
Solving quantum circuit compilation problem variants through genetic
algorithms

Lis Arufe1 • Riccardo Rasconi2 • Angelo Oddi2 • Ramiro Varela1 • Miguel Ángel González1

Accepted: 1 August 2023 / Published online: 17 August 2023
� The Author(s) 2023

Abstract
The gate-based model is one of the leading quantum computing paradigms for representing quantum circuits. Within this

paradigm, a quantum algorithm is expressed in terms of a set of quantum gates that are executed on the quantum hardware

over time, subject to a number of constraints whose satisfaction must be guaranteed before running the circuit, to allow for

feasible execution. The need to guarantee the previous feasibility condition gives rise to the Quantum Circuit Compilation

Problem (QCCP). The QCCP has been demonstrated to be NP-Complete, and can be considered as a Planning and

Scheduling problem. In this paper, we consider quantum compilation instances deriving from the general Quantum

Approximation Optimization Algorithm (QAOA), applied to the MaxCut problem, devised to be executed on Noisy

Intermediate Scale Quantum (NISQ) hardware architectures. More specifically, in addition to the basic QCCP version, we

also tackle other variants of the same problem such as the QCCP-X (QCCP with crosstalk constraints), the QCCP-V

(QCCP with variable qubit state initialization), as well as the QCCP-VX that includes both previous variants. All problem

variants are solved using genetic algorithms. We perform an experimental study across a conventional set of instances

taken from the literature, and show that the proposed genetic algorithm, termed GAVX , outperforms previous approaches in

the literature.

Keywords Quantum circuit compilation � Scheduling � Makespan � Optimization � Genetic algorithm

1 Introduction

In this paper, we explore the utilization of a Genetic

Algorithm to optimize the resolution of the Quantum Cir-

cuit Compilation Problem (QCCP). Indeed, the problem of

efficiently compiling quantum circuits to emerging quan-

tum hardware is of primary importance, for a variety of

reasons. At the current stage of development, quantum

computing technology is based on mainly two architec-

tures: quantum annealers and gate-model proces-

sors (Aharonov et al. 2004; Preskill 2018). However, while

quantum annealers are restricted to the resolution of

quadratic unconstrained binary optimization (QUBO)

problems (one of the most representative technology of this

type is the one used in the D-Wave Solvers1) gate-model

processors are universal and, once properly scaled up, can

be applied to any quantum algorithm. In this work, we will

& Miguel Ángel González

mig@uniovi.es

Lis Arufe

arufelis@uniovi.es

Riccardo Rasconi

riccardo.rasconi@istc.cnr.it

Angelo Oddi

angelo.oddi@istc.cnr.it

Ramiro Varela

ramiro@uniovi.es

1 Department of Computer Science, University of Oviedo,

Campus of Gijón, 33204 Gijón, Spain

2 Istituto di Scienze e Tecnologie della Cognizione, Consiglio

Nazionale delle Ricerche (ISTC-CNR), Via S. Martino della

Battaglia, 44, 00185 Rome, Italy 1 https://www.dwavesys.com.

123

Natural Computing (2023) 22:631–644
https://doi.org/10.1007/s11047-023-09955-0(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-023-09955-0&domain=pdf
https://www.dwavesys.com
https://doi.org/10.1007/s11047-023-09955-0

focus on the resolution of combinatorial optimization

problems using the gate-model approach.

In more details, we consider the hardware technology

termed Noisy Intermediate Scale Quantum (NISQ) pro-

cessors (Preskill 2018; Venturelli et al. 2019). Figure 1

shows six NISQ quantum chip designs featuring different

number of qubits (N ¼ 4; 8; 21; 40; 72; 127). The four

smaller chips are inspired by Rigetti Computing Inc. Sete

et al. (2016), while the 72-qubit architecture is the Google

Bristlecone and the 127-qubit is the IBM Eagle. Each qubit

is represented by a node in the architectures depicted in

Fig. 1, and is identified by an integer. If an edge exists

between two nodes (i.e., the two nodes are adjacent) then a

binary quantum gate can be executed between the two

qubits represented by those nodes. The type of connection,

either dashed or continuous in the figure, is representative

of different processing times in gate execution. In general,

the duration of a quantum gate depends on the specific

physical implementation in terms of primitive gates pro-

vided by the specific quantum hardware.

A quantum circuit (or quantum algorithm) may be

viewed as a series of quantum gates that are applied on the

qubits over time (see Fig. 2b) where nearest-neighbor

restrictions exist on the nodes (i.e., the qubits) the gates are

applied to.

Being the NISQ processors characterized by a number

of qubits in the [50, 150] range, they are not large enough

to demonstrate generalized quantum supremacy, nor are

they sufficiently advanced for implementing continuous

quantum error correction (QEC) strategies. Additionally,

NISQ hardware is prone to decoherence, which deterio-

rates the reliability of the quantum circuit over time, hence

the need to produce circuits whose execution terminates

before they start to decohere. It is however important to

recognize that minimizing the length of a quantum circuit

in terms of makespan or depth is not the sole desirable

objective for the attainment of a high-quality quantum

circuit. Besides decoherence, quantum circuits running on

NISQ quantum processors are inherently affected by noise

stemming from the NISQ technology itself. Consequently,

one may consider additional quality metrics that focus on

the synthesis of quantum circuits that minimize the uti-

lization of particularly error-prone quantum gates, for

instance the binary gates like the CNOT gates.

In the context of this paper however, we will focus on

the quality aspect related to the production of circuits that

are as shallow as possible (i.e., compiled circuits charac-

terized by minimum depth).

The compiled circuits considered in this work aim at

resolving MaxCut problem instances (see Sect. 3). In

general quantum terms, the resolution of these problem

instances may be naturally viewed in terms of an energy

minimization problems. More specifically, the main

difficulty is to build the Hamiltonian Hp related to the

objective function of the problem of interest; once Hp is

established, its ground state will encode a solution to the

problem.

According to the quantum annealing model, an initial

Hamiltonian Hi is created whose ground state can be easily

prepared; then, the initial Hamiltonian is transformed

towards Hp through small perturbations. Finally, following

the adiabatic theorem, we have a ground state of Hp. In the

circuit model (the model considered in this paper) a set of

quantum logic gates operate on a set of quantum bits

(qubits), where each qubit finds itself on a determined

quantum state (qstate), i.e. a superposition of the two pure

states denoted j0i and j1i respectively. As in the adiabatic

model, the goal is to prepare a ground state of Hp.

From all of the above, executing a quantum algorithm

on a quantum hardware entails evaluating a set of quantum

gates on qubits (in this study, unary or binary gates) subject

to some constraints originated by both the algorithm and

the hardware. To guarantee that the adjacency condition is

satisfied prior to the execution of every binary gate, the pair

of interested qstates must be frequently moved across the

hardware’s qubits. This is achieved by means of swap

gates. Swap gates are binary gates that exchange the qstates

resting on two adjacent qubits. Another constraint that

should always be satisfied is that two gates cannot be

concurrently applied on the same qubit.

