
Lazy Learning in Radial Basis Neural Networks:

A Way of Achieving More Accurate Models

JOS�E M.VALLS, IN�ES M. GALV�AN, and PEDRO ISASI
Departamento de Informática, Universidad Carlos III de Madrid Avenida de la Universidad, 30,
28911 Leganés, Spain. e mail: jvalls@inf.uc3m.es

Abstract. Radial Basis Neural Networks have been successfully used in a large number of
applications having in its rapid convergence time one of its most important advantages.
However, the level of generalization is usually poor and very dependent on the quality of the

training data because some of the training patterns can be redundant or irrelevant. In this
paper, we present a learning method that automatically selects the training patterns more
appropriate to the new sample to be approximated. This training method follows a lazy

learning strategy, in the sense that it builds approximations centered around the novel sample.
The proposed method has been applied to three different domains: an artificial regression
problem and two time series prediction problems. Results have been compared to standard
training method using the complete training data set and the new method shows better gen

eralization abilities.

Key words. improving generalization ability, kernel functions, K means algorithm, lazy
learning, radial basis neural networks

1. Introduction

Radial basis neural networks (RBNN) [1 3] are originated from the use of radial

basis functions, as the Gaussian functions, in the solution of the real multivariate

interpolation problem [4, 5].

RBNNs can be used for a wide range of application primarily because they can

approximate any regular function [6].

Generally, the generalization capability of the RBNN is poor because they are too

specialized in the data training. Some authors have paid attention to the nature and

size of the training set in order to improve the generalization ability of the networks.

There is no guarantee that the generalization performance is improved by increasing

the training set size [7]. It has been shown that with careful dynamic selection of

training patterns, better generalization performance may be obtained [8]. The idea of

selecting the patterns to train the network from the available data about the domain

is close of our approach. However, the aim in this work is to develop learning

mechanisms such that the selection of patterns used in the training phase is based on

novel samples, instead of based on other training patterns. Thus, the network will

use its current knowledge of the new sample to have some deterministic control

about what patterns should be used for training. In this work a selective training

�

1

Referencia bibliográfica
Published in:
Neural Processing Letters, 20, 2 (2004), 105-124

strategy has been developed to improve the generalization capabilities of RBNN

inspired on lazy strategies [9, 10]. The learning method proposed involve finding

relevant data to answer a particular novel pattern and defer the decision of how to

generalize beyond the training data until each new sample is encountered. Thus,

the decision about how to generalize is carried out when a test pattern needs to be

answered constructing local approximations. The main idea is to recognize, from the

whole training data set, the most similar patterns for each new pattern to be pro-

cessed.

2. Lazy Learning Method to Train Radial Basis Neural Networks

The learning method proposed in this work to train RBNN consists of selecting,

from the whole training data, an appropriate subset of training patterns in order to

improve the answer of the network for a novel pattern. Afterwards, the RBNN is

trained using this new subset of selected data. The goal is to show that if the RBNN

is trained with the most appropriate training patterns, the generalization on the new

sample can be improved. The general idea for the pattern selection is to in-

clude once or more times those patterns close in terms of the Euclidean distance

and some weighting measure- to the novel sample. Thus, the network is trained with

the most useful information, discarding those patterns that not only do not provide

any knowledge to the network, but might confuse the learning process.

The general idea presented in this work for the selection of patterns consists of

establishing an n-dimensional sphere centered at the test pattern, in order to select

only those patterns placed into this sphere. Its radius-named r-is a threshold dis-

tance, since all the training patterns whose distance to the novel sample is bigger than

r will be discarded. Distances may have very different magnitudes depending on the

problem domains, due to their different data values and number of attributes. It may

happen that for some domains the maximum distance between patterns is many

times the maximum distance between patterns for other domains. In order to make

the method independent of this fact, both the sphere radius and the training patterns

distances will be relative respect to the maximum distance to the test pattern. Thus,

the relative threshold distance or relative radius, rr, will be used to select the training

patterns situated into the sphere centered at the test pattern, being rr a parameter

that must be established before the application of the learning algorithm.

