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Abstract 

Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images 

with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization 

properties. However, SVM training is notably a computationally intensive process especially when the training 

dataset is large. This paper presents RASMO, a resource aware MapReduce based parallel SVM algorithm for 

large scale image classifications which partitions the training data set into smaller subsets and optimizes SVM 

training in parallel using a cluster of computers. A genetic algorithm based load balancing scheme is designed to 

optimize the performance of RASMO in heterogeneous computing environments. RASMO is evaluated in both 

experimental and simulation environments. The results show that the parallel SVM algorithm reduces the 

training time significantly compared with the sequential SMO algorithm while maintaining a high level of 

accuracy in classifications. 

Keywords: Parallel SVM, MapReduce, image classification and annotation, load balancing. 

 

1. Introduction 

The increasing volume of images being generated by digitized devices has brought up a number of 

challenges in image retrieval. Content-based image retrieval (CBIR) was proposed to allow users to 

retrieve relevant images based on their low-level features such as color, texture and shape. However, 

the accuracy of CBIR is not adequate due to the existence of a Semantic Gap, a gap between the low-

level visual features such as textures and colors and the high-level concepts that are normally used by 

the user in the search process [39]. Annotating images with labels is one of the solutions to narrow 

down the semantics gap [29]. Automatic image annotation is a method of automatically generating one 

or more labels to describe the content of an image, a process which is commonly considered as a 

multi-class classification. Typically, images are annotated with labels based on the extracted low level 

features. Machine learning techniques have facilitated image annotation by learning the correlations 

between image features and annotated labels.  
 

Support Vector Machine (SVM) techniques have been used extensively in automatic image 

classifications and annotations [30-36].The qualities of SVM based classifications have been proven 

remarkable [21, 26, 40-42]. In its basic form SVM creates a hyperplane as the decision plane, which 

separates the positive and negative classes with the largest margin [21]. SVMs have shown a high 

level of accuracy in classifications due to their generalized properties. SVMs can correctly classify 

data which are not involved in the training process. This can be evidenced from our previous work in 

evaluating the performance of representative classifiers in image annotation [1]. The evaluation results 

showed that SVM performs better than other classifiers in term of accuracy. However, the training 

time of the SVM classifier is notably longer than that of other classifiers.  
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Numerous real world data mining applications involve millions or billions of data instances where 

processing the entire dataset is computationally intensive. It has been widely recognized that training 

SVMs is computationally intensive when the size of a training dataset is large. A SVM kernel usually 

involves an algorithmic complexity of O (m
2
n), where n is the dimension of the input and m represents 

the number of training instances. The computation time in SVM training is quadratic in terms of the 

number of training instances.  

 

To speed up SVM training, parallel computing paradigms have been investigated to partition a large 

training dataset into small data chunks and process each chunk in parallel utilizing the resources of a 

cluster of computers [8, 19, 43, 44, 57, 58]. The approaches include those that are based on the 

Message Passing Interface (MPI) [3, 19, 38, 49, 50, 53]. However, MPI is primarily targeted at 

homogeneous computing environments and has limited support for fault tolerance. Furthermore, inter-

node communication in MPI environments can create large overheads when shipping data across 

nodes. Although some progress has been made by these approaches, existing parallel SVM algorithms 

usually partition large datasets into smaller parts with the same size which can be used efficiently only 

in homogeneous computing environments in which the computers have similar computing capabilities. 

Currently heterogeneous computing environments are increasingly being used as platforms for 

resource intensive parallel applications. One major challenge in using a heterogeneous environment is 

to balance the computation loads across a cluster of participating computer nodes. 

 

This paper presents RASMO, a resource aware parallel SVM algorithm for large scale image 

classifications [56]. RASMO builds on the Sequential Minimal Optimization (SMO) algorithm [11] 

for high efficiency in training and employs MapReduce [9] for parallel computation across a cluster of 

computers. MapReduce has become a major enabling technology in support of data intensive 

applications. RASMO is implemented using the Hadoop implementation [20, 23] of MapReduce. The 

MapReduce framework facilitates a number of important functions such as partitioning the input data, 

scheduling MapReduce jobs across a cluster of participating nodes, handling node failures, and 

managing the required network communications. A notable feature of the Hadoop implementation of 

MapReduce framework is the ability to support heterogeneous environments but without an effective 

load balancing scheme for utilizing resources with varied computing capabilities. For this purpose a 

genetic algorithm based load balancing scheme is designed to optimize the performance of RASMO 

on heterogeneous computing environments. 

