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Abstract
Uncertainty pervades real life and supposes a challenge for all industrial processes as it makes it difficult to predict the

outcome of otherwise risk-free activities. In particular, time deviation from projected objectives is one of the main sources

of economic losses in manufacturing, not only for the delay in production but also for the energy consumed by the

equipment during the additional unexpected time they have to work to complete their labour. In this work we deal with

uncertainty in the flexible job shop, one of the foremost scheduling problems due to its practical applications. We show the

importance of a good model to avoid introducing unwanted imprecision and producing artificially pessimistic solutions. In

our model, the total energy is decomposed into the energy required by resources when they are actively processing an

operation and the energy consumed by these resources simply for being switched on. We propose a set of metrics and carry

out an extensive experimental analysis that compares our proposal with the more straightforward alternative that directly

translates the deterministic model. We also define a local search neighbourhood and prove that it can reach an optimal

solution starting from any other solution. Results show the superiority of the new model and the good performance of the

new neighbourhood.
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1 Introduction

Scheduling consists in arranging the execution of a set of

operations on a set of resources under some constraints to

complete a set of objectives in the best way (Pinedo 2016;

Błazewicz et al. 2019). It is a classical problem in manu-

facturing and industrial activities in general (Han et al.

2022; Bakon et al. 2022), but it is also fundamental in areas

such as healthcare (Razali et al. 2022; Luo et al. 2020),

computing infrastructures (Mansouri and Ghafari 2022; Ye

et al. 2019), education (Imaran Hossain et al. 2019) or

airport baggage transportation (Guo et al. 2020).

One of the most prominent families of scheduling

problems is job shop scheduling problems (Çalis and

Bulkan 2015) because their different variants can be

adapted to model many different real-life problems (Xiong

et al. 2022). In particular, the flexible job shop, which not

only solves the classic operation-sequencing problem but

also deals with a resource-assignment subproblem, draws

special attention due to its relevance for industrial prob-

lems (Gao et al. 2019).

Most scheduling problems, and the flexible job shop in

particular, are NP-hard (Lenstra et al. 1977), so exact

algorithms that guarantee finding the optimal solutions can

only be applied to the simplest instances. For this reason,

approximate search algorithms have been proposed with

the objective of finding good-enough solutions using a

reasonable amount of computational resources (Gendreau

and Potvin 2019). In order to find new innovative algo-

rithms, researchers have been taking inspiration from the

natural world, developing strategies that emulate natural

phenomena to search for solutions in more intelligent ways

that lessen the computational costs. These methods have

been successful in many real-world and shop scheduling
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problems (Palacios et al. 2014, 2019; Guo et al. 2020; Niu

et al. 2021; Ye et al. 2019), including the flexible job

shop (Palacios et al. 2015a; Chaudhry and Khan 2016; Zuo

et al. 2017; Gao et al. 2019; Gen et al. 2021; Garcı́a

Gómez et al. 2022).

Many of these algorithms need to define neighbourhood

functions that allow them to travel from one solution to

another. Defining efficient neighbourhoods with theoretical

properties such as allowing to reach optimal solutions from

any other solution or generating only feasible solutions is a

very important research area of job shop (Mattfeld 1995;

Kuhpfahl and Bierwirth 2016). Nevertheless, using these

neighbourhood functions alone, in so-called trajectory-

based methods, is not usually enough and they can be

hybridized with other search strategies. In particular,

combining trajectory-based and population-based search

algorithms results in a type of algorithms named memetic

algorithms that have been proved to be very

Table 1 List of symbols
Symbol Description

O The set of operations

R The set of resources

m The number of resources

J The set of jobs

n The number of jobs

RðoÞ The subset of resources in which operation o can be executed

vðoÞ The job to which operation o belongs to

gðoÞ The position in which operation o has to be executed relative to its job

bpðo; rÞ The processing time of operation o in the resource r

PpðrÞ The passive power consumption of resource r

Paðo; rÞ The active power consumption of executing operation o in resource r

s/ The resource assignments for solution /

s/ The starting time assignments for solution /

r/ The operation processing order for solution /

s/ðoÞ The resource assigned to operation o in solution /

cs/ðoÞ The starting time assigned to operation o in solution /

r/ðoÞ The position of operation o in r/

cc/ðoÞ The completion time of operation o in solution /

cp/ðoÞ The processing time of operation o in solution /. Equivalent to bpðo; s/ðoÞÞ
ch/ðoÞ The head of operation o in solution /

cq/ðoÞ The tail of operation o in solution /

JPðoÞ The job predecessor of operation o

JSðoÞ The job successor of operation o

RP/ðoÞ The resource predecessor of operation o in solution /

RS/ðoÞ The resource successor of operation o in solution /

dCmaxð/Þ The makespan of solution /

cEpð/Þ The passive energy consumption in solution /

cEað/Þ The active energy consumption in solution /

bEð/Þ The total energy consumption in solution /

TCmax
ð/Þ The set of all makespan-critical operations in solution /

BCmax
ð/Þ The set of all makespan-critical blocks in solution /

EðbaÞ The expected value of TFN ba

SðbaÞ The spread of TFN ba

MVPðbaÞ The modal value position of TFN ba

RDEVð/;qÞ The relative distance of a possible scenario q to the expected value of a solution /

UUð/; SÞ The used uncertainty of a set of possible scenarios S for a solution /
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successful (Gong et al. 2020; Mencı́a et al. 2022; Garcı́a

Gómez et al. 2022) due to their balance between explo-

ration of the search space and exploitation of the most

promising zones (Osaba et al. 2022).

The objective of scheduling problems has been evolving

from the earliest days of industrialisation to the present

day. Historically, the most common objective was min-

imising the maximum completion time, usually known as

the makespan. While it is still relevant, it has increasingly

been replaced by other production-related measures such as

tardiness, as a response to changes in supply-chains con-

sequence of the relocation of factories to different coun-

tries. Nowadays the trend is changing again, and the

reduction of energy consumption has been introduced as a

new objective to adapt to newer laws and regulations that

seek a reduction in the environmental footprint as a

countermeasure to global warming. Moreover, due to

highly-tensed geopolitical relations, energy costs are rising

and the industry needs to make a more efficient use of

energy to remain competitive. For these reasons, in recent

years we have seen a significant increase in research in this

area of scheduling (González et al. 2017; Li and Wang

2022; Liu et al. 2019; Gong et al. 2020; Han et al. 2022;

Mansouri and Ghafari 2022).

To make models simpler and the search for solutions

less computationally demanding, most researchers in

scheduling limit the complexity by limiting themselves to a

deterministic setting. However, real-life problems have

uncertainty and working with it is in itself a challenge, so

models cannot ignore it if they want to be useful (Bakon

et al. 2022). One of the most successful ways of modelling

uncertainty in scheduling is using fuzzy numbers, and in

particular, triangular fuzzy numbers (Abdullah and

Abdolrazzagh-Nezhad 2014; Palacios et al. 2016) because

as pointed out in Dubois et al. (2003), they provide a good

balance between ease of understanding, informativity and

computing cost.

It is easy to find in the literature several works that make

use of metaheuristics to optimise the more traditional

objectives in a fuzzy job shop (Abdullah and Abdolraz-

zagh-Nezhad 2014; Palacios et al. 2019) and, more

specifically, in the fuzzy flexible job shop (Sun et al. 2019;

Li et al. 2022a). Works that incorporate both uncertainty

and energy-consumption objectives are more scarce.

Regarding the job shop without flexibility, in González-

Rodrı́guez et al. (2020) the authors propose an evolution-

ary algorithm to reduce the non-processing energy and the

total weighted tardiness, whereas in Afsar et al. (2022) a

memetic algorithm is used to minimise the non-processing

energy and the makespan. As for job shops with flexibility,

in Garcı́a Gómez et al. (2022, 2023) the authors use

memetic algorithms to minimise total energy consumption;

in Pan et al. (2022) a bi-population evolutionary algorithm

with a feedback mechanism and enhanced local search is

proposed with the goal of minimising both the fuzzy

makespan together and the fuzzy total energy consumption

and maximising flexible due-date satisfaction; and in Li

et al. (2022b) a learning-based memetic algorithm is used

to minimise makespan and energy consumption.

In this work, we will consider the flexible job shop with

fuzzy processing times and the objective of minimizing the

total energy consumption. We define the total energy

consumption as the sum of the passive energy, the energy

consumed by resources only by the fact of being switched

on, and the active energy, consumed by resources when

they are working in addition to the passive energy. This

proposal builds on the conference paper from Garcı́a

Gómez et al. (2022) and the objective is to complete the

ideas therein as follows:

• Propose a set of metrics to compare two fuzzy models

of total energy for the flexible job shop. To do so we

motivate some measures that compare the models based

both on their fuzzy values and on the use of crisp

samples to simulate the behaviour in a real setting.

