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Abstract To train Neural Networks (NNs) in a supervised way, estimations of an objective 
function must be carried out. The value of this function decreases as the training progresses 
and so, the number of test observations necessary for an accurate estimation has to be 
increased. Consequently, the training computational cost is unaffordable for very low objec­
tive function value estimations, and the use of Importance Sampling (IS) techniques becomes 
convenient. The study of three different objective functions is considered, which implies the 
proposal of estimators of the objective function using IS techniques: the Mean-Square error, 
the Cross Entropy error and the Misclassiflcation error criteria. The values of these functions 
are estimated by IS techniques, and the results are used to train NNs by the application of 
Genetic Algorithms. Results for a binary detection in Gaussian noise are provided. These 
results show the evolution of the parameters during the training and the performances of 
the proposed detectors in terms of error probability and Receiver Operating Characteristics 
curves. At the end of the study, the obtained results justify the convenience of using IS in the 
training. 
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1 Introduction 

Standard Monte Carlo simulations present several limitations to accurately evaluate a statis­
tical process or an objective/error function, especially when rare events are present. In this 
way, some limitations of the Monte Carlo simulation for some functional spaces that define 
the regularity of the input data are exposed in [1]. Nevertheless, an accurate estimation of 
a process or function can be achieved by the use of importance sampling (IS) techniques 
[2,3]. These techniques have been successfully applied in different kind of learning struc­
tures. For instance, in [4], the way IS is used in modern Markov chain machine learning 
is introduced in a general way. On the other hand, in [5,6] the use of IS in probabilistic 
neural networks (NNs) is exposed. Both papers present the main advantages of using IS for 
estimating the error during training in probabilistic NNs, where the improvement of training 
speed against traditional training methods is studied. IS techniques have also been success­
fully used for improving both the performance and the design speed of Bayesian networks 
[7]. The previous works used IS in supervised training/design of systems, but IS can also be 
used in unsupervised training. Thus, in [8], a stochastic gradient learning algorithm based 
on IS techniques for unsupervised learning of over-complete dictionaries is presented. As in 
the previous works [1-7], it is shown in [8] that the proposed algorithm is faster and more 
efficient than classical ones. Moreover, its great efficiency allows the treatment of large-scale 
problems in a statistically sound framework, as demonstrated for the extraction of individual 
piano notes from a polyphonic piano recording. Finally and independently of the kind of 
used system, in [9] a system dimensionality study is done when IS is used, paying special 
attention to the IS influence in the system performance and training speed. Moreover, it is 
shown how the training convergence time in NN training by IS for learners (NNs) with many 
parameters (weights) can be reduced by competitive, cooperative and concurrent reinforce­
ment strategies. Finally, it is important to note that, in all the previously exposed studies, the 
computational cost needed to implement the IS technique is lower than the computational 
cost of using a huge quantity of data to design systems that are able to process rare events. 

Due to the advantages of the use of IS in system design, this paper is focused on the 
comparative study of the application of IS techniques to train NNs in a supervised way using 
different objective functions. As IS is a modified Monte Carlo technique, it can be applied to 
rare event computation in different applications: performance analysis of radar and commu­
nications detectors [10-18], or rare event simulation in finance [19,20]. In communication 
detectors [10-15], the error probability (Pe) can be estimated by IS techniques for very low 
Pe values. In radar detectors [16-18], very low false-alarm probabilities (P/a) can also be 
estimated by IS techniques. Considering NN-based detectors, IS has been applied in [16] 
to estimate the performance in terms of Pfa estimations in the testing phase, but without 
taking into consideration the application of IS techniques for training. In financial applica­
tions, an adaptive search algorithm has been developed recently [ 19] for parameter estimation 
of a mixture of Student's t density, in order to be used as IS probability density function. 
This algorithm, named Adaptive Mixture of f(AdMit) has been extended in [20] for efficient 
computation of the risk measures Value at Risk (VaR) and Expected Shortfall (ES). 

Other works [21-23], which considered the use of NNs to approximate communication 
and radar detectors, have highlighted the poor performance of such detectors for low Pe 

and Pfa values. NN-based detectors have been compared to the Neyman-Pearson optimum 



detector in [22]. The theoretical explanation has been recently published in [23], demonstrat­
ing that supervised adaptive learning machines trained to minimize the sum of squares error 
approximates the optimum Neyman-Pearson detector. The poor performance for very low 
Pfa can be explained from the point of view of training. Rare events hardly influence the 
estimation of the error function for training. So, the approximation of the boundary of the 
decision regions is not good enough where rare events occur. Therefore, IS techniques can 
be used to estimate with high accuracy the error functions during the NN training. 

The application of IS techniques to NN training has been previously applied in the design 
of NN-based detectors in communication applications [24,25]. Both works considered the 
use of the Mean-Square (MS) error criterion for NN training. In [24], a suboptimal proba­
bility density function for IS is proposed. A genetic algorithm is used for training, and MS 
error is estimated during training using IS. A more advanced approach appears in [25], where 
the suboptimal probability density function depends on a parameter, the value of which is 
adapted during training with a genetic algorithm to minimize the variance of MS error esti­
mation. On the other hand, the application of IS techniques in NN-based radar detectors is 
proposed in [26], using both the MS and CE error criteria, but without considering adaptive 
algorithms during training in order to optimize the considered probability density function 
(pdf)forIS. 

