converge than ABCE3. This is an expected result,

since the target is to increase diversity for the algorithm not

to get easily stuck in local optima and explore further into

the search space. If we analyse the speed of the algorithms

per iteration, we see that an iteration in fEABC is actually

9% faster than an iteration of ABCE3. But fEABC is capable

of iterating for longer before meeting the stopping crite-

rion. This is illustrated in Fig. 2, where we can see the

evolution during 200 iterations of the average expected

makespan in 30 runs on instance La29. We can see how

ABCE3 quickly finds good quality solutions, but then gets

stuck in local optima. On the other hand, fEABC focuses

more on exploration on the early iterations, which then

allows it to converge to better solutions than ABCE3 in the

long term.

In Dı́az et al. (2023), an ESABC incorporates a Simu-

lated Annealing-based strategy to improve population’s

diversity, obtaining the best-known results for the IJSP at

the cost of increasing the algorithms runtime. In Table 3

we compare both fEABC and fEABCLS with this method.

First, we observe that fEABC has a very similar behaviour

to ESABC in terms of average relative errors. We conduct a

statistical examination to detect if there is a significant

difference between them. If the samples on each instance

meet the Shapiro-Wilk test of normality, an Analysis of

Variance (ANOVA) is executed, followed by Tukey’s

Honest Significant Difference to display the results of all

pairwise comparisons within the tested groups. If the test of

normality fails, a Kruskall-Wallis rank sum test is per-

formed followed by a multiple comparison to identify

which groups differ. The tests show that there is a signif-

icant difference between ESABC and fEABC in only 1 of

the 12 instances. However, the runtime of fEABC is 13.2%

shorter than ESABC. That is, fEABC obtains very similar

results in less time than ESABC, which is a significant

achievement taking into account that ESABC incorporates a

Simulated Annealing-like technique for diversity and

exploitation. In fEABCLS we try to invest the time reduction

of fEABC on exploitation. Reported results show that in

Table 2 Relative error (%)

w.r.t. LB obtained by 30 runs of

GA, ABCE3 and fEABC and

average runtime in seconds

Instance LB GA ABCE3 fEABC

Best Avg.(SD) Time Best Avg.(SD) Time Best Avg.(SD) Time

ABZ7 656 6.3 12.5 (2.0) 1.8 5.3 7.3 (1.1) 4.5 3.7 6.6 (1.1) 5.9

ABZ8 645 11.3 18.5 (2.1) 1.8 9.0 12.1 (1.2) 4.2 9.1 11.1 (1.0) 6.6

ABZ9 661 13.0 18.0 (2.4) 2.2 9.7 13.1 (1.6) 6.0 9.1 11.6 (0.9) 6.8

FT10 930 1.8 5.2 (2.1) 0.5 1.1 4.1 (1.3) 1.6 1.0 3.5 (1.2) 1.9

FT20 1165 1.5 4.4 (1.4) 0.7 0.7 1.7 (0.7) 2.7 0.8 1.8 (0.6) 2.7

LA21 1046 3.2 5.0 (1.3) 1.1 2.6 5.0 (1.3) 1.8 1.7 4.2 (0.9) 2.6

LA24 935 4.1 6.3 (1.6) 0.8 2.2 5.1 (1.3) 2.7 3.4 4.9 (1.1) 2.6

LA25 977 1.9 5.1 (2.4) 1.0 1.9 3.9 (0.9) 2.4 1.1 3.4 (1.3) 2.7

LA27 1235 4.6 10.2 (2.0) 1.3 2.8 4.7 (1.0) 4.1 3.0 4.6 (1.2) 5.0

LA29 1152 11.1 14.2 (1.6) 1.1 5.5 8.6 (1.3) 4.4 4.8 7.4 (1.3) 5.4

LA38 1196 6.0 9.2 (2.3) 1.4 4.5 6.9 (1.5) 6.0 3.0 6.1 (1.5) 4.0

LA40 1222 5.1 8.7 (2.3) 1.2 1.9 4.2 (1.1) 3.0 3.0 4.6 (0.9) 3.5

Bold indicates the best Average Relative Error per instance among the three comparedmethods
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average, fEABCLS obtains better results than ESABC in 11

out of 12 instances. Moreover, fEABCLS improves the RE

w.r.t. LB of ESABC in 11.3% while the runtime increases

only in 7.7%. When comparing to its counterpart without

Local Search, fEABCLS obtains results that are 16.7% better

than fEABC using 24% more time. These values increase to

22.8% and 45.1% respectively when compared with

ABCE3.

The behaviour of all different methods can be better

appreciated in Fig. 2. We can observe how fEABCLS con-

verges better than any of the other methods, including

ESABC, due to its ability to balance the exploration and

exploitation of the search space, being less likely to get

trapped in local optima. Furthermore, fEABC shows a very

similar behaviour to ESABC while being faster as shown in

Table 3.