 

The RASMO algorithm is designed based on a multi-layered cascade architecture which removes non-

support vectors early in the training process and guarantees a convergence to the global optimum [6, 

45]. The cascade architecture has received significant attention from the research community due to its 

high accuracy in data training. RASMO partitions the training data set into smaller subsets and 

allocates each of the partitioned subsets (data chunks) to a single map task in MapReduce. Each map 

function (called mapper) trains a subset of the data in parallel in the first layer. The generated support 

vectors are combined and forwarded as a training input to the next layer. The process continues until 

only one set of support vectors is left. The support vectors of the final SVM are used to evaluate the 

initial data chunks to determine whether further optimizations are required. If a global convergence is 

not reached at this stage, the whole process will be repeated until the global optimum is reached. The 

genetic algorithm based load balancing scheme is applied in the first of layer computation in RASMO 

as this layer is the most intensive part in computation in optimizing the whole training dataset. The 

resulting support vectors from the first layer computation are used to create the input data for next 

layers which is usually much smaller in size in comparison with the original training data [46]. The 

size of each data chunk at the first layer is computed by the load balancing scheme based on the 

resources available in a cluster of computers such as the computing powers of processors, the storage 

capacities of hard drives and the network speeds of the participating nodes.  

 

The performance of RASMO is first evaluated in a small scale experimental MapReduce environment. 

Subsequently, a MapReduce simulator is employed to evaluate the effectiveness of the resource aware 

RASMO algorithm in large scale heterogeneous MapReduce environments. Both experimental and 

simulation results show that RASMO reduces the training time significantly compared to a standalone 

SMO algorithm while maintaining a high level of accuracy in classification. In addition, data chunks 
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with varied sizes are crucial in speeding up SVM computation in the training process. It is worth 

pointing out that using different sizes for data chunks has no impact on accuracy in SVM classification 

due to the structure of the RASMO algorithm in which the training work in the first few layers is 

merely a filtering process of removing non-support vectors and the resulting support vectors of the last 

layer are evaluated for a global convergence by feeding the output of the last layer into the first layer. 

 

The rest of this paper is organized as follows. Section 2 reviews related work on SVM parallelization. 

Section 3 presents the design of the MapReduce based RASMO algorithm. Section 4 details the design 

of a genetic algorithm for load balancing in heterogeneous Hadoop computing environments. Section 

5 evaluates the performance of RASMO in a small scale experimental Hadoop computer cluster. 

Section 6 further evaluates the performance of RASMO in large scale simulated Hadoop 

environments. Section 7 concludes the paper and points out some future work. 

 

2. Related Work 

SVM training is a computationally intensive process especially when the size of the training dataset is 

large. Numerous avenues have been explored with an effort to increase efficiency and scalability, to 

reduce complexity as well as to ensure that the required level of classification accuracy can be 

maintained. 

 

SVM decomposition is a widespread technique for performance improvement [10, 47, 48]. 

Decomposition approaches work on the basis of identifying a small number of optimization variables 

and tackling a set of problems with a fixed size. One approach is to split the training data set into a 

number of smaller data chunks and employs a number of SVMs to process the individual data chunks. 

Various forms of summarizations and aggregations are then performed to identify the final set of 

global support vectors. Hazan et al. [8] introduced a parallel decomposition algorithm for training 

SVM where each computing node is responsible for a pre-determined subset of the training data. The 

results of the subset solutions are combined and sent back to the computing nodes iteratively. The 

algorithm is based on the principles of convex conjugate duality. The key feature of the algorithm is 

that each processing node uses independent memory and CPU resources with limited communication 

overhead. Zanghirati et al. [19] presented a parallel SVM algorithm using MPI which splits the 

problem into smaller quadratic programming problems. The output results of the sub-problems are 

combined. The performance of the parallel implementation is heavily depended on the caching 

strategy that is used to avoid re-computation of the previously used elements in kernel evaluation 

which is considered as computationally intensive. Similarly, MPI based approaches have been 

proposed for speeding up SVM in training [3, 38, 49, 50, 53]. Whilst good performance improvements 

can be achieved by MPI based parallelization, these approaches tend to suffer from poor scalability, 

high overhead in inter-node communication, and limited support for heterogeneous computing 

environments. 