As exposed in the above mentioned works [24-26] in order to apply IS techniques in NN 
training, the error function must be adequately modified in the training phase by finding an 
appropriate pdf. This pdf needs to ensure the error estimator is unbiased and has a reduced 
variance, which should vanish as the number of training samples tends to infinity (consis­
tency). In [27], the problem of not taking into account the variance of the value function 
estimators in existing off-policy methods is studied. This absence makes their performance 
tend to be unstable. To cope with this problem, the use of an adaptive IS technique is pro­
posed, which allows them to actively control the trade-off between bias and variance. They 
further provide a method for optimally determining the trade-off parameter based on a variant 
of cross-validation. 

Our paper deals with the application of IS techniques to train NN-based detectors. Three 
different error criteria are considered and compared: MS, Cross Entropy (CE), andMisclassi-
fication (MC). An important novelty is the proposal of the optimal pdf for each error criterion 
that are not realistic, unfortunately. In order to avoid it, a suboptimal parametric pdf for IS 
is proposed. The parameters are adapted during training with a genetic algorithm (GA) in 
order to avoid bias and minimizing the variance of the estimated error. The algorithm for 
parameter optimization is called Adaptive Search Algorithm (ASA) and is described in this 
paper with detail for the first time. Computer simulations have been carried out, which show 
the convenience of using IS techniques for training NNs, which allows stopping the training 
when both the error of the estimated error function and the variance of its estimation are low. 
In order to assess the validity of the proposed technique, different experiments have been 
carried out: training neural networks with the three error functions and the proposed tech­
nique, varying the number of patterns considered in the training set (Sect. 5.1) and varying 
the NN size (Sect. 5.2). 

In order to define the notation, we refer to Fig. 1, where x = (x\, X2, • • •, xn) is the 
input vector of the i?"-space, y = g (x) is the scalar output, g (•) is a nonlinear system (e.g. 
a NN), To is the detection threshold and z = u (g (x) — To) is the detector output, where 
u (•) is the unit-step function, (i.e., u (t) = 1 if t > 0 and u (t) = 0 if t < 0). We denote 
X = (X\, X2, • • •, Xn) as a random vector and fx (x\H¡) as the pdf of X under a hypothesis 
Hi, i = 1,0 (binary hypotheses), where Ho is the null hypothesis or symbol "0" and H\ is the 
alternative hypothesis or symbol " 1 " . P (Hi) is the "a priori" probability of the hypothesis 
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Fig. 1 The binary detector structure, where g (•) is a NN 

Hi (i = 1,0), and P ÍDj \H¡) is the conditional probability of deciding Hj (j = 1, 0) under 
the true hypothesis H¡ (i = l ,0) . l fg(x) > 7o(orz = 1), the decision is H\, but if g (x) < TQ 
(or z = 0), the decision is HQ. Moreover, for binary hypothesis the probability P (DI\HQ) is 
defined as the false-alarm probability (Pfa), and the probability P {D\\H\) is defined as the 
probability of detection (Pd)- Finally, E {Z\H¡} is the expectation of the random variable Z 
conditioned by Hi (i = 1,0), and E [g (X)} is the expectation of g (•) with respect to the pdf 
of X (i.e. / x (x ) ) . 

The paper is organized as follows. Section 2 presents the used IS technique for param­
eter estimation. Section 3 contains the algorithm proposed to adaptively estimate the best 
parameters of the parametric suboptimal pdf used in the NN training. Section 4 exposes the 
three different objective functions used in the IS-based NN training. Moreover, the use of 
the above-mentioned parametric suboptimal pdf is used for sampling the process according 
to these objective functions during the NN training. Section 5 presents the results of the NN 
training driven by GA and adaptive IS parameter estimation when the three different objective 
functions are used. According to them, the performance of the proposed detectors, in terms 
of Pe and Receiver Operating Characteristics (ROC) curves, are presented and discussed. 
Finally, Sect. 6 summarises the main conclusions of the study of the proposed way to train 
NNs by the use of IS techniques and GAs. 

2 Importance Sampling Technique 

In order to introduce the basic concepts of the IS technique used in this paper, and considering 
the notation exposed in Sect. 1, suppose that a parameter E can be expressed as follows 

E = j e(x)dx (1) 
R" 

where e (x) >0,WxeRn. 
Now, consider a pdf f* (x), in such a way that/x* (x) ^ 0 wherever e (x) ^ 0, Vx e Rn. 

Then from (1), we can write the following identities 

E = [ e(x)dx= f —^- f* (x) dx = E* > 

J J /x*(xrx 

R" R" 

where E* {•} stands for mathematical expectation with respect to the pdf f* (x). 
As is well known, a good estimator of the statistical mean is the sample mean. Then, from 

the last equality in (2), an estimator of E is given by 

g(X) 

/.* (X) 
(2) 



where xjjj, k = 1, 2, . . . , N, are independent sample vectors whose pdf's are f* (x) (this 
pdf is known as the Importance Sampling pdf or the biasing pdf). The estimator E*, given 
by (3), must be computed in order to perform the NN training, i.e., in order to find the NN 
parameters that minimize the objective function E. 