Let us consider q an arbitrary novel pattern described by an n-dimensional vector,

q ¼ ðq1; . . . ; qnÞ, where qi represents the attributes of the instance q. Let X be the

whole available training data set:

X ¼ fðxk; ykÞ k ¼ 1 . . .N; xk ¼ ðxk1; . . . ; xknÞ; yk ¼ ðyki; . . . ; ykmÞg; ð1Þ
where xk are the input patterns and yk their respective target outputs. When a new

sample q must be predicted, the RBNN is trained with a subset, which is named Xq,

from the whole training data X. The steps to select the training set Xq are the

following:
2

Step 1. A real value, dk, is associated to each training pattern (xk, yk). That value

is defined in terms of the standard Euclidean distance from the pattern q to each

input training pattern. More precisely, it is defined as

dk ¼ dðxk; qÞ ¼
Xn
i 1

ðxki qiÞ2
s

; k ¼ 1; . . . ;N: ð2Þ

That distance provides a measure to determine the nearest training patterns to the

novel pattern.

Step 2. As it was previously mentioned, in order to make the method independent

on the distances magnitude, relative distances must be used. Thus, a relative dis

tance, drk is calculated for each training pattern. Let dmax be the maximum distance

to the novel pattern, this is

dmax ¼ maxðd1; d2; . . . ; dNÞ:

Then, the relative distance is given by

drk ¼
dk
dmax

: ð3Þ

Step 3. As it was mentioned in Section 1, a weighting function or kernel func

tion KðÞ is used to calculate a weight for each training pattern from its distance to

the test pattern. The maximum value of the kernel function must be given at zero

distance and the function should decrease smoothly as distance increases. The

kernel function used in the method is the inverse function KðdÞ ¼ 1=d. An example

of this function can be seen in Figure 1, where the x axis represents the patterns in

a one dimensional domain, being the value of the test pattern 2.25. Thus, the result

of evaluating the inverse function of the relative distance calculated at Equation (3)

is associated to each training pattern:

KðxkÞ ¼
1

drk
; k ¼ 1; . . . ;N: ð4Þ

These values KðxkÞ are normalized in such a way that the sum of them equals the

number of training patterns in X. The normalized values, named as KnðxkÞ, are
obtained by

KnðxkÞ ¼ VKðxkÞ;

where

V ¼ NPN
k 1 KðxkÞ

;

3

thus

XN
k 1

KnðxkÞ ¼ N:

In order to simplify the notation, henceforth KnðxkÞ will be named fnk, normalized

frequency.

Step 4. Both the relative distance drk calculated in step 2 and the relative frequency

fnk calculated in step 3 are used to decide whether the training pattern ðxk; ykÞ is

selected, and if the pattern is selected how many times is included in the training

subset. Hence, they are used to generate a natural number, nk, following the next

rule:

if drk < rr then
nk ¼ intðfnkÞ þ 1

else
nk ¼ 0:

ð5Þ

At this point, each training pattern in X has an associated natural number, nk,

which indicates how many times the pattern ðxk; ykÞ will be used to train the RBNN

when the new instance q is reached. If the pattern is selected, nk > 0 otherwise nk ¼ 0.

Step 5. A new training pattern subset associated to the novel pattern q, Xq, is built

up. Given a pattern ðxk; ykÞ from the original training set X, that pattern is included

in the new subset if the value nk is higher than zero. In addition, the pattern ðxk; ykÞ is
placed nk times randomly in the training set Xq. Once the training patterns are

selected, the RBNN is trained with the new subset of patterns, Xq. As usually,

Figure 1. The inverse function as kernel function.

4

training a RBNN involves to determine the centers, the dilations or widths, and the

weights. The centers are calculated in an unsupervised way using the K-means

algorithm in order to classify the input space formed by all the training patterns

included in the subset Xq. The k-means algorithm initialization has been modified in

order to avoid the situation where many classes have no patterns at all. Thus, the

initial values of the centers are set in the following way:

� Mq, the centroid of the set Xq, is evaluated.

� k centers ðc1q; c2q; . . . ; ckqÞ are randomly generated, such as kcjq �Mqk < �,

j ¼ 1; 2; . . . ; k , where � is a very small real number.