 

Collobert et al. [5] proposed a parallel SVM algorithm which trains multiple SVMs with a number of 

subsets of the data, and then combines the classifiers into a final single classifier. The training data is 

reallocated to the classifiers based on the classification accuracy and the process is iterated until a 

convergence is reached. However the frequent reallocation of training data during the optimization 

process may cause a reduction in the training speed. Huang et al. [7] proposed a modular network 

architecture which consists of several SVMs of which each is trained using a portion of the whole 

training dataset. It is worth noting that speeding up the training process can significantly reduce 

classification accuracy due to the increase in the number of partitions. Lu et al. [12] proposed a 

parallel SVM algorithm based on the idea of partitioning training data and exchanging support vectors 

over a strongly connected network. The algorithm converges to a global optimal classifier in finite 

steps. The performance of this solution is depended on the size and topology of network. The larger a 

network is, the higher communication overhead it will incur. Kun et al. [22] implemented a parallel 

SMO using Cilk [51] and Java threads. The idea is to partition the training data into smaller parts, train 

these parts in parallel, and combines the resulting support vectors. However Cilk's main disadvantage 

is that it requires a shared-memory computer [17]. 
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An interesting alternative is considered and discussed in [3].The work on updating optimality 

condition vectors is performed in a parallel way leading to a speedup in SVM training. However this 

approach can incur considerable network communication overhead due to the large number of 

iterations involved. Another approach utilizes Graphics Processing Units (GPU) for SVM speedup 

[13]. MapReduce was adopted in this work exploiting the multi-threading capabilities of graphics 

processors. The results show a considerable decrease in processing time. A key challenge with such an 

approach lies in the specialized environments and configuration requirements. The dependency of 

specific development tools and techniques as well as platforms introduces additional, non-trivial 

complexities.  

 

SVM algorithms rely on the number of support vectors for classification. Removing non-support 

vectors in an early stage in the training process has proven to be useful in reducing the training time. 

Dong et al. [14] proposed a parallel algorithm in which multiple SVMs are solved with partitioned 

data sets. The support vectors generated by one SVM are collected to train another SVM. The main 

advantage of this parallel optimization step is to remove non-support vectors which can help reduce 

the training time. Graf et al. [6] proposed a similar parallel SVM algorithm using a homogenous Linux 

cluster. The training data is partitioned and an SVM is solved for each partition. The support vectors 

from each pair of classifiers are then combined into a new training dataset for which an SVM is 

solved. The process carries on until a final single classifier is left. Although the convergence to the 

global optimum can be guaranteed, partitioning a large dataset into smaller data chunks with the same 

size can only be effective in a homogeneous computing environment in which computers have similar 

computing capabilities.  Another similar work is presented in [27].  

 

Given the focus that most of the current approaches are primarily focused on the SVM solver, 

parallelization using a number of computers may introduce significant communication and 

synchronization overheads. Frameworks such as MapReduce are believed to provide an effective 

application scope in this context [18]. Chu et al. [4] capitalized natively on the multi-core capabilities 

of modern day processors and proposed a parallel linear SVM using the MapReduce framework; batch 

gradient descent is performed to optimize the objective function. The mappers calculate the partial 

gradient and the reducer sums up the partial results to update the weights vector. However the batch 

gradient descent algorithm is extremely slow to converge with some types of training data [21]. 

 

It is worth noting that several parallel SVM algorithms are implemented on MapReduce based 

distributed frameworks. Sun and Fox [54] implemented a parallel SVM based Twister MapReduce 

framework. In this model, training dataset is divided into subsets. Each subset is trained with a SVM 

model. The non-support vectors are filtered with SVMs. The support vectors of each SVM are taken as 

the input of next layer SVMs. The global SVM model is obtained through iteration. Experiments show 

that the parallel SVM algorithm reduces the training time significantly. However experiments are 

performed using a small homogenous cluster of 8 nodes. It is clear that without an appropriate 

scheduling scheme it is hard to achieve an optimal solution in heterogeneous computing environments. 

In addition it is not clear how the algorithm performs with clusters of hundreds or thousands of nodes. 

Catak and Balaban [55] implemented a parallel SVM based on the Hadoop MapReduce framework. 

SVM algorithms are trained in parallel then merge all support vectors in all trained SVMs, and the 

global SVM model is obtained through iteration Experiments are performed using a small 

homogenous cluster of 10 nodes. The algorithm relies on Hadoop’s default scheduling scheme. As 

discussed earlier the current implementation of Hadoop only employs first-in-first-out (FIFO) and fair 

scheduling with no support for load balancing taking into consideration the varied resources of 

computers. In comparison with the above algorithms, we designed a genetic algorithm based load 

balancing scheme to optimize the performance of RASMO in heterogeneous computing environments.    
 