As the mean f¿gt of the estimator E* is 

fj,i M e (x) dx = E (4) 

Rn 

then E* is an unbiased estimator of E. 
On the other hand, the variance o of the estimator E* is 

E* 

°h =E* (É* - /x¿,)2} = E* {(£*)2} + M | , - 2»ÉtE*[É*} 

i 
Ñ 

(5) 

Because of cr? 
E* 

E* -> E as N -> 
to (5), we have 

-> 0 as N -^- oo, we have that É* is a consistent estimator of £ , i.e., 

oo. On the other hand, from Jensen's inequality (see [28, p. 88]) applied 

( e (Xj) Y 
van)) 

The equality case is hold in (6), if and only if 

M e(Xt 

x* 

> EL 

1 

In other words, if the pdf of the sampling process exposed in (2) is given by 

1 
/ ; (x) -e (x), x G R" 

(6) 

(7) 

(8) 

then (6) is hold with equality and, consequently, from (5) cr? 
E 

0 for any value of N, i.e. 

the pdf of E* is a Dirac delta function centred on E. 
Equation (8) is the unconstrained optimal solution for/x* (x). Note that f* (x) must be 

a probability density function, so it is required that e (x) > 0, Vx e Rn, and E must be 
defined in accordance with (1). The optimal solution for f* (x) given in (8) is not realistic, 
because E is not known a priori (it has to be estimated by (3)). Consequently, we have to find 
a suboptimum f* (x) that resembles (8), providing a good estimator of E, what is discussed 
in the following sections. 

The standard deviation agt of the estimator E* is defined by 

N 

( e (K) Y E2 
(9) 

where (4) and (5) has been considered in (9). 



3 Adaptive Search Algorithm for Parameter Estimation of IS Probability 
Density Function 

Frequently, f* (x) belongs to a parametric family of pdf's, denoted as f* (x; 9), where the 
parameter vector 9 = {9\, 9\, ..., 9n) belongs to the corresponding parameter space [29]. In 
general, for some 9 = (6»i, 61; . . . , 0„) , f* (x; 9) accomplishes f* (x; 9) = 0 as e (x) 5¿ 0 
for some x e Rn. Consequently, the estimator E* given by (3) is biased; in fact, it is an 
underestimate of E, as shown below by computing its mean value: 

li. M 
e XÍ 

fi R; e 
e (x) dx = E. (10) 

R" 

For Monte Carlo sampling, the best f* (x; q) is the pdf that maximizes (10) in order to 
avoid the underestimation of E and, simultaneously, minimize (9). We are interested in adap­
tive importance sampling techniques that, starting from 9* = 90 and using an optimisation 
algorithm, find a new adequate 9* in each iteration of the training. It is not necessary for 9* 
to be the optimum in each iteration, but it must be the optimum at the end of the training. 

Suppose that 9 = 9* minimizes a combined functional of (9) and (10), as follows: 

arg min \a 
6e0 l 

logio (/*£*) + ( ! - « ) • log10 ( o>)} (11) 

where the parameter a is a positive real number that balances the importance of each term. 
Therefore, 9 = 9* is a good value to be used in f* (x; 9) for sampling. 

As the theoretical analysis of (11) is difficult, we can also use an estimator and compute 
it by Monte Carlo simulations. For this purpose, a good estimator of (11) is 

arg mm 
6e0 

{alogio(£*) + ( ! - « ) • log 10 >•>) 

where 

N 
and E* is redefined from (3) for parameterization purposes as 

1 N 

-Y 

(12) 

(13) 

N 
= 1 J* 

(14) 

Finally, the Monte Carlo-based algorithm proposed for selecting the best 9*, is called 
Adaptive Search Algorithm (ASA). It is applied each iteration of the NN training in order to 
find the corresponding optimum value 9*, which is necessary to estimate E in each iteration. 
The steps of the algorithm are: 

1. Consider a block of random values for the parameter of the suboptimal IS pdf, 9¿ e 
0 , i = 1,2, ..., L, where L is large enough (e.g. L = 102). The parameters are uni­
formly distributed. In the experimental results presented in Sect. 5, in the first iteration of 
the algorithm, the uniform distribution is centred in the estimated mean of the true hypoth­
esis, and the width of the distribution is 0.4. In the remaining iterations, the distribution 
is centred in the best value obtained in the previous iteration. 
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Fig. 2 Evolution of the estimation error (E*M„) and its standard deviation (5g,t ) during the training of an 

MLP 5 x 5 x 1 with the MS error criterion (without IS technique) 

Compute (14) and (13) for each 9¿ e ®,i = 1, 2, . . . , L, and each NN in the population, 
with an appropriate number of patterns or observations N (e.g. N = 103), generated with 
each suboptimal IS pdf. 
Select the value 9 = 9* that minimizes (12) among the L possible values. 
Compute again (14) and (13) for 9 = 9*, with an appropriate number of patterns N 
(e.g. N = 104, ten times the number of patterns used in the step 2), for each NN in 
the population. Note that these estimations are obtained by using IS techniques with the 
suboptimal pdf f* (x; 9*), and are used to apply the GA for NN training, as described 
in Sect. 5. 