• Compare the proposed energy model for the flexible job

shop with the more straightforward alternative that

directly translates the crisp model.

• Propose a new neighbourhood function that ensures

feasibility and connectivity. We formally demonstrate

that the neighbourhood allows to obtain an optimal

solution starting from any other solution. This is a

desirable property when the neighbourhood is used in a

wide variety of local search algorithms.

• Integrate the proposed neighbourhood in a memetic

algorithm and compare its performance with the state of

the art. The results show that it is competitive and

especially relevant in CPU-constrained applications.

The rest of the paper is organised as follows: Sect. 2 for-

mally defines the problem and introduces the measures for

comparing fuzzy schedules, Sect. 3 describes and studies

the proposed neighbourhood structure and Sect. 4 reports

and analyzes the experimental results to evaluate the

potential of our proposal. Finally, Sect. 5 presents some

conclusions.

2 Problem formulation

The flexible job shop scheduling problem consists in

scheduling a set O of operations (also called tasks) in a set

R of m resources (also called machines) subject to a set of

constraints. Operations are organised in a set J of n jobs, so

operations within a job must be sequentially scheduled.

Given an operation o 2 O, the job to which it belongs is

denoted by vðoÞ 2 J and the position in which it has to be
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executed relative to this job is denoted by gðoÞ. There are

also capacity constraints, by which every operation o 2 O

can only be processed in a resource from a given subset

RðoÞ � R with its processing time p(o, r) depending on the

resource r 2 RðoÞ on which it is executed. Also, the

operation requires the uninterrupted and exclusive use of

the resource for its whole processing time.

In the energy-aware problem, the resources need energy

to function, with the amount of energy depending on two

overlapping states: on and active. Just for being switched

on, each resource r 2 R consumes a certain amount of

energy per time unit. This constitutes the resource’s passive

power consumption PpðrÞ. Additionally, when an operation

o 2 O is processed in a resource r 2 RðoÞ, this resource

consumes an extra amount of energy per time unit, the

active power Paðo; rÞ.

2.1 Fuzzy processing times

We model processing times as triangular fuzzy numbers

(TFNs), a particular type of fuzzy numbers, with an

interval ½a1; a3� of possible values and a modal value a2

(Dubois and Prade 1993). A TFN can be represented as a

triplet ba ¼ ða1; a2; a3Þ, so its membership function is given

by:

l
ba
ðxÞ ¼

x� a1

a2 � a1
a1 � x� a2

x� a3

a2 � a3
a2 � x� a3

0 otherwise

8

>

>

>

>

<

>

>

>

>

:

Arithmetic operations on TFNs are defined based on the

Extension Principle, so for two TFNs ba and bb, the sum is

defined as:

ba þ bb ¼ ða1 þ b1; a2 þ b2; a3 þ b3Þ; ð1Þ

and the product of a scalar c by a TFN ba is defined as:

cba ¼ ðca1; ca2; ca3Þ: ð2Þ

Extending the maximum is not that straightforward

because the set of TFNs is not closed under the operation

obtained with the Extension Principle. For this reason, in

fuzzy scheduling it is usual to approximate it by interpo-

lation as follows:

maxðba; bbÞ � ðmaxða1; b1Þ;maxða2; b2Þ;maxða3; b3ÞÞ:
ð3Þ

If the result of the maximum is a TFN, it coincides with the

approximated value and, in any case, the approximation

always preserves the support and the modal value (cf.

(Palacios et al. 2015b)).

Another operation where we must be cautious when

extending it is subtraction. For two TFNs ba and bb, their

difference is defined as:

ba � bb ¼ ða1 � b3; a2 � b2; a3 � b1Þ ð4Þ

Notice however that the difference is not necessarily the

inverse of the sum, that is, ba 6¼ ðba þ bbÞ � bb. This is

because underlying the definition is the assumption that ba

and bb are non-interactive variables, i.e., they can be

assigned values in their support independently of each

other. Therefore, when the TFNs ba and bb are linked, using

the difference may result in an ‘‘over-uncertain’’ or ‘‘pes-

simistic’’ quantity, which may be a problem in certain

applications. It is, for instance, the main difficulty in crit-

ical-path analysis and backpropagation in activity networks

with fuzzy durations (Dubois et al. 2003).

Another important issue when considering fuzzy pro-

cessing times is the lack of a natural total order for TFNs.

Some ranking method is thus needed in order to make

comparisons. A ranking method widely used in the litera-

ture is the one based on the expected values. For a TFN ba,

its expected value is:

E½ba� ¼ a1 þ 2a2 þ a3

4
ð5Þ

and this can be used to rank any two TFNs ba and bb as

follows:

ba� E
bb if and only if E½ba� � E½bb� ð6Þ

Accordingly, we will write ba\E
bb when E½ba�\E½bb�.

In addition, we consider partial order relations based on

precedence, so for any pair of two TFNs ba and bb:

ba � bb if and only if ai\bi 8i 2 f1; 2; 3g ð7Þ

with non-strict precedence ba 	 bb if ai � bi 8i 2 f1; 2; 3g.

We may also write bb
ba (resp. bb � ba) as an equivalent of

ba � bb (resp ba 	 bb). Notice that if ba � bb (ba 	 bb), then

ba\E
bb (ba� E

bb), but the inverse is not necessarily true.

2.2 Fuzzy schedules

A solution / ¼ ðs/; s/Þ to the problem, commonly called

schedule, consists of both a resource assignment s/ and

starting time assignment s/ to all operations. This solution

is feasible if and only if all precedence and capacity con-

straints hold. More formally, for an operation o 2 O let

s/ðoÞ be the resource it is assigned to in / and let cs/ðoÞ
and cc/ðoÞ ¼ cs/ðoÞ þ bpðo; s/ðoÞÞ be, respectively, its

starting and completion times in the solution /. Then,
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solution / is feasible if all constraints hold, that is, for any

pair of operations o; u 2 O, precedence constraints hold if

cc/ðoÞ 	 cs/ðuÞ when gðoÞ\gðuÞ; vðoÞ ¼ vðuÞ ð8Þ

and capacity constraints hold if

sðoÞ 2 RðoÞ ð9Þ

cc/ðoÞ 	 cs/ðuÞ _ cc/ðuÞ 	 cs/ðoÞ when s/ðoÞ ¼ s/ðuÞ:
ð10Þ

For a feasible solution /, the makespan is the maximum

completion time of all tasks:

dCmaxð/Þ ¼ max
o2O

cc/ðoÞ ð11Þ

Notice that a feasible starting time assignment s/ induces

partial orderings for all the operations in the same job and

all operations in the same resource. These can be repre-

sented by a global operation processing order r/ where the

position of operation o in r/ is denoted by r/ðoÞ and where

r/ðoÞ\r/ðuÞ for any pair of operations o; u 2 O in the

same job (vðoÞ ¼ vðuÞ) or in the same resource

(s/ðoÞ ¼ s/ðuÞ) such that o is completed before u starts

(cc/ðoÞ 	 cs/ðuÞ). Conversely, given a feasible resource

assignment s and a global operation processing order r

compatible with job precedence constraints (that is,

rðoÞ\rðuÞ when gðoÞ\gðuÞ; vðoÞ ¼ vðuÞ), a feasible

starting time assignment s can be obtained from r by

assigning to each operation the earliest possible starting

time (in the sense of 	) satisfying precedence and resource

capacity constraints according to this global operation

order, that is, for every pair of operations o; u 2 O in the

same job or assigned to the same resource (either vðoÞ ¼
vðuÞ or s/ðoÞ ¼ s/ðuÞ), if rðoÞ\rðuÞ, then bcðoÞ 	 bsðuÞ.

In consequence, we can indistinctly refer to a solution as

a pair / ¼ ðs/; s/Þ or as a pair / ¼ ðs/; r/Þ. When no

confusion is possible, for the sake of a simpler notation, we

may drop the subindex / from the solution’s components.