4.3 Sensitivity analysis

Finally, we carry out a sensitivity analysis to determine if

taking into account uncertainty during the optimisation

process is a beneficial effort in the face of increasing

uncertainty. We consider a new version of fEABCLS,

fEABCC
LS, where the duration of each task is taken as the

midpoint of the interval. That is, uncertainty is not taken

into account during the optimisation process. In this set-

ting, makespan values obtained by fEABCLS are intervals,

Fig. 2 Evolution of Expected

makespan over 200 iterations of

GA, ABCE3, fEABC, ESABC and

fEABCLS on instance La29

Table 3 Relative error (%)

w.r.t. LB obtained by 30 runs of

ESABC, fEABC and fEABCLS

and average runtime in seconds

Instance ESABC fEABC fEABCLS

Best Avg. Time Best Avg. Time Best Avg. Time

ABZ7 4.2 6.7 (1.7) 6.5 3.7 6.6 (1.1) 5.9 4.1 6.2 (1.3) 8.1

ABZ8 8.7 10.9 (1.7) 7.7 9.1 11.1 (1.0) 6.6 7.9 10.9 (2.0) 8.2

ABZ9 8.5 11.2 (1.5) 8.7 9.1 11.6 (0.9) 6.8 9.0 11.5 (1.3) 8.2

FT10 0.6 3.0 (1.2) 1.8 1.0 3.5 (1.2) 1.9 0.6 2.9 (1.5) 1.8

FT20 0.7 1.8 (0.6) 2.9 0.8 1.8 (0.6) 2.7 0.7 1.3 (0.2) 3.7

LA21 2.1 4.0 (0.7) 2.9 1.7 4.2 (0.9) 2.6 2.2 3.7 (0.2) 3.5

LA24 3.5 5.0 (1.0) 2.6 3.4 4.9 (1.1) 2.6 3.6 4.4 (0.7) 3.1

LA25 1.3 2.7 (0.9) 3.0 1.1 3.4 (1.3) 2.7 1.1 2.1 (0.8) 3.0

LA27 2.8 4.1 (1.0) 5.8 3.0 4.6 (1.2) 5.0 1.9 3.6 (1.3) 6.7

LA29 5.0 7.0 (1.1) 6.7 4.8 7.4 (1.3) 5.4 3.7 4.8 (1.0) 7.2

LA38 3.0 5.8 (1.4) 7.2 3.0 6.1 (1.5) 4.0 3.0 5.4 (1.1) 4.8

LA40 2.7 4.1 (0.9) 3.7 3.0 4.6 (0.9) 3.5 2.6 4.0 (0.9) 4.0

Bold indicates the best Average Relative Error per instance among the three comparedmethods
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but makespan values obtained by fEABCC
LS will be crisp, so

a straightforward comparison is not fair. Instead, we

evaluate the performance of the obtained solutions in terms

of their � robustness in K ¼ 1000 different configurations

(see Sect. 2.2). To also evaluate their robustness in more

uncertain environments, we generate two new versions of

each instance where the interval widths are respectively

enlarged by 20% and 40%. The changes are applied sym-

metrically on both sides of the intervals to maintain the

significance of the midpoint. If the increase on the width of

an interval po would result on a negative bound, then the

interval ½0; po þ p
o
� is taken instead.

Table 4 shows the � values of the solutions obtained by

fEABCLS, considering interval processing times, and

fEABCC
LS, considering only the midpoint of the intervals,

over the three sets of instances: the original ones (?0% in

the table), and the two new versions (?20% and ?40% in

the table). The results show that fEABCLS finds the most

robust solutions, even when the size of the intervals is

expanded by 20 and 40%. In fact, the solutions obtained by

fEABCLS have better robustness values over the scenarios

with an increase of 20% than those obtained by fEABCC
LS

on the original instances. As expected, in both cases the

robustness deteriorates as uncertainty increases, but there is

a clear difference between incorporating uncertainty in the

optimisation or not. For instance, when the intervals are

increased by 20 and 40% the � values of solutions obtained

with fEABCLS get 10.68% and 29.62% worse, whereas for

fEABCC
LS the � values become 16.37% and 42.50% worse

respectively.

This is better illustrated in Fig. 3. Each graphic contains

a histogram with the K ¼ 1000 realisations of the best

solution obtained in fEABCLS and the best one from

fEABCC
LS on the different variants of instance La25. Red

lines depict the predictive values: Cmax when using

fEABCC
LS and E½Cmax� when using fEABCLS. In the latter

case, blue dotted lines show the interval makespan bounds.

If we compare the graphics with the original La25 instance,

we can see how the red line in fEABCLS is quite inside the

histogram, while in the case of fEABCC
LS it is more on the

left side, showing that the solution in this case is quite

optimistic and real executions tend to have a higher

makespan. When uncertainty increases, the histograms in

both cases tend to spread towards the right side of the plot.