In the next sections, this algorithm is iteratively applied to train NNs by using GAs with 
different objective functions. The objective functions considered in our study are explained 
in Sect. 4. Also, computer simulations have been carried out in order to compare their training 
performances, basing this comparison in their estimated Pe and ROC curves. 

In order to illustrate ASA, some figures have been added with the results of the experiments 
in Sect. 5. Figures 2, 3 and 4 illustrate the big differences in the variance of the estimator 
E* using the training and validation sets, demonstrating that NNs are not properly trained, 
even using IS techniques. In order to avoid it, ASA is applied. Figures 5, 6 and 7 illustrate 
the evolution of the estimation error (¿sí, A its estimated standard deviation (<T£,t ) and the 

mo cMS 

optimum parameter (9*), demonstrating that using ASA, NNs are trained properly using IS 
techniques. 

4 Objective Functions for Training by Importance Sampling 

In this section, the use of IS techniques, as previously exposed, in the NN training and testing 
considering objective functions commonly used in communication systems [ 13] is proposed. 
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4.1 Mean-Square Error Objective Function 

First, we consider the MS error as objective function [25,29]. According to the notation given 
above, the MS error is defined by 

EMS = E{(Y-Yd)
2}= ie(x)d* (15) 

where the random variable Y = g (X) is the NN output, Y¡¡ is the desired output (Y¡¡ = 1 for 
Hi and Y¡¡ = 0 for Ho), and e (x) is given by 

e(x) = P(Ho)[g(x)]2fx(x\Ho) + P(H1)[g(x)-l]2fx(x\H1), x e Rn (16) 

being e (x) > 0, Vx e Rn. Then, (15) with (16) is a particular case of (1). In this way, all the 
conclusions of Sect. 2 are applied here. In particular, taking (16) into (8), the unconstrained 
optimal solution of f* (x) can be expressed for future references as follows 

f* (x) = - J - [P (H0) [g (x)]2 fx (x\H0) + P (ffx) [g (x) - l ] 2 fx (x l / / , ) ] , x G Rn. 
¿MS 

(17) 

The optimal solution for f* (x) given in (17) is not realistic [25] because EMS is not 
known a priori (it has to be estimated by (3)). Furthermore, in the training stage, g (•) is 
modified from one iteration to another in order to minimize EMS • 



4.2 Cross Entropy Error Objective Function 

Now, we consider the CE error as objective function, which is defined by 

ECE=E{-\n\Y-Yd\}= e(x)dx (18) 

Rn 

where e (x) is given by [29] 

e(x) = -P(Ho)\n\g(x)-l\fx(x\Ho)-P(Hi)\n\g(x)\fx(x\Hi), x e Rn (19) 

being e (x) > 0, Vx e Rn. As previously occurred, (18) with (19) is a particular case of 
(1). So, all the conclusions of Sect. 2 are applied in this case. Taking (19) into (8), the 
unconstrained optimal solution of f* (x) can be expressed as follows 

f* (¿)=-J- [-P (Ho) In \g (x) - 1 | fx (x\H0) -P (Hi) In \g (x)| fx (x\Hi)], xeRn. 
&CE 

(20) 

Once again, the optimal solution for f* (x) given in (20) is not realistic, as in case (a). 

4.3 Misclassification Error Objective Function 

Also, we consider the Error Probability or Misclassification error (EMC) as objective func­
tion, which is defined by [30] 

EPe = EMC = P (HO) P (DI\H0) + P (Hi) P (D0\Hi) = / e (x)dx (21) 

R" 

where e (x) is given by 

e (x) =P (H0) fx (x\H0) u (g (x) -T0) +P (Hi) fx (x\Hi) u (T0-g (x)), x e Rn (22) 

being e (x) > 0, Vx e Rn. Then, (21) with (22) is a particular case of (1). Taking (22) into 
(8), the unconstrained optimal solution of f* (x) can be expressed as follows 

f* (x) =-*— [P (Ho) fx (x\H0) u (g (x) -To) +P (Hi) fx (x\Hi) u (T0-g (x))], xeRn. 

(23) 

Finally, the optimal solution for f* (x) given in (23) is not realistic, as in cases (a) and 
(b). 

As can be observed from the previous analysis of the used objective functions, suboptimal 
solutions of f* (x) axe proposed in this paper for (17), (20) and (23). fx (x|//¿), i = 1, 0, 
usually depends on a parameter 9. In our case of study, this parameter is related to the Sig-
nal-to-Noise Ratio (SNR) and it can be written as fx (x; 9|//¿), i = 1,0, i.e., if 9 = 0 (zero 
vector), there is only noise (both pdf's, fx (x\Ho) and fx (x\Hi), axe identical to the noise 
pdf), and if 9 is too large, both hypotheses are highly separate, where very low values of 
objective functions are achieved. Consequently, we propose the following family of density 
functions f* (x; 9), 9 e ©, as the IS pdf's 

/x*(x;9) = P ( / / o ) / x ( x ; 9 | / / 0 ) + P ( / / 1 ) / x ( x ; 9 | / / 1 ) , x e Rn. (24) 

The value 9* is obtained by the ASA algorithm proposed in Sect. 3. 