In this way, the k centers expand from their initial positions around the centroid Mq,

and if the number of centers is smaller than the number of patterns, no classes will

remain empty when k-means finishes. Once the neurones centers have been calcu-

lated, the neurones dilations or widths are evaluated as the geometric mean of the

distances from each neuron center to its two nearest centers. Lets di the width and Ci

the center of the ith neurone:

di ¼ kCi � Ctk kCi � Csk
p

: ð6Þ

where Ct and Cs are the two nearest centers to center Ci.

Finally, the weights of the RBNN are estimated in a supervised way to minimize

the mean square error E measured in the training subset Xq:

E ¼ 1

R

XR
r 1

er; ð7Þ

where R is the number of patterns in Xq and er is the error committed by the network

for the pattern xr, given by

eðrÞ ¼ 1

2

Xm
i 1

ð~yri � yriÞ2; ð8Þ

being yr ¼ ðyr1; . . . ; yrmÞ and ~yr ¼ ð~yr1; . . . ; ~yrmÞ the desired output vector and the

output vector of the network, respectively.

3. Experimental Results

The lazy learning method presented in this work has been applied to three different

problems: One artificial regression problem, the Hermite Polynomial-whose

dimension is 1, and two n-dimensional time series prediction problems, an artificial

one the Mackey Glass time series- and a real one: a time-series describing the

behavior of the water level at Venice Lagoon. In this set of experiments, the
5

proposed method has been applied using RBNN with different architectures i.e.,

different number of hidden neurones and setting the relative radius to different

values in order to study the influence of these parameters in the performance of the

method. This performance has been measured in terms of the RBNNs mean errors

over the whole test set. The mean error, e, for the test set is evaluated as

e ¼ 1

n

Xn
k 1

ek; ð9Þ

where n is the number of patterns in the test set and ek represents the error for the kth

test pattern, calculated as ek ¼j ~yk � yk j, being ~yk the output of the network and yk
the desired output for that pattern. In all the studied domains the output is a real

number.

In order to show whether the selective method proposed in this work is able to

improve the generalization capability of RBNN, another set of experiments have

been carried out training the RBNN as usual, that is, the network is trained using the

whole available training data set, and then it is used to approximate the novel

samples. The results obtained by both methods, the proposed selective method and

the traditional one, are compared. In Section 3.1. the experimental set-up description

and results are presented.

3.1. AN ARTIFICIAL APPROXIMATION PROBLEM: THE HERMITE POLYNOMIAL

The Hermite polynomial (see Figure 2) is given by the following equation:

fðxÞ ¼ 1:1ð1� xþ 2x2Þe ð1=2Þx2 : ð10Þ

This domain has been widely used in RBNN literature 11, 12, 13.

A random sampling with an uniform distribution over the interval ½�4; 4� is used
in order to obtain 40 input output points for the training data. The test set is

composed by 200 input output points that are generated in the same way as the

points in the training set. Both sets have been normalized in the interval ½0; 1�.
The lazy learning method described in Section 2 has been applied to this problem

for RBNN with different architectures, from 3 to 21 neurones, and they have been

trained during 300 learning cycles varying the relative radius from 0.04 to 0.28. As it

was previously commented, the aim of these experiments consists of studying the

influence of the relative radius on the generalization ability of the networks. In

Table 1 mean errors over the whole test set for each architecture and for each relative

radius are shown. Figure 3 shows graphically these results.

It is possible to observe that when the relative radius is lower than a certain value,

mean errors for all architectures are very high higher as the number of neurons grow

up-. This is due to the small number of patterns that are selected with such a small

radius, insufficient to allow an appropriate training of the network. This training

process with an insufficient number of patterns will be worse as the number of

neurones increases. As the relative radius grows up, the behavior of the networks
6

depends on their architecture: if the number of neurones is small -3 or 5 neuro-

nes the error reaches a minimum when rr ¼ 0:08 and increases again as rr rises. If

the number of neurones is higher -9 or more- the mean error decreases and when rr is

0.01 or bigger the error does not change significatively as the radius increases. This

behavior is explained as follows: as the radius grows up, more patterns are selected

allowing the network to perform better with the test set. If the number of neurones is

very small, the network can not generalize properly when the number of training

patterns is high, and that is why the mean error increases when the radius is greater

than 0.08. If the number of neurones is bigger, the network can fit the training set,

even if the number of patterns is high, keeping the mean error its value relatively

Figure 2. Hermite polynomial.