The problem of distributing the calculations across the

specific quantum device, due to the previous conditions and

constraints, is known in the literature as the Quantum

Circuit Compilation Problem (QCCP) (Oddi and Rasconi

2018). In this work, we formulate this problem within the

planning and scheduling framework, and we explore the

use of genetic algorithms to solve the original QCCP ver-

sion as well as some QCCP variants that will be described

in Sect. 4. To this aim, we will focus on the class of

Quantum Approximate Optimization Algorithm (QAOA)

applied to the MaxCut problem (Farhi et al. 2014). The

QAOA paradigm has been widely used in the literature, see

for example (Oddi and Rasconi 2018; Rasconi and Oddi

2019; Chand et al. 2019; Aruf et al. 2022), where the

authors present results based on the classical benchmark

proposed in Venturelli et al. (2017). QAOA is based on the

application of a set of quantum gates (i.e., the quantum

circuit) over a number p of rounds, though in this paper we

restrict our analysis to circuits composed on p ¼ 1 rounds

only.

The remainder of the paper is organized as follows. The

next two sections are dedicated to the general presentation

of the QAOA, and to the description of how it is applied to

the MaxCut problem, respectively. Section 4 is dedicated

to the formal definition of the QCCP for MaxCut, and its

632 L. Arufe et al.

123

variants QCCP-V, QCCP-X and QCCP-VX. Section 5

describes the Genetic Algorithm (GAVX) we propose.

Section 6 is dedicated to the description of the experi-

mental evaluation and to the presentation of the obtained

results. Finally, Sect. 7 summarizes the main conclusions,

and provides some ideas for future research.

2 The quantum approximate optimization
algorithm

The Quantum Approximate Optimization Algorithm

(QAOA) (Farhi et al. 2014) is a ‘‘hybrid’’ heuristic algo-

rithm, as it combines both classic and quantum computa-

tions to solve combinatorial problems expressed as

optimize:
Xm

a¼1

CaðzÞ ð1Þ

where CaðzÞ are clauses on a vector of decision binary

variables z ¼ ðz1; . . .; znÞ, and the goal is to find the

assignment of zi 2 f0; 1g; 1� i� n; that optimizes the

number of satisfied clauses.

In order to use the QAOA to solve problems like the

MaxCut, it is first necessary to translate the clauses CaðzÞ

into their equivalent quantum Hamiltonians Ca, which is

typically done by interpreting each variable zi as a quantum

spin, hence physically realizable with a qubit. Secondly, it

is necessary to choose the number of rounds p the quantum

circuit (i.e., the quantum part of the QAOA) will be

composed of, as well as two vectors c;b of p angles ci and
bi with 0� bi � p, 0� ci � 2p, 1� i� p. Generally, the

higher the number p of rounds, the more accurate is the

solution returned by the QAOA; however, it is of great

importance to select a value of p small enough to keep the

quantum circuit depth limited, so as not to cause undesired

decoherence effects.

Then, starting from the n qubits in the uniform super-

position qstate jþi ¼ 1ffiffi
2

p j0i þ 1ffiffi
2

p j1i, the following state is

prepared:

jwpðc; bÞi ¼
Yp

r¼1

e�ibrHBe�icrHC jþi�n ð2Þ

where HC is the problem Hamiltonian defined as

HC ¼
Pm

a¼1 Ca, and HB is the mix Hamiltonian defined as

HB ¼
Pn

j¼1 Xj, where Xj is the X Pauli matrix applied to

qubit j.

1 2 3

4 5

6 7 8

1 2 3

6 7

9
10 11 12

13

15 16

19 20 21

5

8

4

14

17 18

1 2 3

8 9

12
13 14 15 16

20 21

25 26 27

5

10

4

19

23
24

6 7

11

17
18

22

29
28

30 31

34 35 36 37 38

32

39 40

33

1 2

43

(a) N = 4

(b) N = 8

(c) N = 21

(d) N = 40

(f) N = 127(e) N = 72

Fig. 1 Six quantum chip designs

with different number of qubits

Solving quantum circuit compilation problem variants through... 633

123

By repeatedly applying the quantum circuit as per

equation 2, the physical system realized by our quantum

circuit is slowly brought close to its minimum energy level,

which corresponds to a solution of the problem defined in

Eq. (1), which therefore should be close to the optimum.

The final obtained state is finally measured to get the

expected value of our solution, given by

hwpðc; bÞjHCjwpðc; bÞi ð3Þ

If the values of c and b are well chosen, the state of the

qubits after this transformation will represent a good

solution to the problem defined in Eq. (1) with high

probability. In the QAOA optimization loop, the selection

of c and b is carried out by means of a classic optimization

(e.g., simplex based or gradient based optimization) with

the exception of the initial pair ðc0;b0Þ which must be

provided as input. For each candidate ðc; bÞ, the state of

Eq. (2) is prepared and measured in the quantum computer.

3 The MaxCut problem in quantum terms

Given an undirected graph G ¼ ðV ;EÞ, where V is the set

of nodes (jV j ¼ n) and E is the set of arcs (jEj ¼ m), the

goal of the MaxCut problem is to compute a partition of the

set V into two subsets Vþ1 and V�1 so that the number of

arcs in E connecting nodes of the two subsets is maxi-

mized. Formally, the goal can be expressed as follows:2

q1

q2

q4

q3

(a) MaxCut instance.

n1

n2

n4

n3

1

2

3

4

(b) Quantum circuit for the MaxCut instance in Figure
2(a).

10

p-s(q1,q2)

p-s(q1,q3)
mix
(q2)

MK=16

q1

q2

q3

q4

p-s(q1,q2) mix
(q1) p-s(q1,q3)

swap
(q2,q4)

swap
(q2,q4)

p-s(q2,q3)

p-s(q2,q3)p-s(q3,q4)

p-s(q3,q4)
mix
(q3)

mix
(q4)

5 15 Time

(c) Gantt chart, representing the operations on each qstate over time.

Fig. 2 Example of MaxCut

instance (a) and one possible

solution, considering only one

round (i.e. P ¼ 1), represented

by a quantum circuit (b) and a

Gantt chart (c)

2 Note that a single transformation z ¼ ðrþ 1Þ=2 converts the

variables from the r 2 f�1;þ1g space to the z 2 f0; 1g space.