Because it is not guaranteed in (24) that f* (x; 9) ^ 0 wherever e (x) ^ 0, Vx e Rn, we 

shall have E* \ E l < E, i.e., E is an underestimation of E. Note that £ is also an underesti-

mator of E if f* (x; 9) ~ 0 and f* (x; 9) < < e (x) for some x e i?", i.e., E < E with high 
probability. Therefore, we have to assure that the solution 9* produces minimum bias in E. 

Finally, we point out that ASA is computed at each iteration of the NN training in order to 
find the corresponding optimum value 9*, which is necessary to estimate E in each iteration. 
At the end of the training, E* and og* are good estimations of E and ogt, respectively, as 
shown in the following sections. 

5 Results 

Let's consider the detection of binary symbols in Gaussian noise, by means of NNs trained 
without and with IS using the three objective functions defined above. The hypotheses are 
Hi : x = r¡ + a and Ho : x = r¡ — a, where a = (a\, a.2, • • •, an), a¡ = f¿,i = 1, 2, . . . , « , /i 
is a real constant (for simulations /x = 2.0) and h = (r¡\, 772, • • •, r¡„) is a Gaussian noise 
vector of independent and identically distributed zero-mean samples of unit variance. Then, 
their pdf's are normal distributed with means +/x and —/x, respectively, i.e. 

í-l¿(x>+/x)2j 

(-¿¿ (* i _ / i ) 2)-

(25) 

(26) 

Also, let's suppose that, for simulations purposes, P (H\) = P (Ho) = \, i.e., the symbols 
are equally likely. 

The binary detector used in our experiments is based on a feedforward NN of type Multi-
Layer Perceptron (MLP), which is used as the nonlinear systemg (x) of Fig. 1. The parameters 
that define an MLP are its size: 5 x 5 x 1 (i.e. number of input nodes: 5; number of neurons 
in the hidden layer: 5; and number of outputs: 1) and the activation function for each neuron 
of the MLP: a sigmoid function [31] for our case of study. A GA [25] is used for training the 
MLP. GAs for optimisation are very close to Monte Carlo techniques, therefore, IS is well 
tailored for training NNs by means of GA. In fact, IS and GA are stochastic algorithms and 
they can interact very easily. 

Although our GA with elitism and real-number genes in the chromosomes is not the 
subject of this paper, because it is considered as a tool, the parameters used in the training 
are supplied. A standard set of parameters has been defined based on the results of several 
experiments, and the ideas found in the technical literature [32,33]: 

• Number of individuals that composed the population: 20 MLPs randomly initialized using 
the Nguyen-Widrow method [34] at the beginning of the GA computation. The number 
of individuals in the population has been usually set to 50 in other works [32], but in 
this application it seems to be very big to ensure convergence, furthermore considering 
that ASA is simultaneously applied. In this paper we have used the same number of 
individuals as in [25], i.e. 20 MLPs. 

• Scaling of the MLP estimated errors: scaling by rank, which sets the rank of an individual 
with its position in the sorted scores, rather than its score. 



• Type and quantity of selection in the population: the best (elitism) 10 MLPs survive to 
the next population. 

• Crossover: it is not applied between individuals. 
• Type and quantity of mutation: random values from a Gaussian distribution with zero 

mean anda variance of 0.20 are added to randomly selected genes of the worst 10 MLPs, 
i.e. soft modifications to the genes of the remaining population after the selection are 
applied. 

• Fitness function: log10 I E'*MS I , log10 I E'*CE I and log10 I E'*MC I, depending on the objec­

tive function used in the NN training. 
• Stopping criteria is based on the achievement of one of the following limitations: 

o a maximum of 500 iterations; 
o a maximum of 10 generations where the error does not decrease (stall); 
o and a goal lower than or equal to 10~60 in the estimated error. 

In the case of NN training without IS, an external validation in the training is done. It is 
done by a validation set, which contains different observation vectors with the same pdf as 
the training set. This external validation is not done when the NN training is done with IS 
because the algorithm proposed changes the virtual training set each step of the algorithm, 
so it is impossible that the MLP memorizes the training set and no validation set is needed 
to stop the training process before the MLP is specialized in the training set. So, first, all the 
NNs are trained using the three objective functions under study without using IS in order to 
highlight the main problems this way of training has, and after the NNs are trained with IS 
in order to emphasize its advantages. The evolution of the training processes without IS are 
shown in Figs. 2, 3, and 4 for the MS, CE and MC errors, respectively. As can be observed, at 
the beginning of the trainings, the errors in the estimation of the objective functions are high. 
This fact makes unreliable the estimation of the objective function, but with the progress 
of the training they evolve to better results in terms of the estimated errors and their stan­
dard deviations. As can be observed, all the training processes using the different objective 
functions (estimated errors with the training set) are stopped because the estimated errors 
are lower than 10~60. After their trainings, the three NNs seem to be well trained when the 
error is estimated with the training set. But the results achieved when the validation set is 
considered show that the MS, CE and MC error estimates are approximately 10~3, 10~2 and 
10~3, respectively, which are greater than 10~60. On the other hand, the standard deviations 
of these errors estimated with the validation set are approximately 3 x 10~2, 3 x 10_ 1 and 
3 x 10~2, respectively. The standard deviations achieved show us that the error estimation 
accuracy is not as good as we could hope, so the IS technique is necessary during the training 
to estimate the errors and their standard deviations. In order to compare the use or not of IS 
in the training, the Pe obtained for the NN-based detectors designed with the three objective 
criteria considered in our studies and a decision threshold of To = 0.5 are given in Table 1. 
Moreover, the ROC curves of these detectors are also given in Fig. 8. 