Table 1. Mean errors with the selective learning method. Hermite polynomial.

Hidden neurones

Relative radius 3 5 9 13 17 21

0.04 0.03321 0.02755 0.04067 0.07421 0.11557 0.68453

0.08 0.01037 0.00701 0.00345 0.00999 0.01792 0.02219

0.12 0.01498 0.01112 0.00439 0.00395 0.01093 0.00901

0.16 0.02176 0.01645 0.00635 0.00413 0.01012 0.00561

0.2 0.02902 0.01854 0.00703 0.00502 0.00421 0.00526

0.24 0.03425 0.02204 0.01065 0.00687 0.00488 0.00464

0.28 0.04230 0.02777 0.01450 0.00847 0.00493 0.00547

7

constant. As it can be seen in Table 1 a network with 9 neurons obtains the best

results using a relative radius of 0.08.

In order to study whether the lazy method can improve the generalization capa-

bility of RBNN, networks with different number of neurons have also been trained

as usual, that is, using the whole training data, until the convergence of the network

has been reached. In this work, the traditional learning has been carried out using a

training and a validation data set. The training and validation errors have been

measured every learning cycle and the iterative process has been stopped when both

errors become stabilized. In Table 2, mean errors obtained for different architectures

are shown. When the number of neurones is higher than 30 the mean error maintains

its value near 0:02.

The best results for each method are shown in Table 3. A significative improve-

ment of the generalization capability of RBNNs is obtained when the proposed lazy

learning method is used.

In Figure 4 errors for each test pattern are displayed for both learning methods.

These results correspond to the situations indicated in Table 3 where only the mean

values of the errors are shown.

It is possible to observe that, for the majority of patterns, the error is smaller

when the lazy learning method is used. Most of the test samples of the Hermite

polynomial can be more accurately approximated when the RBNN is trained with

an appropriate selection of patterns the most relevant examples instead of the

whole training set. The computational cost is higher when the deferred training

method is used, although, on the other hand, the number of neurons is smaller,

Figure 3. Mean errors with the selective learning method. Hermite polynomial.

8

Figure 4. Errors for each test sample for the Hermite polynomial.

Table 2. Mean errors with traditional learning
method. Hermite polynomial.

Neurons Mean error

10 0.11569

20 0.02702

30 0.02134

40 0.01904

50 0.02272

60 0.02215

70 0.02066

80 0.02263

90 0.02628

100 0.02145

110 0.02143

120 0.02338

130 0.02508

Table 3. Performance of different training meth
ods for the Hermite polynomial.

Selective method Traditional method

0.00345 0.01904

rr 0:08, 9 neurons 40 neurons

9

and the RBNN is trained in a shorter time. In both cases, the RBNN has been

trained until it reaches the convergence. Thus, the generalization capability of the

network using the whole training data can not be improved if it is trained for more

learning cycles.

3.2. AN ARTIFICIAL TIME SERIES PREDICTION PROBLEM: THE MACKEY GLASS

SERIES

The Mackey-Glass series, based on the Mackey Glass differential equation [7] is

widely regarded as a benchmark for comparing the generalization ability of RBNN:

1, 13, 15, 12. This series is a chaotic time series governed by the following time-delay

ordinary differential equation:

dxðtÞ
dt

¼ �bxðtÞ þ a
xðt� sÞ

1þ xðt� sÞ10
: ð11Þ

Following the studies cited above, the series has been generated using the next values

for the parameters: a ¼ 0:2; b ¼ 0:1, and s ¼ 17. As in the mentioned studies, the

task for the RBNN is to predict the value of the time series at point x½tþ P� from the

earlier points ðx½t�; x½t� 6�; x½t� 12�; x½t� 18�Þ. The number of sample steps P has

been set to 50, as in [13]. Thus, the function to be learned -whose dimension is 4- by

the network is:

xðtÞ ¼ fðxðt� 50Þ; xðt� 50� 6Þ; xðt� 50� 12Þ; xðt� 50� 18ÞÞ: ð12Þ

The initial 3500 samples are discarded in order to avoid the initialization tran-