634 L. Arufe et al.

123

maximize:
X

ði;jÞ2E

1

2
ð�rirjÞ; rk ¼

(
�1 if k 2 V�1

1 if k 2 Vþ1

ð4Þ

Obviously, the problem can be transformed into a mini-

mization problem by multiplying the expression above by -

1. In this case, we obtain a Hamiltonian Ca for each arc

(i, j) which depends on just these two variables; hence, it

can be expressed as

Ci;j ¼
1

2
ðZi � ZjÞ ð5Þ

where Zi and Zj are the Pauli matrix Z applied to qubits i

and j respectively. Therefore, each of the m components of

the problem Hamiltonian HC corresponding to the terms in

equation 5 can be formulated in matrix form, obtaining the

following operator:

e�icrCi;j ¼

e�icr=2 0 0 0

0 eicr=2 0 0

0 0 eicr=2 0

0 0 0 e�icr=2

0
BBB@

1
CCCA ð6Þ

which is in fact an RZZðcÞ gate. As clearly visible, the

operator corresponding to the RZZðcÞ gate is diagonal;

therefore, any two of such operators can commute each

other. As a direct consequence, all the RZZðcÞ gates present
in the quantum circuit can be executed in any order on

every round, thus making the quantum compilation prob-

lem very interesting.

Similarly, each component of the mix Hamiltonian HB

corresponds to the following unitary operator:

e�ibrXj ¼
cosðbrÞ � i sinðbrÞ

�i sinðbrÞ cosðbrÞ

� �
ð7Þ

which is obviously the matrix representation of the RXð2bÞ
gate.

In the following sections, operators (6) and (7) will be

referred to as p� sðqi; qjÞ and mixðqjÞ respectively.

4 Definition of the Quantum Circuit
Compilation Problem

The QCCP can be formalized with the tuple

P ¼ hC0; L0;QMi, where:

• C0 is the input quantum circuit, which represents the

quantum algorithm that solves the problem of interest;

• L0 is the circuit initial mapping, i.e., the initial

allocation of every qstate qi on every qubit;

• QM is the quantum hardware whose topology is

represented by an undirected graph QM ¼ hV ;Ei,

where V is a set of nodes that represent physical qubits,

and E is a set of edges that represent the physical

connections existing on the quantum chip. In order to be

feasibly executed, the qstates qi and qj of every p�
sðqi; qjÞ or swapðqi; qjÞ gate must reside on qubits

connected by an edge (adjacent qubits). The durations

of the gates depend both on the gate and on the type of

the arc (depicted as continuous or dashed).

Each MaxCut quantum circuit instance is characterized

by a determined number of p� sðqi; qjÞ (P-S set) and

mixðqiÞ gates (MIX set). In general, the operations in P-S

and MIX are applied sequentially over a number of p

rounds, but in this work we are considering just one round

(p ¼ 1).

Figure 2a shows an example of MaxCut instance for a

graph with 4 nodes and the p� s and mix gates that must be

executed over a number of rounds. There are some

precedence constraints that all solutions must satisfy; for

instance, a mixðqiÞ gate can only be executed after all p� s

gates in the same round involving the qstate qi are exe-

cuted. However, p� s gates may be executed in any order

within each round, provided that no two p� s gates oper-

ates on the same qstate at a time (i.e., they are

commutative).

For a p� sðqi; qjÞ gate to be executed, the involved

qstates qi and qj must be allocated on a pair of adjacent

qubits ðnk; nlÞ 2 E. Every time this adjacency condition is

not satisfied, it is necessary to extend the quantum circuit

by adding a number of swap gates whose task is to move

the qstates of interest towards a pair of adjacent qubits.

Therefore, solving the circuit compilation problem basi-

cally entails the following steps: (i) we start from an initial

allocation of qstates on the qubits (decided in L0); (ii) we

insert a number of swap gates in the circuit, to ensure that

the adjacency conditions are satisfied for all p� s gates.

The overall objective is the production of compiled circuits

of minimum makespan.

The right side of Fig. 2b shows a compiled quantum

circuit that represents a solution for the problem given in

Fig. 2a. Given the simplicity of the circuit, only one swap

gate was necessary to guarantee the adjacency conditions

for all the p� s gates. This was achieved by swapping the

qstates on qubits n2 and n4 so as to move the qstates q3 and

q2 on the adjacent qubits n3 and n4, thus making the exe-

cution of the p� sðq3; q2Þ feasible. In the figure, the rect-

angles represent p-s gates, the squares represent mix gates,

and the x-ended line represents a swap gate. In this

example, the initial allocation defined by L0 establishes that

each qstate qi is on qubit ni. The quantum hardware is

represented on the left side of Fig. 2b. Each horizontal line

represents the operations on the ni qubit over time.

Solving quantum circuit compilation problem variants through... 635

123

As shown in Fig. 2C, a compiled quantum circuit may

also be viewed as a Gantt chart. Clearly, the makespan of

this particular solution is equal to 16, assuming that a p� s

gate takes 3 time units on continuous edges and 4 time

units on dashed edges, that the swap gate requires 2 time

units on all edges, and the mix gates require 1 time unit.

Besides the original QCCP version, in this work we

consider three more variants, described in the following.

QCCP-V Unlike the original QCCP variant, in which

the initial qstate assignment L0 was equal for every

instance and fixed (i.e., it could not be modified by the

optimization algorithm), in the QCCP-V version, the initial

state is variable and must be decided by the compilation

procedure. This naturally allows for the production of

compiled circuits characterized by shorter makespans.

QCCP-X The QCCP-X variant assumes that the quan-

tum hardware is affected by crosstalk noise, which adds up

the following further constraint to our circuits (crosstalk

constraint): no two gates can operate simultaneously on

adjacent qubits. Obviously, the consequence of satisfying

the crosstalk constraint leads to the production of compiled

circuits characterized by longer makespans.

QCCP-VX In this variant, both the variable initial state

computation and the crosstalk constraint satisfaction are

taken into account.

5 The genetic algorithm

The problem variants described in Sect. 4 will be solved by

means of a genetic algorithm denoted GAVX . In particular,

we adapt here the genetic algorithm proposed in Arufe

et al. (2022) for the QCCP-X which, in turn, is adapted

from the DBGA (Decomposition Based Genetic Algo-

rithm) described in Aruf et al. (2022) for the plain QCCP.

Chromosome codification is a triplet of chains

(chr1, chr2, chr3), where chr1 is a permutation of the set

of the p-s gates, chr2 is a sequence of connections in the

quantum circuit QM of the same length as chr1. The idea is

that gate p� sðqi; qjÞ in position i of chr1 must be executed

on qubits fnk; nlg indicated in position i of chr2. The

decoding algorithm inserts the minimum number of swap

gates necessary to move the qstates ðqi; qjÞ from their

current qubits towards fnk; nlg (see (Aruf et al. 2022) for

details on the procedure). Additionally, chr3 is a permu-

tation of the N qubits of the quantum hardware considered,

each position indicating the qubit in which each qstate

starts, and so it will be used for the QCCP-V problem

variant.