Summarizing, research on parallel SVM algorithms has been carried out from various dimensions, but 

mainly focuses on specialized SVM formulations, solvers and architectures [6-8, 13]. Although some 

progress has been made in speeding up SVM computation in training, existing approaches on high 

performance SVMs are mainly targeted at homogenous computing environments using an MPI based 

solution. Scalability still remains a challenging issue for parallel SVM algorithms. These challenges 
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motivated the design of RASMO which targets at a scalable SVM in heterogeneous computing 

environments empowered with a load balancing scheme.  

 

3. The Design of RASMO 

This section starts with a brief description of the SMO algorithm followed by a detailed description of 

RASMO. 

 

3.1 The SMO Algorithm 

The SMO algorithm was developed by Platt [11] and further enhanced by Keerthi et al. [16].  Platt 

takes the decomposition to the extreme by selecting a set of only two points as the working set which 

is the minimum due to the following condition: 

 

             (1)                                                    

 

 

where
ia  is a Lagrange multiplier and y is a class name. This allows the sub-problems to have an 

analytical solution. Despite the need for a number of iterations to converge, each iteration only uses a 

few operations. Therefore the algorithm shows an overall speedup of some orders of magnitude [21]. 

The SMO has been recognized as one of the fastest SVM algorithms available. We define an index set 

I which denotes the following training data patterns: 

 

           
   cayicayiI iiii  0,1:0,1:0  
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(Bound Negative Support Vectors) 
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(Bound Positive Support Vectors) 

 0,1:4  ii ayiI (Negative Non-Support Vectors)
 

 

where c is the correction parameter. We also define bias 
upb and lowb  with their associated indices as 

follows: 
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The optimality conditions are tracked through the vector fi in Eq. (2). 
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where K is a kernel function and Xi is a training data point. SMO optimizes two ia values related to 

upb and lowb according to Eq. (3) and Eq. (4). 
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where ),(),(),(2 221121 XXkXXkXXk  and 
21 yys  . After optimizing 1a and 2a , if

which denotes the error of the i th training data can be updated according to Eq. (5).
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To build a linear SVM, a single weight vector needs to be stored instead of all the training data that 

corresponds to the non-zero Lagrange multipliers. If the joint optimization is successful, the stored 

weight vector needs to be updated to reflect the new Lagrange multiplier values. The weight vector is 

updated according to Eq. (6). 
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We check the optimality of the solution by calculating the optimality gap between the blow and bup. The 

algorithm is terminated when 2 uplow bb  as shown in Algorithm 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Cascade SVM 

SVM training can be speeded up by splitting the training data set into a number of smaller data chunks 

and trained separately with multiple SVMs. When the training process is completed, the generated 

training vectors have support vectors and non-support vectors. Identifying and removing the non-

support vectors in an early stage in the training process is an effective strategy in speeding up SVM [6, 

14, 27]. The multilayered cascade architecture follows an approach to derive the global optimum from 

partial solutions. Figure 1 shows an example of a cascade SVM.  

 

Algorithm 1: Sequential Minimal Optimization  

Input: training data xi, labels yi; 

Output: sum of weight vector, α array, threshold b and SV;    

 

1:   Initialize: αi = 0, fi = -yi; 

2:   Compute: bhigh, Ihigh, blow, Ilow; 

3:   Update αIhigh and αIlow; 

4:   repeat; 

5:   Update fi; 

6:   Compute: bhigh, Ihigh, blow, Ilow; 

7:   Update αIhigh and αIlow; 

8:   until 2 uplow bb ;
 

9:   Update b; 

10:  Store the new α1 and α2 values; 

11:  Update weight vector w if SVM is linear; 
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Figure 1: A cascade SVM example. 

 

In this architecture a single SVM is trained with a smaller data chunk and non-support vectors are 

removed. The support vectors generated from one layer are combined as input for the next layer. The 

process continues until a single set of support vectors is remained. The numbers of the layers depend 

on the size of training dataset. This architecture insures that SVMs are trained with much smaller 

training data chunks than the entire training dataset which improves the overall training speed 

substantially. The cascade architecture is guaranteed to converge to the global optimum as the support 

vectors of the last layer are fed back into the SVMs in the first layer to determine the level of 

convergence. In most cases convergence to global optimum is reach with first iteration.   
 