sients. 1000 data points form the training set, corresponding to the sample time

between 3500 and 4499. The test set is composed by the points corresponding to the

time interval ½4500; 5000�. In Figure 5 is shown the representation of the time series

corresponding to the test set. All data points are normalized in the interval ½0; 1�.
In this subsection the selective proposed lazy learning method has been applied to

this artificial time series, where in the same way as in the previous subsec-

tion RBNN of different architectures have been trained during 300 learning cycles

varying the relative radius from 0.05 to 0.3. The results -mean errors over the whole

test set for each architecture and for each relative radius- are shown in Table 4. As in

the previous case, the goal of this experiments is to study the influence of the relative

radius in the performance of the networks.

Figure 6 displays these results and, as in the previous example, it is possible to

observe that the performance of the network is influenced by the value of the relative

radius and the architecture of the network. The tendency is similar to the one

observed with the Hermite Polynomial: when the number of neurons is bigger than a

certain value -5 neurons in this case-, the mean error decreases with the radius until

rr ¼ 0:1, and then it maintains its value nearly constant. On the other hand, the

network with 5 neurons makes smaller errors than architectures with more neurons,

reaching a minimum error value when rr ¼ 0:1 and growing up again as the radius

10

increases. As in the previous case, the big errors committed when the radius is very

small are due to the shortage of selected training patterns. In this case, a network

with 25 neurons obtains the best results using a relative radius of 0.15.

As it was done in the Hermite polynomial case and having the aim of comparing

both learning strategies, RBNNs with different number of neurons have been

trained, using the whole training data until the convergence of the network has been

reached. As in was done in part 1, a training and a validation data set has been used.

In Table 5, mean errors obtained for different architectures are shown. The best

results have been achieved using a RBNN with 110 neurons.

In Table 6 the best results for each learning method are displayed, being possible

to observe that the performance of RBNN can be significatively enhanced when the

Figure 5. Mackey Glass time series. Test set.

Table 4. Mean errors with the selective learning method for the Mackey Glass time series.

Hidden neurones

Relative radius 5 10 15 20 25 30

0.05 0.0635 0.0814 0.11313 0.12392 0.16735 0.16419

0.1 0.0374 0.0265 0.02171 0.02104 0.02005 0.01877

0.15 0.0456 0.0233 0.01721 0.01863 0.01651 0.01711

0.2 0.0581 0.0204 0.01996 0.01691 0.01722 0.01713

0.25 0.0665 0.0226 0.02076 0.01824 0.01873 0.01739

0.3 0.0672 0.0248 0.02228 0.01953 0.01858 0.01837

11

lazy learning method is used. Moreover, nearly all the results achieved with the

selective method are better than the best result produced by the traditional one.

As in the previous case, although the mean error comparison shows that the lazy

learning strategy behaves better than the usual one, it is interesting to verify that this

Figure 6. Mean errors with the selective learning method for the Mackey Glass time series.

Table 5. Mean errors with the traditional learning
method. Mackey Glass time series.

Neurons Mean error

10 0.1330

20 0.1356

30 0.1271

40 0.1277

50 0.1123

60 0.1052

70 0.1274

80 0.1115

90 0.1177

100 0.1163

110 0.1027

120 0.1114

130 0.1277

12

better behavior occurs for the majority of the test patterns. This can be seen in

Figure 7 where the absolute errors for each test sample are displayed. Most of them

are predicted with more accuracy when the selection of training patterns is made. As

it happened in the Hermite polynomial case, the computational cost is higher when

the selective strategy is utilized, but, on the other hand, less neurones are needed and

the training of the network is faster.

3.3. A REAL TIME SERIES PREDICTION PROBLEM: PREDICTION OF WATER LEVEL AT

VENICE LAGOON

Unusually high tides result from a combination of chaotic climatic elements in

conjunction with the more normal, periodic, tidal systems associated with a

particular area. The prediction of such events has always been the subject of

intense interest to mankind, not only from a human point of view, but also from

an economic one. The water level of Venice Lagoon is a clear example of these

events 17, 18. The most famous example of flooding in the Venice lagoon oc-

curred in November 1966 when, driven by strong winds, the Venice Lagoon rose

by nearly 2 m. above the normal water level. That phenomenon is known as

‘‘high water’’ and many efforts have been made in Italy to develop systems for

Figure 7. Errors for each test sample for the Mackey Glass time series.