The genetic algorithm starts by creating a random initial

population of popSize chromosomes and evaluating them.

It then iterates a number of generations until a stop con-

dition is met, in particular a maximum number of con-

secutive generations without improving the best solution

found so far. When the algorithm ends, the best solution in

the population is returned.

In each generation, all chromosomes of the population

are shuffled in random pairs, and an adapted version of the

well-known partial mapping crossover (PMX) operator is

applied to each pair with probability Pc in order to produce

two offspring solutions. Regarding the chr3 chain of the

chromosomes, in the crossover step one offspring inherits a

complete chr3 of one parent and the other offspring inherits

the complete chr3 of the other parent (an example is shown

in Fig. 3).

Then, a mutation operator is applied to each offspring

with probability Pm. We consider two mutation operators

that are chosen with equal probability when a chromosome

is mutated. One swaps two random positions of the chr1

and chr2 chains, and the other randomly modifies a posi-

tion of chr2.

All offsprings are evaluated, and the two best chromo-

somes from each pair of parents and its two offspring are

inserted in the population for the next generation.

A diversification step is performed after noImpr con-

secutive generations without improvement. Its purpose is

dealing with premature convergence by introducing

diversity in the population, and consists in mutating

nMutDiv times all but one chromosomes with the same

fitness.

5.1 Variable qubit state initialization (QCCP-V)

As already described, the Quantum Circuit Compilation

Problem with variable qubit state initialization (QCCP-V)

is an extension of the problem where the initial mapping of

qstates over qubits is variable. Varying the initial mapping

allows to build circuits with possibly less swap gates and

lower makespan, however it makes the problem more

complex as we have extra variables to optimize.

In this paper we propose to tackle this extension com-

bining two methods: a heuristic taken from the literature

(Alam et al. 2020) and a novel enhancement to further

improve the resulting circuits when decoding a chromo-

some, which we will denote dynamic reallocation. We

describe those ideas in the following.

Integrated qubit allocation and initial mapping

(QAIM)

In Alam et al. (2020) the authors propose a very inter-

esting heuristic method to perform this initialization,

denoted QAIM. In summary, given an instance, the QAIM

636 L. Arufe et al.

123

heuristic tries to detect which qstates are more heavily used

and tries to place them near each other, and favoring those

qubits with many connections in the quantum chip. In this

way it is expected that the number of swap gates is

reduced. We refer the interested reader to Alam et al.

(2020) for full details of the QAIM heuristic.

This heuristic is only applied at the beginning of the

execution, as its result only depend on the particular

problem instance and on the quantum chip used. However,

different initializations might be created using QAIM,

because in some decisions made in the heuristic there

might be a tie between several options (for example if

several qubits have the same cost metric—qubit connec-

tivity strength/cumulative distance from the placed

neighbors).

In our experiments we try two possibilities: (1) using a

single output of the QAIM heuristic and using it in all

chromosomes, or (2) leverage the randomness of the

method and create a number (to be determined in the

experiments) of initial profiles, assigning one to each

chromosome.

Dynamic reallocation The so called dynamic reallo-

cation allows to further improve the solutions. Whenever

we are decoding a chromosome, if we need to insert a swap

gate between two qstates, but that swap gate would be the

first gate processed by those two qstates, then it is easy to

see that we can omit the swap gate and instead swap the

initial mapping of those qstates.

There are two ways of implementing this idea,

depending if we consider the modifications made to the

initial mapping inheritable or non-inheritable. These two

ideas correspond to the classical evolution strategies of

Lamarckian and Baldwinian evolution, respectively. In the

literature it is usually the case that Lamarckian evolution

(i.e. the modifications are inheritable) performs better, and

we will confirm it in the experimental study.

In Fig. 4 we show an example of the efficiency of these

approaches. In particular we show how we decode a

chromosome in three different scenarios: default qstate

initialization (makespan 28), QAIM initialization (make-

span 16), and QAIM with dynamic reallocation (makespan

12).

6 Experimental study

Our genetic algorithm GAVX is implemented in C?? and

runs in a 64-bit Windows10 OS on top of a Intel Core i5-

7400 CPU at 3.00 GHz with 16 GB RAM. The algorithm

runs 10 times in each experiment in order to obtain sta-

tistically significant results.

We consider a well-known benchmark initially proposed

in Venturelli et al. (2017) which is publicly available3. It

includes instances for four different quantum architectures

N ¼ f4; 8; 21; 40g, two different utilization levels (i.e.

maximum percentage of qstates of the quantum chip that

are used in the instance) u ¼ f90%; 100%g and two dif-

ferent number of compilation passes p ¼ f1; 2g. Each

combination fN; p; ug has 50 different instances. In this

paper we focus on those instances with u ¼ 100% and

p ¼ 1.

We also consider additional instances in recent larger

quantum architectures (sizes N ¼ 72 and N ¼ 127). There

chr1

chr2

p-s(q1,q3) p-s(q4,q5)p-s(q5,q2) p-s(q2,q3)

{n1,n2} {n2,n3} {n2,n3} {n3,n5}

p-s(q6,q7)

{n4,n6}

p-s(q4,q8)

{n6,n7}Parent 1

chr1

chr2

p-s(q1,q3) p-s(q4,q5) p-s(q5,q2)p-s(q2,q3)

{n2,n3} {n3,n5}{n1,n2} {n7,n8}

p-s(q6,q7)

{n6,n7}

p-s(q4,q8)

{n5,n8}Parent 2

chr1

chr2Offspring 1

chr1

chr2Offspring 2

p-s(q5,q2)

{n2,n3}

p-s(q6,q7)

{n4,n6}

p-s(q2,q3)

{n2,n3}

p-s(q2,q3)

{n1,n2}

p-s(q6,q7)

{n6,n7}

p-s(q5,q2)

{n3,n5}

p-s(q1,q3)

{n1,n2}

p-s(q4,q8)

{n6,n7}

p-s(q4,q5)

{n3,n5}

p-s(q1,q3)

{n2,n3}

p-s(q4,q5)

{n7,n8}

p-s(q4,q8)

{n5,n8}

4 3chr3 2 81 7 6 5

5 6chr3 7 18 2 3 4

4 3chr3 2 81 7 6 5

5 6chr3 7 18 2 3 4

Fig. 3 Illustration of crossover

with the proposed three-chain

chromosome

3 https://ti.arc.nasa.gov/m/groups/asr/planning-and-scheduling/Vent

CirComp17_data.zip.

Solving quantum circuit compilation problem variants through... 637

123

https://ti.arc.nasa.gov/m/groups/asr/planning-and-scheduling/VentCirComp17_data.zip
https://ti.arc.nasa.gov/m/groups/asr/planning-and-scheduling/VentCirComp17_data.zip

instances are built using the same methodology as those of

Venturelli et al. (2017).