2.3 Total energy consumption

We consider that the total energy consumption in a solution

/ stems from two different sources: passive and active

energy consumption. On the one hand, for a given solution

/ there is an intrinsic passive energy consumption cEpð/Þ
incurred as soon as the resources are turned on and until

they are turned off. The amount of energy required by a

resource r 2 R depends on its passive power consumption

PpðrÞ and is proportional to the time the resource remains

switched on. Assuming that all resources are simultane-

ously turned on and off (respectively, at instant 0 and at the

time the whole project is completed), the passive energy

consumption in a solution / is thus obtained as follows:

cEpð/Þ ¼
X

r2R
PpðrÞ dCmaxð/Þ ð12Þ

On the other hand, when an operation o 2 O is processed in

a resource r 2 RðoÞ, this results in an additional energy

cost, denoted cEaðo; rÞ, which depends on the active power

Paðo; rÞ required to execute o in r and is proportional to the

processing time bpðo; rÞ:

cEaðo; rÞ ¼ Paðo; rÞbpðo; rÞ ð13Þ

Thus, given a solution /, the active energy consumption

will be:

cEað/Þ ¼
X

o2O;r¼s/ðoÞ

cEaðo; rÞ ð14Þ

Our model is an additive model so the total energy con-

sumption is the sum of the passive and the active energy

consumption:

bEð/Þ ¼ cEpð/Þ þ cEað/Þ ð15Þ

2.3.1 Alternative energy models in the fuzzy context

The total energy consumption is modelled as the sum of the

energy consumed when the resources are processing

operations and the energy consumed only by the fact of

being switched on.

Having said that, in the deterministic problem the usual

way to model this kind of energy consumption is to assume

that the possible states for the resources are disjoint, so there is

a power consumption when they are active and a different

power consumption when they are idle. In this way, the total

energy is the sum of the processing energy (i.e., the energy

consumed by resources when they are active) and the non-

processing energy (i.e., the energy consumed when resources

are idle). For each resource, its total idle time is obtained by

adding all time gaps between the completion of one operation

and the start of the next operation in that resource; these

individual idle time gaps are easily obtained using subtraction.

If this model is directly translated to the fuzzy problem, idle

gaps are computed as the difference between two fuzzy numbers

(4), resulting in over-uncertain idle times, with a support

including many values that are not attainable. In particular, the

difference may include negative values, which are clearly

impossible. Negative values can be avoided by truncating the

difference, so if o is an operation and u is its successor in the

resource, the idle time between o and u is computed as

maxðð0; 0; 0Þ; bsu � bcoÞ. This certainly solves the problem of

having negative values for idle times, but we still have an arti-

ficially-increased support for the idle time and, in consequence,
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some artificial uncertainty in the total non-processing energy.

We will refer to the resulting model for total energy consump-

tion in fuzzy flexible job shop as the ‘‘gaps model’’.

The total energy model adopted in this work was pro-

posed in Garcı́a Gómez et al. (2022) as an alternative

translation of the deterministic approach to total energy

consumption that avoids subtracting interactive fuzzy

numbers by considering that resources can be in overlap-

ping states. In this way, total energy consumption can be

seen as the result of two stacked layers, one that corre-

sponds to the energy consumed by resources simply by

being on, and another layer that corresponds to the extra

energy needed by resources when they are working. This

alternative model for total energy consumption will be

referred to as the ‘‘stack model’’.

Notice that, in the deterministic setting, the gaps and the

stack approaches are equivalent. However, using overlap-

ping states in the fuzzy setting avoids introducing artificial

uncertainty due to subtraction. Let us illustrate this with an

example. Consider a toy problem with only two operations o1

and o2 belonging to different jobs and sharing the same

resource r. Let pðo1; rÞ ¼ ð1; 2; 3Þ, pðo2; rÞ ¼ ð2; 2; 2Þ,
PpðrÞ ¼ 1, Paðr; o1Þ ¼ 2 and Paðr; o2Þ ¼ 2. Regardless of

the order in which operations are executed, the resource will

start at (0, 0, 0) and finish at (3, 4, 5). Let us suppose that in a

solution / operation o1 is scheduled before o2, so (1, 2, 3) is

both the completion time of o1, cc/ðo1Þ, and the starting time

of o2, cs/ðo2Þ. The gap between these operations, and con-

sequently the idle time of the resource r, would be computed

with fuzzy subtraction as maxðð0; 0; 0Þ;cs/ðo2Þ�
cc/ðo1ÞÞ ¼ ð0; 0; 2Þ. In this way, the energy consumption

according to the gap model will be PpðrÞ didle/ðrÞ þ ðPpðrÞþ
Paðo1; rÞÞbpðo1; rÞþ ðPpðrÞ þ Paðo2; rÞÞbpðo2; rÞ ¼ 1ð0; 0; 2Þ
þ 3ð1; 2; 3Þþ 3ð2; 2; 2Þ ¼ ð9; 12; 17Þ. However, we know

that the starting time of o2 and the completion time of o1 are

not only linked, but identical, so a gap value other than 0 is

impossible and, hence, the passive energy consumption will

always be null. In fact, using the ‘‘stack model’’ the energy

consumption will be PpðrÞ dCmaxð/Þ þ Paðo1; rÞbpðo1; rÞ
þPaðo2; rÞbpðo2; rÞ ¼ 1ð3; 4; 5Þ þ 2ð1; 2; 3Þ þ 2ð2; 2; 2Þ ¼
ð9; 12; 15Þ. We can see that with the ‘‘stack model’’ we have

avoided introducing the passive energy consumption pro-

portional to the gap (0, 0, 2), which we have already iden-

tified as artificial uncertainty due to a bad model choice.

Using resource overlapping states to avoid calculating

the size of idle periods under uncertainty is also underlying

the definition of fuzzy total energy proposed in Pan et al.

(2022), although in this work it is assumed that resources

can be turned off individually.

2.4 Measures for comparing fuzzy schedules

We will be interested in comparing and measuring the

goodness of fuzzy schedules beyond the ranking provided

by � E. To this end, we now propose different measures.

These have been selected with two objectives in mind.

First, as our main motivation to introduce an alternative

energy model has been to avoid artificial uncertainty, these

metrics must give evidence of this effect. Second, they

need to clearly show the performance of the models in real

scenarios.

2.4.1 Measures based on fuzzy values

When comparing two schedules / and /0 based on their

total energy values, bEð/Þ and bEð/0Þ, which are two TFNs,

we may consider the following features of TFNs:

• Expected Value (E). As explained in Sect. 2.1, the

expected value can be used to rank TFNs, so the smaller

the expected value of the total energy, the better the

solution.

• Spread (S). For a TFN ba its spread (Ghrayeb 2003) is

defined as:

SðbaÞ ¼ a3 � a1 ð16Þ

The spread is a measure of the uncertainty of the TFN.

Although uncertainty is present in the problem, between

two solutions, that with an energy value having a

smaller spread (uncertainty) should be preferred.

• Modal value position (MVP). Given a TFN ba its modal

value position is defined as:

MVPðbaÞ ¼ ða2 � a1Þ � ða3 � a2Þ
a3 � a1

ð17Þ

This is a number in ½�1; 1�, negative when the TFN’s

modal value is on the left of the support’s midpoint,

positive when the modal value is on the right of the

midpoint, and zero when the TFN is symmetric. It could

somehow be seen as a measure of the skewness of the

TFN. Obviously, the MVP of the schedule’s energy

depends on the processing times. However, if two

schedules for the same problem have total energy val-

ues with different modal value position, the one with a

MVP closer to 0 seems preferable in the sense that it is

less biased, compared to the other schedule, which

could be seen as accumulating uncertainty to the left

(which could be seen as over-optimistic) or to the right

(which could be seen as over-pessimistic). This mea-

sure is inspired by the ranking defined in Chen (1985),

although the authors use it for a different objective.
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2.4.2 Measures based on crisp realisations

According to the semantics of fuzzy schedules proposed

in González Rodrı́guez et al. (2008a), a fuzzy schedule /
is an a-priori solution providing a possibility distribution

(in the form of TFNs) for the starting times of all opera-

tions and for the resulting total energy consumption. When

operations are actually executed according to the resource

assignment and the order provided by /, uncertainty is no

longer present For each operation o, its executed process-

ing time p/ðoÞ is a crisp value in the support of the fuzzy

processing time bpðo; s/ðoÞÞ; it is a possible realisation of

the fuzzy processing time. Also, the resulting total energy

is a crisp value within the support of the fuzzy total energy

consumption of /. Hence, the executed schedule can be

seen as the a-posteriori realisation of the original fuzzy

schedule /. The vector of possible realisations of fuzzy

processing times, q where qðoÞ ¼ p/ðoÞ, is also called a

possible scenario.