In order to improve the NN training, IS is used to estimate the objective functions as 
described in previous sections. The number of observation vectors for estimating the three 
types of errors by the IS technique is N = 104 once the 9* parameter is selected for the 
suboptimal pdf, as shown in the ASA specifications. This amount of observations is used to 
have enough precision in the estimations, where the error in the estimations is very low using 
IS techniques for the case under study. 

Figure 5 shows comparatively the three main curves of the training progress with ASA 
when the MS error criterion is used. The balance parameter of (12) is set to a = 0.20 



Table 1 Probability of error of 
the binary detector based on 
MLPs 5 x 5 x 1 trained without 
and with IS to minimize the MS, 
CE and MC error criteria and 
tested with IS 

Binary detector based on Probability of error (Pe) 

MLP(MS> 

MLP(CE> 

MLP(MC> 

Trained without IS 

6.07 x 1CT5 

6.93 x 1(T5 

5.22 x 1(T5 

Trained with IS 

3.03 x 10~5 

3.98 x 10~5 

2.12 x 10~5 

Fig. 8 ROC curves for the binary detectors based on MLPs 5 x 
MC error criteria without IS (MSE, CEE and MCE in grey solid lines) and with IS (MSE 
MCE( IS> in grey dashed lines) 

1 trained to minimize the MS, CE and 
<IS) CEE(IS) and 

(empirically obtained) and the mean values of the Gaussian symbols are +2.0 and —2.0 
{en = n = 2.0, i = 1, 2 , . . . , « ) , i.e., a single parameter for the family of admissible 
IS pdf's is considered because the means of each sample a¡ are the same. Considering 
en = n = 2.0, i = 1,2, . . . ,n in (25) and (26) we have the family 

fi (x; 6) 
1 1 
27(2^r 

exp (4¿(*'+e*)2)+ffltp(-5¿^-0*)2)] (27) 

Focusing on the Fig. 5, the upper, middle and bottom plots correspond to the evolution of the 
estimation of the MS error (E*MS) by (14), the estimation of the standard deviation (<?,?*) of 
E*MS by (13) and the evolution of the optimum parameter 9* for f* (x; 9), respectively, when 
the training of the NN is based on IS. Several aspects can be emphasized. First, the estimated 
error and its estimated standard deviation during the training and especially at its end are 
always greater than the estimations obtained without IS training (for comparison, see Fig. 2). 
Second, the best parameter 9* adapts automatically from the starting value (9* = 2.0) to a 
null value (9* = 0). It involves that the best f* (x; 9) at the end of the training is a normal 
pdf with zero mean and unity variance, i.e., the noise pdf is the suboptimal solution for the 



IS pdf when the NN is quasi-trained, which is 

/x*(x;e) = 7 J = e x p ( - i | x ? ) . (28) 

Third, at the beginning of the training, EMS is high (poor behaviour) with high standard 
deviation (dp* ) in its estimation, but lower than the equivalent training without IS, so the 

estimations of EMS and OEMS a r e inaccurate. When the training progresses, E*MS decreases 
to a minimum value of 3.2 x 10~6 and makes more reliable this estimation because the dpt 

decreases to a value of 4 x 10~6. As can be observed, the estimations obtained here are better 
than those obtained in the case of training without IS. 

Figures 6 and 7 show the progresses of the MLP training with the CE and MC error crite­
ria, respectively. As occurred when the MS error criterion is used, the same aspects related 
with the estimation of the error, its standard deviation and the optimum value of the pdf can 
be obtained for both. Because the error criteria are different, the estimation errors E*CE and 
E'MC tend automatically to 1.7 x 10~5 and 3.8 x 10~6 at the end of the training, respec­
tively. Whereas, their standard deviations dp* and dpt are 2.8 x 1(T5 and 5.5 x 1(T6, 
respectively. As occurs when the MS error criterion is used, both estimations are better than 
those obtained in their corresponding cases of training without IS (see Figs. 3, 4). 

Because different error criteria in the NN training are used, the minimum error achieved at 
the end of the training cannot be used to compare each other. So, two different measurements 
are used to compare their performances in the testing stage. The first one corresponds to the 
estimated Pe and the second one to the estimation of the ROC curves. Each point of the ROC 
curves (Pfa,Pd) is obtained for a given threshold TQ by IS using 105 observations of each 
hypothesis. This process of estimation lets to obtain a maximum error in each estimation of 
5%, even in the worst cases (low Pfa values). 