In an initial parameter analysis we have concluded that

the following parameters are reasonable for GAVX:

popSize ¼ 1000, Pc ¼ 100%, Pm ¼ 5%, noImpr ¼ 10,

nMutDiv ¼ 5. We set a stop condition of 800 consecutive

generations without improving the best solution found so

far. In this way we obtain computational times no larger

10 MK=28

q1 (starts in n1)

5

mix
(q3)

mix
(q4)

swap
(q1,q2)

p-s(q4,q6)

p-s(q3,q4)

p-s(q3,q4)

p-s(q5,q6)

p-s(q2,q7)

p-s(q1,q3)

p-s(q2,q7)

mix
(q1)

mix
(q2)

p-s(q3,q7)

mix
(q8)

mix
(q7) p-s(q3,q7)
mix
(q6) p-s(q4,q6)

mix
(q5)

swap
(q1,q4)

swap
(q1,q4)

15

p-s(q1,q3)

p-s(q2,q6)

p-s(q2,q6)

p-s(q5,q6)

20 25

swap
(q1,q2)

swap
(q1,q5)

swap
(q1,q5)

swap
(q1,q2)

swap
(q1,q2)

p-s(q1,q8)

p-s(q1,q8)

swap
(q1,q8)

swap
(q1,q8)

swap
(q2,q5)

swap
(q2,q5)

swap
(q2,q8)

swap
(q2,q8)

swap
(q2,q3)

swap
(q2,q3)

swap
(q2,q4)

swap
(q2,q4)

swap
(q2,q7)

swap
(q2,q7)

swap
(q3,q5)

swap
(q3,q5)

swap
(q3,q8)

swap
(q3,q8)

swap
(q3,q4)

swap
(q3,q4)

swap
(q4,q6)

swap
(q4,q6)

swap
(q4,q7)

swap
(q4,q7)

swap
(q4,q8)

swap
(q4,q8)

swap
(q5,q6)
swap

(q5,q6)

q2 (starts in n2)

q3 (starts in n3)

q4 (starts in n4)

q5 (starts in n5)

q6 (starts in n6)

q7 (starts in n7)

q8 (starts in n8)

Time

(a) Gantt chart using default initial mapping.

10 MK=165

mix
(q3)

mix
(q4)

swap
(q1,q3)

p-s(q4,q6)
swap

(q1,q3)

p-s(q1,q8)

p-s(q3,q4)

p-s(q3,q4)

p-s(q5,q6)

p-s(q2,q7)

p-s(q1,q3)

p-s(q5,q6)

p-s(q1,q8)

p-s(q2,q7)

swap
(q1,q4)

swap
(q1,q4)

mix
(q1)

mix
(q2)

p-s(q3,q7)

mix
(q8)

mix
(q7) p-s(q3,q7)

mix
(q6) p-s(q4,q6)

mix
(q5)

swap
(q1,q4)

swap
(q1,q4)

15

p-s(q1,q3)
swap

(q2,q5)

swap
(q2,q5)

p-s(q2,q6)

p-s(q2,q6) swap
(q2,q5)

swap
(q2,q5)

swap
(q4,q8)

swap
(q4,q8)

swap
(q5,q6)

swap
(q5,q6)

p-s(q5,q6)

q1 (starts in n8)

q2 (starts in n6)

q3 (starts in n5)

q4 (starts in n3)

q5 (starts in n1)

q6 (starts in n4)

q7 (starts in n7)

q8 (starts in n2)

Time

(b) Gantt chart using QAIM heuristic.

10 MK=125

mix
(q2)

mix
(q3)

mix
(q4)

mix
(q5)

mix
(q6)

mix
(q8)

swap
(q1,q4)

p-s(q1,q3)

p-s(q1,q3)

p-s(q1,q8)

p-s(q2,q6)

p-s(q2,q6)

p-s(q2,q7)

p-s(q2,q7)

p-s(q3,q7)p-s(q3,q4)

p-s(q4,q6)swap
(q4,q8)

p-s(q5,q6)

p-s(q5,q6)

p-s(q1,q8)
mix
(q7)

mix
(q1)

p-s(q3,q4)

p-s(q3,q7)

p-s(q4,q6)

swap
(q1,q4)

swap
(q2,q5)

swap
(q2,q5)

swap
(q4,q8)

q1 (starts in n3)

q2 (starts in n4)

q3 (starts in n8)

q4 (starts in n5)

q5 (starts in n6)

q6 (starts in n1)

q7 (starts in n7)

q8 (starts in n2)

Time

(c) Gantt chart using QAIM heuristic and Dynamic Real-
location.

p-s(q2,q6) p-s(q5,q6) p-s(q1,q8) p-s(q3,q4)chr1
{n1,n4} {n1,n4}chr2 {n2,n3} {n5,n8}

p-s(q3,q7) p-s(q4,q6)p-s(q2,q7) p-s(q1,q3)

{n7,n8} {n6,n7} {n5,n8} {n1,n2}

(d) Chromosome.

Fig. 4 Example of MaxCut instance number 5 of size N ¼ 8 and one possible chromosome. We show three possible solutions, represented by

Gantt charts, obtained when decoding the chromosome considering different initial mapping strategies

638 L. Arufe et al.

123

than those reported in Rasconi and Oddi (2019), so we can

provide a relatively fair comparison of both methods in

section 6.2.

6.1 Comparison of qstate initialization strategies

Table 1 shows a comparison of the QAIM variants

described in Sect. 5.1 with different number of created

profiles. We show for each strategy and each instance, the

average result obtained in 10 runs and the standard devi-

ation. We only consider here the largest instances, i.e. those

with N ¼ 72 and N ¼ 127, as those are the most difficult

and interesting. We consider here the problem variant

QCCP-V, with no crosstalk constraints.

The first thing we conclude is that ignoring the possi-

bility of variable initialization is very costly, as the

makespan is approximately twice than the makespan using

any of the QAIM versions.

In particular, QAIM(100) is the variant that obtains the

best average result more often: 6 times out of 10 in N ¼ 72

instances and 7 times out of 10 in N ¼ 127 instances,

although the difference with respect to QAIM(10) seems to

be reduced. We performed statistical analysis to check if

QAIM(100) is in fact better, and we see that paired Wil-

coxon signed rank tests return a p-value of 0.0000009537

versus no QAIM, 0.006293 versus QAIM(1) and

0.00006676 versus QAIM(1000), showing the differences

are statistically significant. On the other hand, differences

with respect to QAIM(10) are not statistically significant.

We choose anyway QAIM(100) for the remaining experi-

ments, as it obtained a better average more often than

QAIM(10) in these experiments.