Table 6. Perfomance of different training methods
for the Mackey Glass time series.

Selective method Traditional method

0.01651 0.1027

rr 0:15, 25 neurons 110 neurons

13

predicting sea levels in Venice and mainly for the prediction of the high water

phenomenon [19].

Different approaches have been developed for the purpose of predicting the

behavior of sea level at the Lagoon Venice [18, 20]. Multilayer feedforward neural

networks have also been used to predict the water level [21] obtaining same

advantages over linear and traditional models.

There is a great amount of data representing the behavior of the Venice Lagoon

time series. However, the part of data associated to the stable behavior of the water

is very abundant as opposed to the part associated to high water phenomena. This

situation leads to the following: the RBNN trained with a complete data set is not

very accurate in predictions of high water phenomena. It seems natural that if the

network is trained with selected patterns, the predictions will improve.

In this work, a training data set of 3000 points corresponding to the level of water

measured each hour has been extracted from available data (water level of Venice

Lagoon between 1980 and 1994 sampled every hour). This set has been chosen in

such a way that both stable situations and high water situations appear represented

in the set (see Figure 8). High-water situations are considered when the level of water

is no lower than 110 cm. Test samples have also been extracted from the available

data and they represent a situation when the level of water is higher than 110 cm (see

Figure 9). Evidently, that situation differs from those appearing in the training set. It

is necessary to point out that when the high water occurs, the time series representing

the level of water suffers strong variations that are difficult to predict. Hence, it is

Figure 8. Water level at Venice Lagoon during four months. Training set.

14

interesting to predict the high water phenomenon but also what will happen around

that phenomenon.

Since the goal in this work is to predict only the next sampling time, a nonlinear

model using the six previous sampling times, i.e., data of the six previous hours, may

be appropriate. The aim in this context is to observe whether a lazy strategy may

help to obtain better predictions of high water phenomena. The selective learning

method described in Section 2 has also been used to train RBNNs with different

architectures and different relative radius ðrrÞ during 300 learning cycles, and their

generalization capability has been measured. Mean errors on the test set achieved by

these networks are shown in Table 7.

As in previous examples, the performance of the network is influenced by the value

of the relative radius and the architecture of the network (see Figure 10). It is pos-

sible to observe that, as in previous cases, when the relative radius is small, mean

errors are very high, due to the shortage of selected training patterns, and as the

relative radius increases, the mean error decreases and then does not change sig-

nificatively. In this case, a network with 15 neurons obtains the best results using a

relative radius of 0.12.

RBNNs of different architectures have been trained with the usual method, that

is, using the whole training data until the convergence of the network has been

reached, in the same way as in previous cases. In Table 8, the corresponding mean

errors are displayed, and the best results have been obtained by an architecture

with 50 neurons, although no significant differences have been found for networks

between 20 and 130 neurons. It is observed that the test mean error can not be

Figure 9. Water level at Venice Lagoon. Test set.

15

improved even if more learning cycles are performed using the whole training data

set.

As in the previous example, in order to compare the proposed lazy learning

method with the traditional one, mean errors over the test set obtained by both

methods are shown in Table 9 for the best architectures. As it can be observed, the

mean error over the test set is reduced when the network is trained with an appro-

priate selection of patterns.

Figure 10. Mean errors with the selective learning method for the Venice Lagoon time series.

Table 7. Mean errors with the selective learning method for the Venice Lagoon time series.

Hidden neurones

Relative radius 3 5 7 9 11 13 15

0.04 0.21442 0.26172 0.34971 0.40387 0.40387 0.48629 0.52912

0.06 0.08597 0.11279 0.10640 0.13074 0.13074 0.13165 0.14915

0.08 0.05360 0.04531 0.05006 0.05773 0.05773 0.04944 0.05745

0.1 0.03171 0.03438 0.03039 0.03148 0.03148 0.02866 0.02547

0.12 0.03495 0.02797 0.02744 0.02578 0.02578 0.02434 0.01951

0.14 0.03303 0.02842 0.02745 0.02906 0.02906 0.02648 0.02562

0.16 0.03741 0.02867 0.02881 0.02371 0.02371 0.03063 0.03075

0.18 0.04060 0.03059 0.02916 0.02354 0.02354 0.02818 0.02784

0.2 0.04882 0.03292 0.03075 0.02603 0.02603 0.02759 0.02546

16

Figure 11. Errors for each test sample for the Venice Lagoon time series.