Under these semantics, it is interesting to measure the

quality of the a-priori fuzzy schedule relative to a possible

scenario or a-posteriori realisation of processing times. For

/ a feasible solution, let ba denote the fuzzy value of the

objective function for /; we propose the following two

measures:

• Relative distance to the expected value (RDEV). Let aq
denote the value of the crisp objective function when

the solution is evaluated on a possible scenario q; then:

RDEVð/; qÞ ¼ aq � E½ba�
E½ba� ð18Þ

If this value is negative, that is, the total energy con-

sumption in the executed schedule is smaller than

expected, it means that the a-priori schedule objective

function is pessimistic. On the contrary, if RDEV is

positive, the a-priori schedule could be seen as opti-

mistic. Overall, the smaller the absolute value of

RDEV , the closer the predicted energy consumption of

the solution is to real scenarios.

• Used uncertainty (UU). Let S be a set of possible

scenarios and let aq denote the value of the objective

function in a scenario q 2 S. Then:

UUð/; SÞ ¼ maxq2S aq � minq2S aq
a3 � a1

ð19Þ

This gives a value in [0, 1] measuring the proportion of

the support of the predicted fuzzy objective function

that is covered with the possible scenarios in S. When S

is representative enough of all the possible scenarios, a

value of UU close to 1 means that the range of values

considered as obtainable by the TFN is actually

achievable in real situations. Small values of UU would

on the other hand mean that the fuzzy schedule incor-

porates artificial uncertainty and, hence, is less

informative.

3 Neighbourhood for energy minimisation

To solve the problem, a competitive memetic algorithm

was proposed in Garcı́a Gómez et al. (2022). This is a

hybrid algorithm that combines an evolutionary algorithm

with tabu search. The idea is that by incorporating the

problem-domain knowledge provided by the tabu search

into the evolution process, the memetic algorithm benefits

from the synergy between both search methods (Gendreau

and Potvin 2019, Chapter 9). At each iteration, tabu search

applies local transformations (called moves) to the current

solution to generate a set of neighbouring solutions, so the

search continues by moving to one of these neighbours.

Obviously, defining an adequate neighbourhood structure

is one of the most critical steps in designing any tabu

search procedure (Gendreau and Potvin 2019, Chapter 2).

In this work, we define a new neighbourhood structure

for the energy-aware flexible fuzzy job shop scheduling

problem, based on the one proposed in Garcı́a Gómez

et al. (2022). A formal study will show its good theoretical

behaviour, guaranteeing both feasibility and the connec-

tivity property, that is, the possibility of reaching an opti-

mal solution starting from any solution in the search space

and performing only moves from this neighbourhood.

Given a solution / ¼ ðs/; r/Þ, we shall consider two

kinds of moves depending on the component of / that is

modified. The current resource assignment s/ can be

modified by a reassignment move, whereby an operation o

is reassigned to a different resource r 6¼ s/ðoÞ, so the

resulting resource assignment is denoted sðo;rÞ. The pro-

cessing order vector r/ can be modified with an insertion

move, whereby an operation o is inserted in the i-th posi-

tion of r/. The resulting processing order is denoted rðo;iÞ.

A special kind of insertion in / is the one that results in

exchanging the position of two consecutive operations in a

resource; it will be called a swap.

The distance between two solutions / ¼ ðs; rÞ and

/0 ¼ ðs/0 ; r/0 Þ, denoted as dð/;/0Þ, is defined as the

minimum number of reassignments and swaps that need to

be applied to go from one solution to the other.

Not all the reassignment and insertion moves lead to

feasible solutions and not all feasible moves are interesting

in the sense that they may lead to solutions improving on

total energy consumption. We will propose in Sects. 3.1
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and 3.2 intermediate neighbourhood structures, based on

one type of move, ensuring feasibility and aimed at

reducing either passive or active energy consumption. They

will then be combined in a global neighbourhood

in Sect. 3.3.

We start by introducing some preliminary concepts and

notation. Given a solution / ¼ ðs/; r/Þ, for an operation

o 2 O, let JPðoÞ (resp. JSðoÞ) denote its predecessor (resp.

successor) in its job, RP/ðoÞ (resp. RS/ðoÞ) its predecessor

(resp. successor) in its resource and cp/ðoÞ ¼ bpðo; s/ðoÞÞ
the operation’s processing time in the resource it is

assigned to.

The head ch/ðoÞ of operation o is its earliest starting time

according to /, that is:

ch/ðoÞ ¼ maxfch/ðJPðoÞÞ þ cp/ðJPðoÞÞ;ch/ðRP/ðoÞÞ þ cp/ðRP/ðoÞÞg

ð20Þ

where ch/ðJPðoÞÞ þ cp/ðJPðoÞÞ (resp.

ch/ðRP/ðoÞÞ þ cp/ðRP/ðoÞÞ) is taken to be (0, 0, 0) if o is

the first operation in its job (resp. its resource).

The tail cq/ðoÞ of operation o is the time left once o has

been processed until all other operations are completed:

cq/ðoÞ ¼ maxfcq/ðJSðoÞÞ þ cp/ðJSðoÞÞ;cq/ðRS/ðoÞÞ þ cp/ðRS/ðoÞÞg

ð21Þ

where cq/ðJSðoÞÞ þ cp/ðJSðoÞÞ (resp. cq/ðRS/ðoÞÞþ
cp/ðRS/ðoÞÞ) is taken to be (0, 0, 0) if o is the last operation

in its job (resp. its resource).

An operation o is said to be makespan-critical in a

solution / if there exists a component i 2 f1; 2; 3g of the

fuzzy makespan such that Ci
maxð/Þ ¼ ðh/ðoÞþ

p/ðoÞ þ q/ðoÞÞi. A makespan-critical block is a maximal

sequence b of operations all requiring the same resource,

with no pair of consecutive operations belonging to the

same job and such that all operations in the block are

makespan-critical for the same component of the fuzzy

makespan, that is, there exists i 2 f1; 2; 3g such that for

every operation o 2 b, Ci
maxð/Þ ¼ ðh/ðoÞþ p/ðoÞþ

q/ðoÞÞi. The set of all makespan-critical operations is

denoted TCmax
ð/Þ and the set of all makespan-critical

blocks is BCmax
ð/Þ

3.1 Neighbourhoods aimed at reducing passive
energy

In order to reduce passive energy consumption (in our case,

in terms of � E) it is necessary to reduce the time span

when resources are active, that is, the makespan.

Now, let / be a solution and let /0 be a feasible

neighbouring solution obtained by an insertion or a reas-

signment move. Then /0 can improve in terms of

makespan, (in the sense that dCmaxð/0Þ � E
dCmaxð/Þ) and,

thus, in passive energy consumption (that is,

cEpð/0Þ � E
cEpð/Þ), only if the move has involved a make-

span-critical operation; the proof is a trivial generalisation

to the case with flexibility of Proposition 3 in Gonzá-

lez Rodrı́guez et al. (2008b). Also, if a solution /0 is

obtained by an insertion in / that results in exchanging the

position of two consecutive operations in a resource (called

a swap), then /0 is always guaranteed to be feasible; the

proof is a generalisation to the case with flexibility of

Theorem 1 in González Rodrı́guez et al. (2008b). Fur-

thermore, /0 can only improve in terms of makespan if the

operations lie at the extreme of a makespan-critical block;

here, the proof is a direct consequence of the analogous

property proved for the fuzzy job shop in Theorem 2 of

González Rodrı́guez et al. (2009).

These properties motivate the definition of two neigh-

bourhood structures for passive energy. The first one con-

sists in feasible reassignment moves of critical operations,

aimed at redistributing the resources’ workload. It is based

on the neighbourhood proposed in González et al. (2013)

for the deterministic flexible job shop with setup times. The

desired effect of this neighbourhood is to reduce (in terms

of � E) the fuzzy makespan and, in consequence, the

passive energy consumption, although it could increase

active energy in the process.

Definition 1 Makespan-critical operation resource reas-

signment neighbourhood

NMCORRð/Þ ¼ fðsðo;rÞ; rÞ : o 2 TCmax
ð/Þ; r 2 RðoÞ n fsðoÞgg

Notice that neighbourhood NMCORRð/Þ contains only

feasible solutions. Indeed, the selected operation o is

reassigned to a resource in RðoÞ and this move does not

alter r/ in any way, so precedence and resource restrictions

still hold.

It is possible to reduce the distance to an optimal solu-

tion using NMCORRð/Þ.

Lemma 1 Let /opt ¼ ðs/opt
; r/opt

Þ be an optimal solution

and let / ¼ ðs; rÞ a non-optimal solution such that

cEpð/optÞ\E
cEpð/Þ. If there exists a makespan-critical

operation o 2 TCmax
ð/Þ such that o is assigned to different

resources in / and /opt, that is, s/opt
ðoÞ 6¼ s/ðoÞ, then there

is a neighbouring solution /0 2 NMCORRð/Þ which is clo-

ser to /opt in the sense that dð/0;/optÞ\dð/;/optÞ.