Now that we have seen that QAIM(100) might be the

best alternative, we will see the effect of the dynamic

reallocation and compare its inheritable (Lamarckian evo-

lution) and non-inheritable (Baldwinian evolution) ver-

sions. Table 2 shows the results of this comparison.

The inheritable version of the dynamic reallocation

seem to perform better, obtaining an average makespan

8.9% lower than that obtained with no dynamic realloca-

tion, and obtaining the best average result in most instan-

ces. A paired Wilcoxon signed rank test confirms that the

Table 1 Average makespan and

standard deviation in 10 runs,

using different QAIM strategies

to tackle initialization of qstates

in qubits, considering the largest

instance sizes N ¼ f72; 127g

Default QAIM(1) QAIM(10) QAIM(100) QAIM(1000)

Inst Avg S.D Avg S.D Avg S.D Avg S.D Avg S.D

N ¼ 72 Instances

1 55.1 4.36 30.3 2.45 27.3 2.21 28.9 2.38 30.3 3.2

2 59.6 5.87 32.5 2.68 32.8 4.54 33.5 3.17 34.7 3.83

3 58.8 4.85 30.5 2.46 29.5 3.6 30.1 2.56 30.9 1.91

4 54.5 3.89 29.3 2.36 27.6 2.5 29.0 3.46 28.1 2.77

5 60.2 3.82 34.4 2.76 34.6 3.6 32.8 3.22 33.8 1.23

6 55.5 4.12 31.7 3.71 30.4 2.22 31.7 3.23 33.7 2.67

7 56.2 6.23 30.4 3.6 30.8 3.08 29.8 3.08 32.2 2.94

8 55.4 5.36 31.5 2.37 28.2 2.35 28.2 1.93 30.9 2.42

9 55.0 4.14 33.0 3.3 30.5 3.14 30.2 2.53 32.4 2.5

10 52.2 4.1 31.5 2.8 30.5 2.01 29.8 4.24 30.4 2.01

#best 0 0 6 5 0

N ¼ 127 Instances

1 145.8 13.43 60.5 5.4 61.8 5.12 63.9 5.57 66.6 7.59

2 148.7 14.1 65.3 10.06 55.1 6.59 51.7 5.56 56.7 3.53

3 161.5 12.43 66.1 9.22 61.5 8.87 65.4 10.81 63.7 5.52

4 154.6 14.05 67.6 9.18 57.6 9.3 55.5 6.38 61.7 6.93

5 150.7 8.43 75.0 9.52 72.3 8.9 72.4 7.29 75.1 7.98

6 135.6 10.86 62.9 9.29 62.1 9.23 66.9 5.97 67.1 5.99

7 161.1 12.19 58.1 5.2 53.7 6.41 57.1 7.36 62.4 6.43

8 141.9 8.09 62.4 7.82 56.3 6.06 57.8 4.89 60.7 7.42

9 156.0 17.75 69.3 7.85 64.3 6.62 58.9 4.86 67.5 6.19

10 154.1 12.21 70.4 6.92 62.1 4.18 64.8 6.78 69.4 9.34

#best 0 0 7 3 0

We mark in bold the lowest average result in each instance

Solving quantum circuit compilation problem variants through... 639

123

differences are statistically significant, with a p-value of

0.00004771 versus not using dynamic reallocation, and a p-

value of 0.005251 versus the non-inheritable version of

dynamic reallocation.

We conclude that the best approach for variable ini-

tialization is QAIM(100) with inheritable dynamic reallo-

cation, and so this is the configuration used by GAVX in the

following section.

6.2 Comparison with state of the art

In this Section we compare GAVX results in different ver-

sions of the problem with those of the state of the art,

which as far as we know is the genetic algorithm proposed

in Rasconi and Oddi (2019), as it obtains better results than

those previously reported in Booth et al. (2018). The

maximum cpu time used in Rasconi and Oddi (2019) is 5,

30 and 90 s for instances of size N ¼ 8; 21; 40 respectively,

and so slightly larger than that used by GAVX , although they

are not directly comparable due to differences in target

machine and programming language.

The benchmark set we consider in this Section is

restricted to quantum chips with N ¼ f8; 21; 40g qubits, as

no results with larger quantum architectures are given in

Rasconi and Oddi (2019). We will perform the comparison

in several versions of the problem: the standard QCCP,

adding variable initialization of qstates (QCCP-V), adding

crosstalk constraints (QCCP-X), and adding both (QCCP-

VX).

Figures 5a, 5b and 5c show results depending on the

number of qubits of the considered architecture. In par-

ticular they show the percentage reduction in makespan of

the average results of GAVX (in 10 runs) with respect to the

method proposed in Rasconi and Oddi (2019).

We see that GAVX seems to perform better, and the

makespan reduction it achieves with respect to the method

of Rasconi and Oddi (2019) varies depending on chip size.

In particular, an average makespan reduction of 5.76% in

N ¼ 8 instances, of 19.00% in N ¼ 21 instances, and of

32.08% in N ¼ 40 instances. This makes sense, as in

smaller and easier instances it should be relatively easy to

obtain good solutions and so there is less room to further

optimize them.

The makespan reduction also heavily depends on the

problem variant. In the standard QCCP it ranges from an

average of 3.86% for N ¼ 8 instances to an average of

12.94% for N ¼ 40 instances. For QCCP-V it ranges from

3.00% to 31.53%. For the QCCP-X version it ranges from

7.72% to 38.13%. Finally, for QCCP-VX it ranges from

8.47% to 47.71%. Therefore, the consideration of addi-

tional characteristics favors our method over that of Ras-

coni and Oddi (2019).

Regarding the best solutions reached, the proposal of

Rasconi and Oddi (2019) obtains a better best than GAVX in

only 10 instances out of the total 600 tested instances (50

instances � 3 chip sizes � 4 problem versions). Similarly,

it obtains a better average than GAVX in only 13 out of 600

instances.

We confirmed the superiority of GAVX through paired

Wilcoxon signed rank tests, whose results show that the

differences between both methods are statistically

significant.