Table 8. Mean errors for different architectures
with the traditional learning method. Venice
Lagoon time series.

Neurons Mean error

10 0.2365

20 0.1341

30 0.1117

40 0.1120

50 0.0961

60 0.1029

70 0.1022

80 0.1065

90 0.1214

100 0.1254

110 0.1290

120 0.1380

130 0.1415

Table 9. Perfomance of different training methods
for the Venice lagoon time series.

Selective method Traditional method

0.01951 0.0961

rr 0:12, 25 neurons 50 neurons

17

As it is shown in Figure 11, where the errors committed by the different learning

strategies for each test pattern are shown, most of the test patterns are better

approximated when the selective strategy is used. The error, when the network is

trained in the traditional way is significantly higher, for the majority of patterns,

than the corresponding to the selective learning method, when an appropriate

selection of patterns is made. As it was previously commented, the test set contains

a ‘‘high water’’ situation, and very few training patterns represent this kind of

situation. When the network is trained as usual, all the training patterns are used

and most of them represent the ‘‘periodic’’ situation. When a selection of patterns

is made, only the most similar training patterns representing the ‘‘high water’’

situation are used to train the RBNN, achieving a more accurate prediction.

4. Conclusions

The generalization capabilities of RBNNs depends not only on the learning methods

but also on the quality of the data used to train the network. The use of the whole

training data available about the domain might not be the best choice, specially when

data from some pattern space regions behave differently from the rest. The

generalization performance in those special regions that do not follow the general

tendency is distorted by the characteristics of the rest of regions.

The lazy learning method presented in this work provides an automatic mechanism

to select the most appropriate training data in terms of the novel sample. Thus, all

regions in the pattern space, even those that do not follow the general tendency, are

properly considered. The results presented in the previous sections show that ifRBNNs

are trainedwith such a selection of training patterns, the generalization performance of

the network is improved. The selection of the most relevant training patterns taken

form the neighborhood region around the novel sample and the replication of those

patterns helps RBNNs to obtain better results on approximation functions and time

series prediction. The relevance of training patterns depends on its similarity to the

novel pattern, measuring this similarity in terms of the Euclidean distance.

The extension of the neighborhood region around the novel sample is determined

by a parameter named relative radius. The presented results show that if the relative

radius reaches a minimum value and the network has a sufficient number of neurons,

the generalization error keeps its low value relatively constant.

The K-means algorithm has an important part on the RBNN performance and

previous experiments have shown that with the selective learning method a problem

related to K-means algorithm arises. If the K-means algorithm is used as usual a lot

of clusters remain empty and many hidden neurones in the RBNN are useless

prejudicing the network behavior. This is explained because the input space corre-

sponding to the selected training patterns is usually very small. Due to this reduced

space, the election of the initial centers for the K-means algorithm is extremely

important. The proposed method to determine the initial centroid of the cl ster

avoids this problem.
18

However, the proposed method has also some disadvantages. They are mainly

given by the use of the Euclidean distance to select the most appropriate patterns. It

is well known that in some domains the Euclidean distance does not provide a good

similarity measure. Evidently, in those cases, the proposed method will not work in

an efficient way. For instance, some classification domains, in which similar patterns

belong to different classes, the proposed method will not work. However, the method

is flexible to incorporate other different similarity measures.

It is also necessary to mention some aspects related to the computational cost of

the lazy learning method proposed. The method involves storing the training data,

and finding relevant data to answer a particular test pattern. Thus, the decision

about how to generalize is carried out when a test pattern needs to be answered

constructing local approximations. That implies a large computational cost because

the network has to been trained each time a new sample is presented. However, the

goal of this paper is to improve the generalization capability even if the computa-

tional cost is higher. In some applications (for instance, time series prediction) in

which enough time is available between samples to train the network, the compu-

tational cost required by the method is not a disadvantage, as long as the general-

ization capability is improved.