However, with the fEABCLS solution, the red line is still

quite inside the histogram, showing that it is a better pre-

dictor than fEABCC
LS where it remains on the left. More-

over, in the case of fEABCC
LS, real executions tend to move

more to the right side of the graphic than with fEABCLS,

starting to accumulate around 1050 in La25þ40%.

5 Conclusions

We have considered the IJSP, a version of the JSP that

models the uncertainty on task durations appearing in real-

world problems using intervals. In Dı́az et al. (2022) we

proposed an ABC algorithm tailored to this problem. In

that study, diversity issues where spotted and a new

selection mechanism Elite3 was proposed to tackle them.

In this work, we extend the mentioned ABC by including

new diversity strategies and modifying the general struc-

ture of the algorithm to reduce the number of unnecessary

evaluations. Exploration is more encouraged before

reaching the evaluation and replacement phases. At the

same time, the number of evaluation phases is reduced

from three to one. Moreover, the number of parameters to

set up in the algorithm is greatly reduced, making it easier

to tune for different environments.

A parametric analysis showed that using semi-active

schedules brings in general more diversity to the

Table 4 Average � values

(�1000) for fEABCC
LS and

fEABCLS increasing processing

times’ interval width in ?20%

and ?40% (standard deviation

in brackets)

Instance fEABCC
LS

fEABCLS

þ0% þ20% þ40% þ0% þ20% þ40%

ABZ7 11.72 (1.90) 12.75 (1.60) 15.66 (1.89) 9.01 (1.23) 9.30 (1.11) 10.74 (1.04)

ABZ8 10.75 (1.84) 11.36 (1.87) 13.96 (2.15) 7.81 (1.01) 7.19 (0.90) 8.61 (1.34)

ABZ9 10.48 (1.89) 11.45 (1.65) 14.16 (1.89) 7.22 (0.82) 7.23 (0.68) 8.41 (1.04)

FT10 11.97 (1.31) 13.45 (1.75) 16.42 (2.12) 9.62 (0.98) 10.12 (1.24) 11.92 (1.77)

FT20 9.65 (1.58) 10.72 (1.64) 12.94 (1.99) 7.7 (0.42) 8.69 (0.52) 9.94 (0.55)

LA21 14.41 (1.29) 16.70 (1.51) 20.35 (1.72) 9.61 (0.96) 11.28 (1.25) 13.15 (1.31)

LA24 15.53 (2.28) 19.04 (2.04) 23.19 (2.39) 12.65 (1.85) 14.43 (2.18) 16.76 (2.23)

LA25 12.68 (2.00) 15.74 (3.00) 19.28 (3.55) 10.9 (1.13) 11.93 (1.39) 14.51 (1.38)

LA27 13.04 (1.62) 15.41 (1.80) 18.89 (2.07) 9.79 (1.16) 11.38 (0.77) 13.51 (1.48)

LA29 13.07 (1.62) 15.18 (1.70) 18.60 (1.96) 9.43 (1.07) 10.78 (1.14) 14.01 (1.32)

LA38 13.50 (1.49) 16.42 (1.70) 20.14 (1.95) 9.41 (1.34) 10.88 (1.43) 12.01 (1.78)

LA40 13.33 (1.96) 16.48 (2.76) 20.34 (3.22) 9.95 (0.90) 11.96 (1.38) 13.01 (1.20)
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Fig. 3 Histograms of Cex
max

obtained with the best solutions

from fEABCC
LS and fEABCLS on

K ¼ 1000 configurations of

instances La25, La25þ20% and

La25þ40%
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population, but it lacks enough exploitation, thus using an

insertion SGS capable of generating active schedules pro-

vides better results overall. The proposed solving method

was favourably compared with its previous version ABCE3

and obtained similar results to the best method in the IJSP

literature while using significantly less time. The reduction

in runtime and the increase of diversity allowed us to

hybridize our method with a Hill Climbing algorithm. As

expected, the runtime increases, but the improvement in

solution quality is larger than the time increase and leads

the algorithm to the best results for the IJSP, outperforming

all previously published methods.

A sensitivity analysis was also performed to assess the

robustness of the obtained solutions in environments with

larger amounts of uncertainty. The comparison was also

made to see the advantages of considering the uncertainty

during the optimisation process. The results showed that in

that case, the robustness of the obtained solutions is much

better than solutions obtained when solving the problem

without taking the uncertainty into account.
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Sánchez, J.R., Paz López, F., Adeli, H. (eds.) Bio-inspired

Systems and Applications: from Robotics to Ambient Intelli-

gence, pp. 98–108. Springer. https://doi.org/10.1007/978-3-031-

06527-9_10

Dı́az H, Palacios JJ, Dı́az I, Vela CR, González-Rodrı́guez I (2022)
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