Proof Let /0 ¼ ðsðo;rÞ;rÞ be the solution obtained by

reassigning o to the resource r ¼ s/opt
ðoÞ. Clearly, /0 2

NMCORRð/Þ and dð/0;/optÞ\dð/;/optÞ.
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The second neighbourhood aimed at reducing the

makespan and, hence, the passive energy cEp in terms of

� E is based on performing insertion moves. It is inspired

by the neighbourhoods proposed by Dell’ Amico and

Trubian (1993) and Zhang et al. (2007) for the determin-

istic job shop problem. Its objective is, for a fixed resource

assignment, to find an operation processing order that

improves in terms of makespan. It consists in moving an

operation forwards and backwards in a critical block as

much as possible provided that the result still constitutes a

feasible solution.

Let / ¼ ðs; rÞ be a solution, let b 2 BCmaxð/Þ be a

makespan-critical block for / and let o 2 b be an operation

in that block. We define the minimal feasible insertion

position of o in b as the earliest position where o can be

inserted in r so o is still in the block and the resulting

solution maintains feasibility, that is:

minBIð/; oÞ ¼ minfi : rðof Þ� i\rðoÞ; ðs; rðo;iÞÞ is feasibleg
ð22Þ

where of denotes the first operation in block b according to

r. Analogously, we can define the maximal feasible

insertion position of o in b as the latest position where o

can be inserted in r so o is still in the block and the

resulting solution maintains feasibility, that is:

maxBIð/; oÞ ¼ maxfi : rðoÞ\i� rðolÞ; ðs; rðo;iÞÞ is feasibleg
ð23Þ

where ol denotes the last operation in block b according to

r. Having defined these indices, the second neighbourhood

structure NMCOI is as follows:

Definition 2 Makespan-critical operation insertion

neighbourhood.

NMCOIð/Þ ¼ fðs; rðo;iÞÞ : o 2 TCmax
ð/Þ;

i 2 fminBIð/; oÞ;maxBIð/; oÞgg
ð24Þ

Clearly, by definition, NMCOIð/Þ only contains feasible

solutions.

We now study under which circumstances it is possible

to get closer to an optimal solution using this

neighbourhood.

Lemma 2 Let /opt ¼ ðs/opt
; r/opt

Þ be an optimal solution

and let / ¼ ðs; rÞ be a non-optimal solution such that

cEpð/optÞ\E
cEpð/Þ. If the resource assigned to every

makespan-critical operation in / coincides with the

resource assigned to that operation in the optimal solution,

i.e. s/opt
ðoÞ ¼ s/ðoÞ; 8o 2 TCmax

ð/Þ, then there exists a

neighbouring solution /0 2 NMCOIð/Þ that is closer to /opt

in the sense that dð/0;/optÞ\dð/;/optÞ.

Proof To start with, notice that 9b 2 BCmaxð/Þ and 9o 2 b

such that in the optimal solution r/opt
ðoÞ\r/opt

ðof Þ or

r/opt
ðoÞ[ r/opt

ðolÞ, with of and ol the first and last tasks in

the block b. Indeed, suppose by contradiction that for every

makespan-critical block in / it holds that every operation

o 2 b is still between the first of and the last ol operations

of the block in the optimal solution, that is,

r/opt
ðof Þ� r/opt

ðooÞ� r/opt
ðolÞ. Then, it is possible to

obtain r/opt
from r/ by exchanging operations inside the

critical blocks. However, swaps inside critical blocks do

not improve the makespan, and, in consequence,

dCmaxð/Þ� E
dCmaxð/optÞ. But this contradicts the assump-

tion that cEpð/optÞ\E
cEpð/Þ.

Without loss of generality, let us assume that 9b 2
BCmaxð/Þ and 9o 2 b such that r/opt

ðoÞ\r/opt
ðof Þ. Let o� be

the first operation in b such that r/opt
ðo�Þ\r/opt

ðof Þ (notice

that o� 6¼ of )

We know that there exists at least one feasible insertion

position i\r/ðo�Þ for o� in r such that o� is still in the

block, because it is always feasible to swap the positions of

two adjacent critical tasks and o� 6¼ of . Therefore, we can

take the earliest of these feasible insertion positions i� ¼
minBIð/; oÞ and define /0 ¼ ðs; rðo�;i�ÞÞ.

To prove that the dð/0;/optÞ\dð/;/optÞ we show that

every operation u in the block that was originally between

the insertion position i� and the original position of o�, i.e.,

i� � r/ðuÞ\r/ðo�Þ, u is scheduled in the optimal solution

after o�, i.e. r/opt
ðo�Þ\r/opt

ðuÞ. By contradiction, if this

were not true, there would exist an operation u 2 b such

that r/opt
ðuÞ� r/opt

ðo�Þ and i� � r/ðuÞ\r/ðo�Þ. Given that

r/opt
ðo�Þ\r/opt

ðof Þ, this would mean that

r/opt
ðuÞ\r/opt

ðof Þ and i� � r/ðuÞ\r/ðo�Þ, but this con-

tradicts the fact that o� is the first operation in b that can be

scheduled before of .

In practice, checking feasibility for every possible

insertion position can be time consuming. This is also the

case for the neighbourhood for deterministic job shop

based on insertion proposed in Dell’ Amico and Trubian

(1993). Their solution to improve computational efficiency

is to rely on a sufficient condition that guarantees that no

unfeasible neighbours are generated. Although this results

in discarding some feasible neighbours, they are non-im-

proving ones and this happens with very small probability.

We now generalise the sufficient condition to the case
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where both recirculation due to flexibility and fuzzy

uncertainty are present.

Lemma 3 Let / ¼ ðs; rÞ be a feasible solution, let b 2
BCmaxð/Þ be a critical block with more than one operation so

b ¼ ðb1; b2; o; b3Þ where b1; b2; b3 are subsequences of

operations with b1 and b3 possibly empty and b2 con-

taining at least one element, and let i ¼ minu2b2 r/ðuÞ.
Then, /0 ¼ ðs;rðo;iÞÞ is feasible if:

8u 2 b2 vðoÞ 6¼ vðuÞ ð25Þ

8u 2 b2
bh/ðJPðoÞÞ 6� bc/ðJSðuÞÞ ð26Þ

Proof The solution /0 that results from inserting o right

before b2 is unfeasible if any of the two following condi-

tions hold:

1. o is scheduled before a predecessor in its job.

2. There exists an subsequence of operations in r going

from the successor in the job JS(u) of some operation u

in b2 to JP(o), the predecessor in the job of o.

It is clear that (25) guarantees that the unfeasibility con-

dition 1 does not occur, since it avoids moving o before any

other operation in its job.

Now, if (25) holds, i is an unfeasible insertion position

only if condition 2 holds. In other words, there exists u 2
b2 such that JSðuÞ is completed before JPðoÞ starts being

processed, that is, bc/ðJSðuÞÞ 	 bh/ðJPðoÞÞ. However, if

(26) holds, this is not possible, so it cannot be the case that

i is an unfeasible insertion position.

The sufficient conditions for feasibility in Lemma 3

suggest redefining the minimal and maximal insertion

position for a more efficient neighbourhood in the fol-

lowing way. Let / ¼ ðs; rÞ be a solution, let b 2 BCmaxð/Þ
be a makespan-critical block for / and let o 2 b be an

operation in that block. We define the minimal surely

feasible insertion position of o in b as the earliest position

where o can be inserted in r so o is still in the block and the

sufficient conditions for feasibility (25) and (26) hold, that

is:

minBIrð/; oÞ ¼ minfi : rðof Þ� i\rðoÞ;
ð25Þ and ð26Þ hold for ðs; rðo;iÞÞg

ð27Þ

where of and ol denote, respectively, the first and last

operations in block b according to r. Analogously, we can

define the maximal surely feasible insertion position of o in

o:

maxBIrð/; oÞ ¼ maxfi : rðoÞ\i� rðolÞ;
ð25Þ and ð26Þ hold for ðs; rðo;iÞÞg

ð28Þ

These new indices allow us to define the reduced neigh-

bourhood structure NMCOIr as follows:

Definition 3 Reduced makespan-critical operation inser-

tion neighbourhood

NMCOIrð/Þ ¼ fðs; rðo;iÞÞ : o 2 TCmax
ð/Þ;

i 2 fminBIrð/; oÞ;maxBIrð/; oÞgg
ð29Þ

The property from Lemma 2 still holds for this reduced

variant.