Table 1 shows the Pe of the binary detector that uses an MLP trained without IS to min­
imize the MS (MLP(MS)), CE (MLP(CE)) and MC (MLP(MC)) errors and a threshold value 
of TQ = 0.5. The results show how the binary detector using the MLP^MC^ is better than the 
others for the considered threshold. Moreover, the worst one is the binary detector using an 
MLP(CE). These results show that MLP^MC^ is the best option to implement a binary detector 
in communications applications where the probability of error is the parameter that defines 
the quality of the system. Moreover, the same results are shown for MLPs trained with IS. 
From these results, the same conclusions as previously given can be achieved, but with more 
accurate measurements because the training is based on IS. 

On the other hand, the ROC curves of the previous binary detectors are exposed in Fig. 8. 
The results show how the performances of the detectors based on MLPs trained with MS and 
CE error criteria are better than the one trained using the MC error criterion. This is due to 
MC error criterion minimizes the error of classification, instead of the overall error as do the 
previous ones. Moreover, as can also be observed, this behaviour is independent whether the 
training is done using or not IS. The differences between both kind of trainings (without and 
with IS) is due to the more accurate estimation of the objective function in training with IS, 
where those events that rarely happens are artificially considered. As can be observed, the 
best error criterion to train MLPs with ASA in terms of ROC curves is the MS one, followed 
by the CE one, whereas the worst one is the MC. 

The experiments presented in this section, which are taken as a reference here on, show 
the performance improvement of training MLPs with IS against the training without IS. But 
it is necessary to check if this behavior is robust against changes in the parameters of the ASA 



Table 2 Probability of error of 
the binary detectors based on 
MLPs 5 x 5 x 1 trained without 
and with IS to minimize the MS, 
CE and MC error criteria and MLP^MS' 
tested with IS when 10 patterns ,„„, 

MT Pv̂ -̂ J are used during the training of the 
GA MLP(MC> 

Binary detector based on Probability of error (Pe) 

Trained without IS 

5.31 x 1CT5 

6.24 x 1(T5 

4.21 x 1(T5 

Trained with IS 

2.98 x lCT5 

3.92 x 1(T5 

2.07 x 10~5 

training algorithm or in the MLP size. The next two subsections are dedicated to study the 
influence of the variation of parameters like the number of observations used in the training 
and the influence of the MLP size in the binary detector. Other parameter studies like the 
initial value of 9 being greater than 2.0 or the limitation of the GA iterations to 200 has shown 
no relevant variations in the performances [Pe and ROC curves) of the designed detectors. 

5.1 Influence of the Number of Observations Considered in the NN Training 

One aspect to take into account is the number of observations used in the NN training, when 
both IS is used or not. It is important because the higher the number of observations con­
sidered in the training, the higher the accuracy of the performances achieved and the higher 
the computational cost. But, its accuracy and computational cost are not the only magnitude 
that increases with the number of observations, the memory requirements increase too. So, 
in this subsection, the affects of an increase in the number of observations in the training are 
exposed and analyzed. 

Table 2 shows the Pe of the binary detectors based on MLPs trained to minimize the MS, 
CE and MC error criteria without and with IS when N = 104 observations for step 2 in ASA 
and N =10 5 observations for step 4 in ASA are used. Note that 104 observations are also 
used in the training and validations sets when no IS is used in the NN training. So, if both 
cases are compared with the reference case exposed in Sect. 5 (N = 103 and N = 104 patterns 
for steps 2 and 4 in ASA, respectively), which results are exposed in Table 1, several con­
clusions can be obtained. First, changes are only relevant when no IS is used in the training, 
because the detector performances remain practically constant when IS is used. Second, the 
Pe estimations decrease for all the cases when no IS is used. The reason why it happens is 
due to an increase of the number of observations involves an improvement of the accuracy of 
the error estimation in this kind of training, what finally improves the detector performances. 
And third, the relative behaviours between error criteria continue as in the reference case, 
i.e., the best error criterion is the MC one and the worst is the CE one, independently whether 
IS is used or not. 

On the other hand, the ROC curves of the binary detectors exposed in the previous para­
graph are shown in Fig. 9. If they are compared with the performances of the binary detectors 
obtained in the reference case (see Fig. 8), the same conclusions can be achieved. In this 
case, first, the best performances are always achieved when IS is used in the training. Sec­
ond, the best performances for low Pfa values are obtained when the MS error criterion is 
used instead of the CE and MC ones. This behaviour is independent whether the training is 
based on IS or not. And third, the performances of these detectors are always better than in the 
reference case when no IS is used and are practically the same when IS is used. The reasons 
of this behaviour are exactly the same as the ones showed previously for the estimation of 
the Pe. So, the accuracy in the estimation during the training is better when no IS is used and 



Fig. 9 ROC curves for the binary detectors based on MLPs 5 x 5 x 1 trained to minimize the MS, CE and 
MC error criteria without IS (grey solid lines) and with IS (grey dashed lines) when 10 observations are used 
during the training of the GA 

Table 3 Probability of error of 
the binary detector based on 
MLPs 5 x 10 x 1 trained without 
and with IS to minimize the MS, 
CE and MC error criteria and 
tested with IS 

Binary detector based on Probability of error (Pe) 

MLP(MS> 

MLP(CE> 

MLP(MC> 

Trained without IS 

4.01 x 10~5 

4.78 x 10~5 

3.06 x 10~5 

Trained with IS 

2.10 x 10~5 

2.93 x 10~5 

1.15 x 10~5 

practically the same when IS is used, what involves that this number of observations increase 
is not justified when IS is used. 