6.3 Influence of the problem variant
and quantum chip topology

As we performed experiments considering four different

problem variants and five different quantum chips, we are

able to extract some insights about how much the variable

initialization and the crosstalk constraint influence the

Table 2 Average makespan and standard deviation in 10 runs, using

QAIM(100) with different dynamic reallocation strategies to tackle

initialization of qstates in qubits, considering the largest instance sizes

N ¼ f72; 127g

No DR DR(Non-Inhe) DR(Inhe)

Instance Avg S.D Avg S.D Avg S.D

N ¼ 72 Instances

1 27.3 2.21 28.3 1.64 26.5 0.53

2 32.8 4.54 29.9 2.56 29.7 1.95

3 29.5 3.6 28.1 2.85 28.6 2.41

4 27.6 2.5 25.8 2.25 24.7 2.06

5 34.6 3.6 30.7 2.79 30.5 2.37

6 30.4 2.22 29.7 1.57 28.3 2.63

7 30.8 3.08 29.2 2.7 27.7 1.95

8 28.2 2.35 26.4 2.46 25.2 1.87

9 30.5 3.14 27.7 2.11 27.5 2.17

10 30.5 2.01 28.9 1.2 27.4 2.17

#best 0 1 9

N ¼ 127 Instances

1 61.8 5.12 57.4 3.2 58.5 6.64

2 55.1 6.59 52.3 4.19 49.7 3.68

3 61.5 8.87 59.2 5.61 53.1 5.67

4 57.6 9.3 51.7 4.19 49.7 5.31

5 72.3 8.9 62.3 8.71 61.8 7.47

6 62.1 9.23 57.5 5.76 54.0 5.01

7 53.7 6.41 52.8 4.96 53.1 3.98

8 56.3 6.06 55.0 6.53 52.7 4.32

9 64.3 6.62 59.2 5.2 56.3 4.08

10 62.1 4.18 56.7 5.85 60.9 11.19

#best 0 3 7

We mark in bold the lowest average result in each instance

640 L. Arufe et al.

123

makespan. We show in table 3 the makespan increase (or

decrease when the shown percentage is negative) between

different problem variants depending on chip size.

When comparing QCCP to QCCP-V and QCCP-X to

QCCP-VX we can conclude that variable initialization

greatly improves the makespan. The improvement is larger

as the chip size increases. It was expected, because in

smaller chips two qstates cannot be very far away, and so

even without a good initialization we will probably not

need many swap gates anyways.

(a) N=8 instances

(b) N=21 instances

(c) N=40 instances

Fig. 5 Percentage improvement

in makespan of GAVX with

respect to GA (Rasconi and

Oddi 2019) in all 50 instances of

each of the a N = 8, b N = 21

and c N = 40 benchmarks,

considering four problem

variants

Table 3 Comparison of average

makespan increase between

different problem variants,

considering different chip sizes

N ¼ 8 (%) N ¼ 21 (%) N ¼ 40 (%) N ¼ 72 (%) N ¼ 127 (%)

QCCP ! QCCP-V - 16.99 - 23.90 - 31.72 - 52.68 - 64.41

QCCP-X ! QCCP-VX - 14.15 - 23.87 - 30.70 - 46.66 - 61.05

QCCP ! QCCP-X 31.05 34.72 36.82 68.80 27.33

QCCP-V ! QCCP-VX 35.47 34.93 38.89 82.71 39.53

QCCP ! QCCP-VX 12.28 2.55 - 5.32 - 10.03 - 50.45

Solving quantum circuit compilation problem variants through... 641

123

On the other hand, when we compare QCCP to QCCP-X

and QCCP-V to QCCP-VX we see that crosstalk con-

straints lead to worse makespans. The most outstanding

issue here is the terrible performance of the N ¼ 72

quantum chip, and the reason is that its topology is not

ideal to tackle crosstalk constraints, because the qubits are

more densely connected than in other architectures. Notice

that if one quantum gate is executed on the N ¼ 72 chip, as

much as 6 neighboring connections can be blocked because

they share a qubit with the gate, and as much as 16 addi-

tional connections are blocked around that quantum gate

due to the crosstalk constraints (i.e. 19.01% of the total

chip connections become unusable). Compare that with the

N ¼ 127 quantum chip, where if we execute a quantum

gate it can block at most 3 neighboring connections due to

qubit sharing and at most an additional 4 connections due

to crosstalk constraints (i.e. 5.56% of the total chip con-

nections become unusable). Therefore, the chip topology

can explain the differences in performance when adding

crosstalk constraints. Figure 6 illustrates this point.

Finally, we can compare QCCP with QCCP-VX in order

to see how both considerations at the same time can affect

the makespan. It seems that when the chip gets larger the

makespan reduction of the variable qubit initialization

outweighs the makespan increase of the crosstalk con-

straints. Although the difference is much more noticeable

in the N ¼ 127 chip than in the N ¼ 72 chip, as in the

former the crosstalk constraints are less severe, as we have

seen before.

The full results and detailed schedules of GAVX in the

four variants of the problem and in all instances with size

N ¼ f8; 21; 40; 72; 127g, and also the definition of the

instances with size N ¼ f72; 127g are publicly available on
the web.4.

7 Conclusions

In this paper we study the application of a genetic approach

to solve the quantum circuit compilation problem applied

to a class of QAOA circuits that include crosstalk con-

straints (QCCP-X) and/or variable qubit initialization

(QCCP-V). The objective is to obtain quantum gate exe-

cution plans that successfully compile idealized circuits to

quantum hardware architectures, and we aim to minimize

its makespan. We build upon the work presented in Arufe

et al. (2022) that only tackles the QCCP-X version of the

problem.

The main contribution of this work is a genetic algo-

rithm, denoted GAVX , that leverages a triple-chain chro-

mosome encoding, such that the first chain encodes the

sequence of gate insertion of the output solution, the sec-

ond chain encodes the location where the gates must be

executed in the considered quantum chip, and finally the

third chain encodes the initial location of qstates in qubits.

Another contribution is the method used to tackle the

variable initialization issue that combines the heuristic

proposed in Alam et al. (2020) with a novel dynamic

reallocation mechanism that can modify the initialization at

the same time as the corresponding chromosome is deco-

ded. Additionally, in the performed experimental study we

have considered recent larger quantum architectures with

N ¼ 72 and N ¼ 127 qubits, which are not considered in

previous QCCP-V or QCCP-X studies, and provide results

for them in order to promote future research.

We have compared GAVX with the approach proposed in

Rasconi and Oddi (2019), which is a genetic algorithm

where each gene controls the iterative selection of a

quantum gate to be inserted in the solution, over a lexi-

cographic double-key quantum gate ranking returned by a

heuristic function. The comparison is performed in several

variants of the problem (QCCP, QCCP-V, QCCP-X,

QCCP-VX) in a well-known benchmark of the literature

N = 127N = 72

Fig. 6 Comparing how crosstalk

constraints affect the N ¼ 72

and N ¼ 127 quantum chips.

We mark in red the connection

in which a quantum gate is

executing, in blue the

connections that are blocked

due to sharing a qstate with the

aforementioned quantum gate,

and in yellow the connections

that are blocked due to crosstalk

constraints

4 Repository section in http://di002.edv.uniovi.es/iscop/. In particu-

lar, in the ‘‘Detailed Results from Papers’’ subsection.

642 L. Arufe et al.

123

http://di002.edv.uniovi.es/iscop/

(Booth et al. 2018; Venturelli et al. 2017) that considers

quantum architectures with N ¼ 8, N ¼ 21 and N ¼ 40

qubits. The results prove that GAVX exhibits efficient per-

formance, and we have also presented some insights about

the solution quality when we consider different variants of

the problem and different chip topologies.