Lemma 4 Let /opt ¼ ðs/opt
; r/opt

Þ be an optimal solution

and let / ¼ ðs; rÞ be a non-optimal solution such that

cEpð/optÞ\E
cEpð/Þ. If the resource assigned to every

makespan-critical operation in / coincides with the

resource assigned to that operation in the optimal solution,

i.e. s/opt
ðoÞ ¼ s/ðoÞ; 8o 2 TCmax

ð/Þ, then there exists a

neighbouring solution /0 2 NMCOIrð/Þ that is closer to

/opt in the sense that dð/0;/optÞ\dð/;/optÞ.

Proof It suffices to show that the sufficient conditions for

feasibility (25) and (26) always allow to swap two adjacent

critical operations u and o in a critical block b 2 BCmax
ð/Þ;

then, the proof of Lemma 2 is applicable to the reduced

neighbourhood.

The first condition (25) holds trivially for swaps because

by definition a critical block cannot contain two consec-

utive operations of the same job.

Also, since u and o are consecutive and belong to the

same block, we have that

bc/ðJPðoÞÞ 6� bc/ðuÞ

because, if this were not the case, u would not affect the

starting time of o (contradicting the definition of critical

block). This together with:

bh/ðJPðoÞÞ 	 bc/ðJPðoÞÞ and bc/ðuÞ 	 bc/ðJSðuÞÞ

yields

bh/ðJPðoÞÞ 6� bc/ðJSðuÞÞ

so the sufficient condition (26) holds.

3.2 Neighbourhood aimed at reducing active
energy

Active energy consumption can only be reduced in terms of

� E by moving operations to a more energy-efficient

resource. This is the rationale behind the last intermediate

neighbourhood, which performs reassignment moves to

relocate non-critical operations to resources where they

incur in a lower active energy consumption.
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Definition 4 Operation power-efficient resource reas-

signment neighbourhood

NOPERRð/Þ ¼ fðsðo;rÞ; rÞ :
o 62 TCmax

ð/Þ; r 2 RðoÞ n fsðoÞg;cEaðo; rÞ\E
cEaðo; sðoÞÞg

ð30Þ

Notice that this neighbourhood contains only feasible

solutions, since the only change with respect to the feasible

solution / is the reassignment of an operation o to a

resource in RðoÞ.
It is also possible to prove that, under certain circum-

stances, there is a move corresponding to NOPERRð/Þ
which brings / closer to a given optimal solution.

Lemma 5 Let /opt ¼ ðs/opt
; r/opt

Þ be an optimal solution

and let / ¼ ðs; rÞ be a non-optimal solution such that all

makespan-critical operations are already assigned to the

same resource as in /opt, that is,

8o 2 TCmax
ð/Þ s/ðoÞ ¼ s/opt

ðoÞ, and such that

cEað/optÞ\E
cEað/Þ. Then there exists a neighbouring

solution /0 2 NOPERRð/Þ that is closer to /opt in the sense

that dð/0;/optÞ\dð/;/optÞ.

Proof First we notice that there exists at least a non-crit-

ical operation o 62 TCmax
ð/Þ that is assigned to different

resources in / and /opt. Indeed, given that all critical

operations are already in the same resource as in /opt, if all

non-critical operations were also in the same resource as in

/opt then it would not be possible that cEað/Þ\E
cEað/optÞ.

Take o� one of the non-critical operations assigned to

different resources in / and /opt and take /0 ¼ ðsðo�; rÞ; rÞ
with r ¼ s/opt

ðo�Þ the solution that results from / by

reassignment of o� to the resource where it is processed in

the optimal solution. Clearly, /0 2 NOPERRð/Þ and

dð/0;/optÞ\dð/;/optÞ.

3.3 Neighbourhood aimed at reducing total
energy consumption

We are now in condition to define a neighbourhood

structure Nð/Þ as the union of the three intermediate

neighbourhoods NMCOIrð/Þ, NMCORRð/Þ and NOPERRð/Þ.
Notice that, although NMCORRð/Þ aims at reducing the

passive energy Ep and NOPERRð/Þ, at reducing the active

energy Ea, they can also affect the other type of energy

because they are based on reassignment moves. On the

other hand, NMCOIrð/Þ can only alter the passive energy

consumption.

Definition 5 Neighbourhood for Total Energy

Consumption

Nð/Þ ¼ NMCORRð/Þ [ NMCOIrð/Þ [ NOPERRð/Þ ð31Þ

Given that Nð/Þ is the union of feasible neighbour-

hoods, it must also be feasible. Also, we can show that the

connectivity property holds for this neighbourhood.

Theorem 1 The neighbourhood for total energy con-

sumption verifies the connectivity property, that is, starting

from any non-optimal feasible solution / it is possible to

build a finite sequence of transitions of N leading to an

optimal solution.

Proof Let /opt be an arbitrary optimal solution. We need

to find a finite sequence of solutions /0; . . .;/n such that

/0 ¼ /, /kþ1 2 Nð/kÞ for every 0� k\n and

E½ bEð/optÞ� ¼ E½ bEð/nÞ�. To this end, for k
 0 we take

/kþ1 2 Nð/kÞ according to the following schema:

• If cEpð/kÞ[ E
cEpð/optÞ and 8o 2 TCmax

ð/kÞ
s/opt

ðoÞ 6¼ s/k
ðoÞ, then, by Lemma 1 there exists /0 2

NMCORRð/kÞ which is closer to /opt; take /kþ1 ¼ /0.

• Else if cEpð/kÞ[ E
cEpð/optÞ, then, by Lemma 4 there

exists /0 2 NMCOIrð/kÞ which is closer to /opt; take

/kþ1 ¼ /0.

• Else if cEað/kÞ[ E
cEað/optÞ, then by Lemma 5 there

exists /0 2 NOPERRð/kÞ which is closer to /opt; take

/kþ1 ¼ /0.

Fig. 1 Memetic algorithm pseudocode
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First, notice that if none of the above conditions holds for a

given /k, this means that we have reached an optimal

solution. Indeed, if none of the above hold, it must be case

that cEpð/kÞ� E
cEpð/optÞ and cEað/kÞ� E

cEað/optÞ. Due to

the linearity of the expected value and the definition of

bEð/kÞ as the sum of bEpð/kÞ and bEað/kÞ, this means that

E½ bEð/kÞ� � E½ bEð/opt�. But /opt is an optimal solution

according to � E, so E½ bEð/optÞ� Eð bEð/kÞ�. In conse-

quence, E½ bEð/kÞ� ¼ E½ bEð/opt�, that is, /k is an optimal

solution (even if it may not be /opt).

Second, we can be sure that the sequence will finish in a

finite number of steps. Indeed, the distance dð/0;/optÞ
between the initial and the optimal solution /opt is a finite

number. Now, at step k, if none of the conditions to select

/kþ1 hold, the sequence finishes and /k is an optimal

solution. Otherwise, a new solution /kþ1 is chosen from

Nð/kÞ according to one of Lemmas 1, 4 or 5, so it always

holds that dð/kþ1;/optÞ\dð/k;/optÞ. That is, at each step,

either we find an optimal solution or the distance between

the next solution in the sequence and the optimal solution

decreases. Hence, if an optimal solution has not been found

earlier, after at most n ¼ dð/0;/optÞ steps it must be the

case that dð/n;/optÞ ¼ 0, that is, /n ¼ /opt is optimal and

the sequence finishes.

3.4 The memetic algorithm

As mentioned at the beginning of this section, the neigh-

bourhood structure Nð/Þ is used in a tabu search procedure

which is combined with an evolutionary algorithm to yield the

memetic algorithm from Garcı́a Gómez et al. (2022). The

pseudocode of the resulting method can be seen in Fig. 1

The evolutionary algorithm is composed of a population

of solutions that, in each iteration, is replaced by a new one

obtained by combining its individuals. To do so, individ-

uals are randomly matched, giving everyone an equal

chance to reproduce, and each pair is combined by means

of a crossover operator that generates two offspring. The

new population is generated by a tournament such that the

best two individuals are chosen from each pair of parents

and their two offspring. To encode the solutions, we use the

tuple of sequences ðs; rÞ and to decode them, we assign to

each operation the earliest starting time such that the order

defined by r is not altered. To ensure enough diversity the

initial population is generated randomly. A key component

here is the crossover operator. We use the extension of the

Generalized Order Crossover (GOX) proposed in Garcı́a

Gómez et al. (2021). Because we use a tournament, this

operator is applied unconditionally. We do not make use of

any mutation operators because it is incorporated in the

local search explained below.