5.2 Influence of the MLP Size 

Other parameter that should be studied is the MLP size, which is related with the intelligence 
of the binary detector. So, an increase in the MLP size, normally involves an improvement 
of the detector performance. In this subsection, this effect is studied when an increase from 5 
hidden neurons to 10 hidden neurons is done. Table 3 shows the results of the binary detectors 
based on MLPs of size 5 x 1 0 x 1 trained with MS, CE and MC error criteria when IS and no 
IS are used. The results show that the best error criterion is the MC one, whereas the worst 
one is the MS one. This behavior is independent of training without or with IS. Moreover, 
these conclusions are the same as those obtained for the case of MLP sizes of 5 x 5 x 1 
(reference case). The only difference between this case and the reference one is related with 
the achieved estimated errors. In this way, for high MLP sizes, the error is lower than for the 
case of MLP sizes of 5 x 5 x 1, as can be observed in the obtained results. 

On the other hand, the ROC curves for the previous binary detectors are shown in Fig. 10. 
As can be observed, the best performances are achieved when the MS error criterion is used 
and the worst ones are achieved when the MC one is used. Again, this behavior is independent 
of training without or with IS. A comparison between these results and those obtained for the 
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Fig. 10 ROC curves for the binary detectors based on MLPs 5 x 1 0 x 1 trained to minimize the MS, CE and 
MC error criteria without IS (MSE, CEE and MCE in grey solid lines) and with IS (MSE(IS), CEE(IS) and 
MCE(IS) in grey dashed lines) 

lowest MLP size ( 5 x 5 x 1 ) taken as reference (Fig. 8) gives the same kind of conclusions. 
But the main difference is based on the performances achieved, because they are better than 
those obtained in the reference case, specially when no IS is used. 

6 Conclusions 

Estimations of three objective functions (Mean-Square, Cross Entropy and Misclassiflcation 
error criteria) have been performed to supervise NN training. The value of these functions 
decreases as the training progresses and so, the number of test observations necessary for 
an accurate estimation has to be increased. Consequently, the training computational cost is 
unaffordable for very low objective function value estimations, and the use of IS techniques 
is applied to drastically accelerate its computation and to improve the final performance. 
The optimal IS pdf for each objective function is presented in this paper, becoming evident 
the impossibility of implementing them, because they depend on the error to be estimated. 
Because of that, suboptimal IS probability density functions are proposed in order to estimate 
error during training. The proposed suboptimal IS probability density functions belong to 
a family of parametric functions. The optimum parameter is determined during training by 
applying an adaptive search algorithm (ASA). The ASA is based on Genetic Algorithms and 
is performed in order to find a good IS probability density function (biasing pdf) in each 
iteration of the training to compute the estimation of the objective function and the error in 
this estimation. For our specific application, it is found that, at the end of the training, the 
best pdf for parameter estimation in ASA is the normal distribution with zero mean and unity 
variance because the parameter 9* vanishes at the end of the training. 

In order to determine which error criterion is better to implement detectors based on the 
Neyman-Pearson criterion, or classifiers to minimize the classification error, some experi­
ments have been carried out. The comparison of the results for the binary detectors based 
on MLPs trained with the three objective functions allows us to extract four important 



conclusions. The first one is related to the Pe of the binary detectors (equivalent to the 
Misclassification error), where the lowest Pe (better performance) is achieved by the use 
of the Misclassification error criterion in the training process, whereas the worst objective 
function is the Cross Entropy one. 

The second conclusion is obtained from the ROC curves. This conclusion establishes that 
the best objective function is the Mean-Square error, what makes it the best option for radar 
applications, where the maximization of P¡¡ for Pfa remaining constrained to low values is 
required (Neyman-Pearson criterion). In this kind of applications, the worst performances 
are achieved when the Misclassification error criterion is used, whereas the Cross Entropy 
error criterion is between them. 

The third conclusion is obtained according to the study of the results obtained during 
the training without and with IS. In this sense, the first two conclusions are independently 
obtained whether IS is used or not during the trainings. But, note that the performances of 
the NN-based detectors are always better when IS is used in the training than when it is not 
used. 

Finally, the fourth conclusion let us to know that some parameters, like the number of 
observations, make more reliable the training without IS but do not improve the performance 
of the NNs trained using IS, whereas this improvement increases the computational cost of 
the training. On the other hand, other parameters, like the NN size, let us improve the NN-
based detector performances, whereas others, like an increase in the number of iterations 
by more than 200, do not improve them. Moreover, other parameters of the ASA algorithm, 
such as the initial value of the parameter q, do not produce relevance changes in the detector 
performances. 

Concluding, we have studied in detail the use of IS techniques to train NN in order to 
implement NN-based detectors. Three objective functions have been considered in the paper, 
demonstrating that the Mean Square Error is the better one. An adaptive search algorithm 
(ASA) of the best parameter of the IS probability density function has been proposed, that is 
applied simultaneously with a GA for NN training. 
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