Another interesting property of the proposed method is that it could be used in

any supervised neural network model. Although it has been associated to RBNN, it

actually can be applied to different neural network models since the procedure to

select the most relevant training data does not depend on the type of neural network

employed. Thus, once the training subset is selected, it can be used to train different

types of neural networks; this feature of the proposed approach is an additional

advantage since it increases its usefulness and generality.

References

1. Moody, J. E. and Darkn, C.: Fast learning in networks of locally tuned processing units.

Neural Computation, 1 (1989), 281 294.
2. Poggio, T. and Girosi, F.: Networks for approximation and learning. Proc. IEEE, 78

(1990), 1481 1497.
3. Ghosh, J. and Nag, A.: An Overview of Radial Basis Function Networks. R. J. Howlett and

L.C. Jain (Eds). Physica Verlag, (2000).
4. Broomhead, D. S. and Lowe, D.: Multivariable functional interpolation and adaptative

networks. Complex Systems, 2 (1988), 321 355.

5. Powell, M.: The theory of radial basis function approximation in 1990. Advances in
Numerical Analysis, 3 (1992), 105 210.

6. Park, I. J. and Sandberg, W.: Universal approximation and radial basis function net

works. Neural Computation, 5 (1993), 305 316.
7. Abu Mostafa, Y. S.: The vapnik chervonenkis dimension: information versus complexity

in learning. Neural Computation, 1 (1989), 312 317.
8. Cohn, D. Atlas, L. and Ladner.R.: Improving generalization with active learning. machine

learning. Machine Learning, 15 (1994) 201 221.
19

9. Atkenson, C.G. Moore, A.W. and Schaal, S.: Locally weighted learning. Artificial Intel-

ligence Review, 11 (1997) 11–73.
10. Wettschereck, D. and Dietterich, T.: Improving the perfomance of radial basis function

networks by learning center locations. Advances in Neural Information Processing Systems,

4 (1992), 1133–1140.
11. Leonardis, A. and Bischof, H.: An efficient mdl-based construction of rbf networks.

Neural Networks, 11 (1998), 963–973, .

12. Orr. M. J. L.: Introduction to radial basis neural networks. Technical Report. Centre for
Cognitive Science, University of Edinburgh, (1996).

13. Yingwei, L. Sundararajan, N. and Saratchandran, P.: A sequential learning scheme for

function approximation using minimal radial basis function neural networks. Neural
Computation, 9 (1997), 461–478.

14. Mackey, M. C. and Glass, L. Oscillation and chaos in physiological control systems.
Science, 197 (1977) 287–289.

15. Platt, J.: A resource-allocating network for function interpolation. Neural Computation, 3
(1991), 213–225.

16. Whitehead, B. A. and Choate, T. D.: Cooperative - competitive genetic evolution of radial

basis function centeres and widths for time series prediction. IEEE Transactions on Neural
Networks, 5 (1995), 15–23.

17. Moretti, E. and Tomasin, A.: Un contributo matematico all-elaborazione previsionale dei

dati di marea a Venecia. Boll. Ocean. Teor. Appl., 1 (1984), 45–61.
18. Michelato, A. Mosetti, R. and Viezzoli. D.: Statistical forecasting of strong surges and

aplication to the lagoon of Venice. Boll. Ocean. Teor. Appl., 1 (1983), 67–83.

19. Tomasin, A.: A computer simulation of the Adriatic Sea for the study of its dynamics and
for the forecasting of floods in the town of Venice. Comp. Phys. Comm., 5 (1973), 51.

20. Vittori, G.: On the chaotic features of tide elevation in the lagoon Venice. Proc. of the
ICCE-92, 23rd International Conference on Coastal Engineering, pages (1992), 4–9.

21. Zaldı́var, J. M. Gutrrez, E. Galván, I. M. Strozzi, F. and Tomasin, A.: Forecasting high
waters at Venice Lagoon using chaotic time series analysis and nonlinear neural networks.
Journal of Hydroinformatics, 2 (2000), 61–84.

JOSÉ VALLS ET AL.124

20