The other component of the memetic algorithm is the

local search. In our proposal, all offspring generated at

each iteration of the evolutionary algorithm are improved

using tabu search with Nð/Þ before the tournament is

applied. Tabu search is a local search algorithm that keeps

a memory structure, called tabu list, where it stores a trace

of the recently visited search space (Gendreau and Potvin

2019, Chapter 2). In particular, to avoid undoing recently

made moves, we store in the tabu list the inverse of the

moves performed to obtain the neighbours. Thus, at each

iteration the tabu search selects the best neighbour in the

neighbourhood that is not obtained with a tabu move. Our

tabu list has a dynamic size, similar to the one introduced

in Dell’ Amico and Trubian (1993), so the size of the list

can vary between a lower and an upper bound. When the

selected neighbour is worse (resp. better) than the current

solution and the upper (resp. lower) bound has not been

reached, the list’s size increases (resp. decreases) in one

unit. If the selected neighbour is the best solution found so

far, the list is cleared; this is similar to restarting the search

from this solution. We also incorporate an aspiration cri-

terion, so a tabu move can be executed if it improves the

best solution found up to this moment. In the rare situation

that all neighbours are tabu, we choose the best one, clear

the tabu list and slightly change its bounds by picking a

random number within a given range.

As neighbour evaluation is the most time-consuming

part of the local search, we make use of a filtering mech-

anism to discard uninteresting solutions. This mechanism

consists in evaluating the neighbours following the order

defined by a lower bound, and stopping as soon as this

lower bound is bigger than the exact value of any of the

already evaluated solutions. Here, we adopt the lower

bound for the total energy consumption proposed in Garcı́a

Gómez et al. (2023).

4 Experimental results

The objective of the experimental study is twofold. On the

one hand, to empirically measure the benefits of the stack

model over the gaps model for fuzzy total energy compu-

tation. On the other hand, to compare our algorithm with

the state of the art to check the behaviour of the proposed

neighbourhood.

As test bed we will use the 12 instances from the liter-

ature (Garcı́a Gómez et al. 2023). Namely, 07a, 08a, 09a,

10a, 11a, and 12a with 15 jobs and 8 resources (denoted

15 � 8) and 13a, 14a, 15a, 16a, 17a and 18a sized 20 � 10.

They have three increasing flexibility levels, being

instances 07a, 10a, 13a and 16a those with low flexibility

and 09a, 12a, 15a and 18a those with the highest flexibility.
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In parameter tuning, we have defined the parameters of

the algorithm in terms of the instances’ characteristics.

First, we consider the flexibility of the instances in the

form:

flx ¼
P

o2O jRðoÞj
jOjjRj ð32Þ

We also take into account the ratio jOj=jRj because having

high flexibility but few resources will make it harder to find

a good schedule. We combine both flexibility and ratio

operations to resources in the following single value:

mn ¼ 2bð1 þ flxÞjOj
2jRj e ð33Þ

where be represents the nearest integer function. This value

is used to parameterise the algorithm as summarised in

Table 2.

All results have been obtained in a Linux machine with

two Intel Xeon Gold 6132 processors without Hyper-

Threading (14 cores/14 threads) and 128GB RAM using a

parallelized implementation of the algorithm in Rust. The

source code together with detailed results and benchmark

instances can be found at https://pablogarciagomez.com/

research.

4.1 Models comparison

In this section, we compare the stack model with the gaps

model using the metrics defined in Sect. 2.4. We have

claimed that the stack model is better because it does not

add any extra uncertainty due to the avoidance of the

subtraction operation between fuzzy numbers needed to

compute the idle times (gaps) of resources. Although the

reasoning behind this fact has already been detailed, this

can mean nothing to the search process. It could even

happen that a more uncertain model, when considering real

and deterministic scenarios, had a better behaviour. For this

reason, we propose two types of comparisons: a priori and

a posteriori.

A priori comparisons are conducted on random solutions

with the aim of measuring the advantages of the model

without the possible influence of the solver. A posteriori

comparisons, as the name suggests, compare the perfor-

mance of the models after being used on a search

algorithm, showing how good they are at guiding the

search. It is important to highlight that a posteriori com-

parisons check the performance within a specific algorithm,

so results may differ when using the models in another

algorithm.

Specifically, for a priori comparisons we use 30 random

solutions, obtained with the same procedure employed to

generate the initial population of the memetic algorithm,

probably the naivest algorithm to generate random solu-

tions because it only supposes that operations are started as

soon as possible. Conversely, in a posteriori comparisons,

we use two different sets of solutions, obtained by inde-

pendently using each model in our algorithm. We can

expect that the algorithm obtains solutions ‘‘adapted’’ to

the inner workings of the models so results may differ with

respect to a priori comparisons.

Inspired by the metrics, we start comparing the models

by means of the fuzzy values of the objective function, and

then we compare the performance of the solutions when

they are tested on crisp scenarios. For the latter compar-

isons, we will use a unique set of 1000 crisp possible

scenarios S derived from the fuzzy instances for both

models. These samples are generated by taking a random

value for the processing time of operations in resources

using a uniform distribution within the range of the TFNs.

Arguments for choosing such uniform distribution can be

found in Palacios et al. (2017) and references therein.

To illustrate the study, we mainly use charts and figures.

Nevertheless, we provide as supplementary material

detailed tables with all the data obtained in the

experiments.

4.1.1 Comparisons based on fuzzy values

Figure 2 illustrates the better performance of the stack

model compared to the gaps model in terms of the expected

value E½E� of the fuzzy total energy consumption, both in

the a priori (31% lower on average) and a posteriori (24%
lower) comparisons. In Fig. 2b, we can also appreciate

some dependency with the flexibility of instances. This can

be better seen in Fig. 3 where the improvement of a pos-

teriori mean E½E� values w.r.t. a priori ones is depicted for

both models. It is clear that, the bigger flexibility the

Table 2 Parameters of the memetic algorithm: ev_pop_sz is the

size of the population; ev_st_it represents the number of iterations

without improvement after which the search will be halted;

tb_lst_lbr and tb_lst_ubr correspond to the range of lower

and upper bound values for the size of the tabu list; ls_st_it
represents the number of iterations after which a run of the tabu

search will be stopped

ev_pop_sz ev_st_it tb_lst_lbr tb_lst_ubr ls_st_it

mn mn/2 [mn/2, mn] [2mn, 3mn] mn

Neighbourhood search for energy minimisation in... 697

123

https://pablogarciagomez.com/research
https://pablogarciagomez.com/research


greater the improvement and that this behaviour is pro-

duced by the algorithm, because in a priori comparisons the

expected value is similar across instances with the same

size. This shows that the neighbourhoods designed to cope

with flexibility are doing their work. Moreover, comparing

Fig. 2a with Fig. 2b we can appreciate that the gaps model

is having more improvement. Although it may be seen as

an advantage in favour of the gaps model, it is not, because

in Fig. 2b its expected value is still higher. The explanation

could be that in random solutions the results are much

worse for the gaps model, and so when embedding the

model in an algorithm there is much more margin for

improvement.

Regarding MVP, negative values in Fig. 4 indicate that

in both models and both comparisons, the modal value is

deviated to the left side of the TFNs, that is, the uncertainty

is larger in upper values. Little changes can be observed on

MVP values in the a posteriori evaluation. In the gaps

model, the larger uncertainty can be explained by the

truncation of negative values needed to avoid negative, so

inconsistent, values in the fuzzy subtraction used to

compute idle times of resources. It seems that this effect

remains throughout the search.

Regarding the spread S, the TFNs obtained across a

priori solutions with the gaps model are on average 11.5

times wider than the TFNs obtained with the stack model

(with a 0.33 standard deviation). The difference in the a

posteriori comparisons is reduced, so the gaps model

results in TFNs which are on average 6.5 times wider than

the ones found with the stack model (with 0.58 standard

deviation). Even being large, the reduction of the spread is

significant; this reflects that our algorithm has been able to

overcome the shortcomings of the gaps model to obtain

solutions with a more reasonable spread. This huge dif-

ference and the reduction of the spread are depicted in

Fig. 5 for instance 18a, with the other instances behaving

similarly. Be aware of the differences in scale in the axis.

As in both models it is guaranteed that the energy values of

crisp scenarios are within the interval defined by the TFNs,

having wider TNFs means that the model is providing a

larger spread than necessary.

4.1.2 Comparisons based on crisp scenarios

Regarding the used uncertainty, although the better per-

formance of the stack model was expected by the previous

results, UU values depicted in Fig. 6 illustrate that only

1:5% (a priori) and 3:6% (a posteriori) of the spread are

mostly used for the gaps model solutions. This value is near

23% in the solutions a posteriori with the stack model.

Notice that UU values are highly dependent on the way

crisp scenarios are generated. Both models improve in this

area in a posteriori results with respect to the a priori ones.