We plan several avenues for future work:

• Consider the application of more than one compilation

pass. Indeed, choosing the best number p of compilation

passes is a problem on its own, as while increasing

p improves the accuracy of the quantum circuit, it may

eventually increase the circuit’s depth to a point where

the decoherence effect makes the circuit totally

unreliable.

• Apply QAOA to different problems, as the Minimum

Vertex Cover Problem (Zhang et al. 2022) or the Graph

Coloring Problem (Do et al. 2020).

• Consider multi-objective optimization, for example

minimizing both the makespan and the number of

gates, as in general, while reducing the makespan

decreases the circuit’s decoherence, reducing the num-

ber of gates (especially the number of the noisy binary

quantum gates) may also help increasing the circuit’s

stability. Both objectives are interesting to minimize but

might be mutually conflicting objectives (Li et al.

2019). For the previous reasons, devising a multi-

objective optimization approach aimed at producing a

Pareto set of solutions with circuit’s makespan and

number of binary quantum gates (e.g., CNOTs) as

objective functions may allow the human decision

maker to select the solutions from the Pareto set that

best fit the current trade-off requirements.

• Update the study with new hardware architectures, as

the recent IBM Osprey (433 qubits), or the yet-to-come

IBM Condor processor (1121 qubits).

Author Contributions Lis Arufe performed the implementation and

source code and provided ideas about effects of crosstalk constraints

depending on chip topology. Miguel Ángel González designed the

experimental study and wrote the methods and experimental study

parts of the manuscript. Angelo Oddi, Riccardo Rasconi and Ramiro

Varela provided the theoretical basis of the paper and wrote those

parts of the manuscript. All authors reviewed the final manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature. This research was supported by the

Spanish Government under project PID2019-106263RB-I00 and by

ESA Contract No. 4000112300/14/D/MRP Mars Express Data Plan-

ning Tool MEXAR2 Maintenance.

Data availibility statement The data that supports the findings of this

study is available online, in the Repository Section of http://di002.

edv.uniovi.es/iscop/. In particular, in the ‘‘Detailed Results from

Papers’’ subsection.

Declarations

Conflict of interest Ramiro Varela is editor of the ‘‘Bio-inspired

Computing Approaches for Problem Solving’’ special issue of the

Natural Computing journal. Besides, there are no more relevant

financial or non-financial interests to disclose.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Aharonov D, van Dam W, Kempe J, Landau Z, Lloyd S, Regev O

(2004) Adiabatic quantum computation is equivalent to standard

quantum computation

Alam M, Ash-Saki A, Ghosh S (2020) Circuit compilation method-

ologies for quantum approximate optimization algorithm. In:

2020 53rd annual IEEE/ACM international symposium on

microarchitecture (MICRO), pp 215–228

Aruf, L, González MA, Oddi A, Rasconi R, Varela R (2022) Quantum

circuit compilation by genetic algorithm for quantum approxi-

mate optimization algorithm applied to maxcut problem. Swarm

Evol Comput 101030

Arufe L, Rasconi R, Oddi A, Varela R, González MÁ (2022)

Compiling single round qccp-x quantum circuits by genetic

algorithm. In: Ferrández Vicente JM, Álvarez-Sánchez JR, de la

Paz López F, Adeli H (eds) Bio-inspired systems and applica-

tions: from robotics to ambient intelligence. Springer, Cham,

pp 88–97

Booth KE, Do M, Beck JC, Rieffel E, Venturelli D, Frank J (2018)

Comparing and integrating constraint programming and tempo-

ral planning for quantum circuit compilation. In: Twenty-eighth

international conference on automated planning and scheduling

(ICAPS 2018), pp 366–374

Chand S, Singh HK, Ray T, Ryan M (2019) Rollout based heuristics

for the quantum circuit compilation problem. In: 2019 IEEE

Congress on Evolutionary Computation (CEC), pp 974–981

Do M, Wang Z, O’Gorman B, Venturelli D, Rieffel E, Frank J (2020)

Planning for compilation of a quantum algorithm for graph

coloring

Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate

optimization algorithm

Li G, Ding Y, Xie Y (2019) Tackling the qubit mapping problem for

nisq-era quantum devices. In: Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Program-

ming Languages and Operating Systems. ASPLOS ’19. Associ-

ation for Computing Machinery, New York, NY, USA,

pp 1001–1014

Oddi A, Rasconi R (2018) Greedy randomized search for scalable

compilation of quantum circuits. In: van Hoeve W-J (ed)

CPAIOR 2018: integration of constraint programming, artificial

Solving quantum circuit compilation problem variants through... 643

123

http://di002.edv.uniovi.es/iscop/
http://di002.edv.uniovi.es/iscop/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

intelligence, and operations research. Springer, Cham,

pp 446–461

Preskill J (2018) Quantum Computing in the NISQ era and beyond.

Quantum 2:79

Rasconi R, Oddi A (2019) An innovative genetic algorithm for the

quantum circuit compilation problem. In: Proceedings of the

Thirty-Third AAAI Conference on Artificial Intelligence, vol.

33, pp. 7707–7714

Sete EA, Zeng WJ, Rigetti CT (2016) A functional architecture for

scalable quantum computing. In: 2016 IEEE international

conference on rebooting computing (ICRC). IEEE, pp 1–6

Venturelli D, Do M, O’Gorman B, Frank J, Rieffel E, Booth KE,

Nguyen T, Narayan P, Nanda S (2019) Quantum circuit

compilation: an emerging application for automated reasoning.

In: Bernardini S, Talamadupula K, Yorke-Smith N (eds)

Proceedings of the 12th international scheduling and planning

applications workshop (SPARK 2019), pp 95–103

Venturelli D, Do M, Rieffel EG, Frank J (2017) Temporal planning

for compilation of quantum approximate optimization circuits.

In: Proceedings of the twenty-sixth international joint conference

on artificial intelligence (IJCAI 2017), pp 4440–4446

Zhang YJ, Mu XD, Liu XW, Wang XY, Zhang X, Li K, Wu TY,

Zhao D, Dong C (2022) Applying the quantum approximate

optimization algorithm to the minimum vertex cover problem.

Appl Soft Comput 118:108554

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

644 L. Arufe et al.

123

	Solving quantum circuit compilation problem variants through genetic algorithms
	Abstract
	Introduction
	The quantum approximate optimization algorithm
	The MaxCut problem in quantum terms
	Definition of the Quantum Circuit Compilation Problem
	The genetic algorithm
	Variable qubit state initialization (QCCP-V)

	Experimental study
	Comparison of qstate initialization strategies
	Comparison with state of the art
	Influence of the problem variant and quantum chip topology

	Conclusions
	Author Contributions
	Open Access
	References