We can also appreciate a clear increase in UU values when

the flexibility on the instances also increases.

Figure 5 also allows a better display of the used

uncertainty. There is only one figure for the a priori com-

parison because the set of random solutions used for a

Fig. 2 E½E� comparisons. The dark grey values represent the stack model and the light grey values, the gaps model

Fig. 3 Comparison between a priori and a posteriori expected values.

The dark grey corresponds to the stack model and the light grey to the

gaps model
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priori comparisons is the same for both models and they are

equivalent in the deterministic setting. It is very clear how

the possible scenarios are inside the support of the TFN

both for the gaps and the stack model but the stack model

supposes a major reduction in uncertainty, especially in the

upper range. Moreover, we can appreciate how the possible

scenarios are centred inside the support in the case of the

stack model but this does not happen for the gaps model.

The conclusions are the same in the a posteriori situation,

but we can see more clearly the differences between the

models.

Regarding the relative distance to the expected value,

RDEV, Fig. 7 clearly shows that, in absolute values of

RDEV, in the stack model the deterministic values are

Fig. 4 MVP comparison. The dark grey corresponds to the stack model and the light grey to the gaps model

Fig. 5 Comparison of the spread and the used uncertainty in instance 18a. The dark grey dotted vertical lines represent the support of the fuzzy

energy consumption in the stack model and the light grey dashed lines represent the same for the gaps model
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much closer to the expected value: 30% versus 1:5% in a

priori and 18:9% versus 1:9% in a posteriori. Negative

values of the gaps model are again a consequence of the

truncation introduced in the gaps model, which only

shrinks the left side of the triangles deviating its expected

value.

In addition to the above measures, we also check which

model is better considering the average value for the total

energy consumption in the crisp scenarios. This analysis

could not be done a priori because the set of randomly

generated solutions is the same for both methods and as

they are equivalent in a crisp setting, values are the same.

Results are shown in Fig. 8. It is clear that the stack model

obtains better results, as its boxplots are significantly below

the gaps model ones. Moreover, the distance between

models is increased with the flexibility of the instances. It

is also clear that the gaps model is more stable because its

boxes are narrower. The conclusion is that the stack model

helps the algorithm to guide the search more effectively.

4.1.3 Comparisons based on CPU times

Moreover, the stack model has another major advantage, its

speed, as can be checked in Fig. 9 that compares the time

consumed by the algorithm with each model. As we

explained before, neighbour evaluation in the local search

is very time-consuming and for this reason we use a lower

bound as a filter to discard bad solutions without evaluating

them. However, in the case of the gaps model there is no

such lower bound in the literature and it is not trivial to find

one so it is making use of the more expensive exact eval-

uation and this directly translated into a higher use of CPU

time.

4.2 Comparison with the state of the art

To compare our algorithm with the state of the art, the

experiments have been made using the same model of

fuzzy total energy, the same base implementation and have

been run on the same machine, so they are comparable both

in terms of solution quality and in time.

Fig. 6 UU comparison. The dark grey corresponds to the stack model and the light grey to the gaps model

Fig. 7 RDEV comparison. The dark grey corresponds to the stack model and the light grey to the gaps model
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In table Table 3 we can see a comparison between our

algorithm (named RMA from now on), SMA from Garcı́a

Gómez et al. (2022) that proposes an algorithm very sim-

ilar to ours but that makes use of a non-connective

neighbourhood, and EMA from Garcı́a Gómez et al. (2023)

which, to the best of our knowledge, represents the state of

the art. The first column contains the instance name. The

group of next three columns contain the mean and best

values over 30 executions for the total energy consumption

and the CPU time employed on average per run of our

proposal RMA. The next group of three columns contains the

relative improvement of RMA with respect to SMA for the

mean and best values for the energy and the CPU time.

Finally, the last group of tree columns contain the same

value with respect to EMA. In Fig. 10 we show boxplots for

the values of the energy consumption in the 30 executions

that better illustrate the differences between the algorithms.

Compared to SMA our algorithm gives results that qual-

ity-wise are not significantly different according to paired

t-test (results are normally distributed according to

Shapiro-Wilk test). Differences between the two algo-

rithms concentrate on instances with the lower flexibility

(in which SMA seems to work better) and those with higher

flexibility (in which RMA gives better results). However, our

algorithm uses 46% less CPU time to obtain the solutions,

in consequence RMA can be considered better than SMA.

Compared to EMA, it is behind in almost all cases in what

quality of solutions is concerned, however, results are in

any case very close as shown in the boxplots. Nevertheless,

again, we have one major advantage over it, a reduction of

CPU time of almost a 30%. Combining both results RMA

can be considered competitive. It is worth noting that EMA

is much more sophisticated than RMA as it has mechanisms

to better balance the exploration and exploitation as well as

adaptive parameters, so surpassing it in the quality of

solutions was not expected. As conclusion, our proposal

seems to be better suited to CPU-constrained applications.

5 Conclusions

In this paper we have worked on a model to minimise the

energy consumption in a flexible job shop in an uncertain

setting. This is a very important scheduling problem due to

its relevance in manufacturing and engineering problems,

in special when considering uncertainty, as it constitutes

one of the most important sources of disruptions when

applying theoretical models in real life. Our modelling of

the processing times using fuzzy numbers allows the model

to be easy to understand, while at the same time gives

algorithms the right amount of information to achieve good

solutions in a fair amount of time.

Finding a good model is not an easy task, and cannot be

done without analysing its advantages and possible

Fig. 8 Comparison of the total energy consumption in crisp scenarios. The dark grey corresponds to the stack model and the light grey to the gaps

model

Fig. 9 CPU time (s). The dark grey corresponds to the stack model

and the light grey to the gaps model.
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drawbacks. For this reason, a set of metrics has been pro-

posed. Using these metrics, we have compared our pro-

posal to the direct translation of the crisp model for the

total energy consumption, allowing us to evaluate their

characteristics and conclude the superiority of the one we

propose, not only for its higher performance in fuzzy

measures but also because its better behaviour when con-

sidering real scenarios. The main defining characteristic of

this model is its ability to keep uncertainty under control,

allowing algorithms not only to obtain better results, but

also results that are useful and do not introduce extra noise.

Moreover, to integrate the model into search algorithms,

we have proposed a neighbourhood that guarantees feasi-

bility and connectivity. This claim has been mathemati-

cally demonstrated and, in addition, it has been tested in a

memetic algorithm, achieving results comparable to the

state of the art, even using much simpler search strategies.

As future work, we intend to combine the energy con-

sumption minimization objective with more production-

related measures with the aim of finding a balance between

productivity and sustainability. In addition, in the industry

it is common to have further constraints on how energy can

be consumed, for example, a power threshold may exist

that cannot be surpassed or there may be a maximum

energy budget. The current model can be extended to

consider such variants and allow its applicability to dif-

ferent scenarios.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s11047-

023-09967-w.

Table 3 Comparison with the state of the art

Instance RMA Imp. w.r.t. SMA(%) Imp. w.r.t. EMA(%)

Mean Best Time Mean Best Time Mean Best Time

07a 5406215.23 5342610.25 234.55 �1.82 �1.13 71.11 �0.66 �0.42 66.10

08a 4448751.69 4411737.00 436.93 �0.03 0.24 63.40 �0.12 �0.09 25.21

09a 4728223.43 4693336.75 1034.42 0.61 0.49 61.53 �0.25 �0.34 28.72

10a 5200786.87 5153733.75 251.85 �1.69 �1.33 62.46 �0.61 �1.03 66.26

11a 4816362.64 4764942.75 440.91 �0.05 0.33 64.07 �0.25 �0.22 43.75

12a 4367695.83 4328756.75 912.57 0.64 0.71 58.71 �0.24 0.02 5.79

13a 7032932.70 6976623.75 943.23 �0.73 �0.37 28.78 �0.25 �0.14 46.38

14a 6681278.33 6614463.50 1713.58 0.52 0.83 35.10 �0.19 �0.04 19.07

15a 5940752.25 5887899.00 3855.72 1.54 1.52 27.97 �0.13 �0.01 �13.82

16a 6625853.63 6581874.50 1064.52 �0.77 �0.44 21.93 �0.34 �0.31 47.23

17a 5989073.42 5931685.50 1480.84 0.27 0.55 40.17 �0.29 �0.34 31.47

18a 5975974.31 5917202.25 3433.81 1.51 1.60 25.74 �0.14 0.12 �10.90

average values 0.00 0.25 46.75 �0.29 �0.23 29.60

Fig. 10 Comparison with the state of the art. The light grey corresponds to SMA, the middle grey corresponds to RMA and the dark grey to EMA
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