3.3 The RASMO Algorithm 

RASMO builds on MapReduce for parallelization of SVM computation in training. We start this 

section by a brief description of the MapReduce programming model followed by a detailed 

description of the RASMO algorithm. 

3.3.1 MapReduce Model 

MapReduce provides an efficient programming model for processing large data sets in a parallel and 

distributed manner. The Google File System [15] that underlies MapReduce provides an efficient and 

reliable data management in a distributed computing environment. The basic function of the 

MapReduce model is to iterate over the input, compute key/value pairs from each part of input, group 

all intermediate values by key, then iterate over the resulting groups and finally reduce each group. 

The model efficiently supports parallelism. Figure 2 shows the workflow of a job in MapReduce. Map 

is an initial transformation step in which individual input datasets are processed in parallel. The system 

shuffles and sorts the map outputs and transfers them to the reducers. Reduce is a summarization step, 

in which all the associated outputs are processed together. 

 

3.3.2 RASMO Implementation 

The RASMO algorithm partitions the entire training data set into smaller data chunks and assigns each 

data chunk to a single map task. The number of map tasks is equal to number data chunks. Each map 

task optimizes a data chunk in parallel in each layer. 
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The output of each map task is the α array (Lagrange multipliers) for a local partition and the training 

data Xi which corresponds to Lagrange multipliers      in order to create input for the next layer. 

The output of the last layer are the α array, bias threshold b and the training data Xi in order to 

calculate the SVM output u using Eq. (7). 

                       bXXKayu ii

n

i

i 


),(
1

                (7) 

 

where   is an instance to be classified,    is a class label for Xi and K is the kernel function. 
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Figure 2: The MapReduce model. 

 

Each map task processes the associated data chunk and generates a set of support vectors. Each set of 

the support vectors is then combined and forwarded to the map task in the next layer as input. The 

process continues until a single set of support vectors is computed. The set of support vectors of the 

last layer is then fed back into the first layer together with non-support vectors to determine the level 

of convergence. The entire process stops when the global optimum is reached indicating that no 

further optimization is needed in the first layer, and the generated SVM model will then be used in the 

classification. Figure 3 presents a high level pictorial representation of this approach, in part similar to 

the approach adopted in [6]. 

 

 

Figure 3: The architecture of RASMO. 
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Algorithm 2 shows the pseudo code of RASMO with a 3-layer structure. Lines 1-4 show the 

optimization process of SMO for each data chunk and the combination support vectors of layer 1. 

Lines 5-8 show the assembling results from layer 1 which are used as input for layer 2. Lines 9-12 

show the assembling results from layer 2 which are used as input for layer 1, and the training process 

in layer 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the entire computation is performed in the map phase, therefore the reduce phase is not required.  

Having no reduce phase in RASMO further enhances the performance of the algorithm, as the sort, 

shuffle and reduce phases are known to be computation expensive. 

 

4. The Design of Genetic Algorithm for Load Balancing in Hadoop 

A remarkable characteristic of the Hadoop MapReduce framework is its support for heterogeneous 

computing environments. Therefore computing nodes with different processing capabilities can be 

utilized to run Hadoop applications in parallel. However, the current implementation of Hadoop only 

employs first-in-first-out (FIFO) and fair scheduling with no support for load balancing taking into 

consideration the varied resources of computers. A genetic algorithm based load balancing scheme is 

designed to optimize the performance of RASMO in heterogeneous computing environments. 

 

4.1 Encoding 

 

The optimization target is to find an optimal or a near optimal solution for assigning data chunks 

among the mappers in Hadoop. In genetic algorithms, chromosomes are encoded as a set of strings 

which are normally binary strings. However, a binary encoding is not feasible as the number of 

mappers in a Hadoop computer cluster is normally large which will result in long binary strings. As a 

result, we employ decimal strings to encode chromosomes in the genetic algorithm design. Each data 

chunk    assigned to a mapper         is encoded as a gene and the length of a chromosome 

equals to the number of mappers. The position of a gene represents the sequence number of a 

mapper which is organized in an ascending order from the left side to the right side in a chromosome. 

Figure 4 shows a chromosome example with 6 genes. 

 

 

Algorithm 2: RASMO Algorithm 

Map Tasks 

Input: training data ix  and label iy ; 

Output: support vectors isv , threshold ib , data ix  and label iy ; 

 

1:    train SVM on m data chunks; 

2:    obtain msv  set for m chunks;  0 mmsv 
;
 

3:    combine generated msv sets for each pair of m chunks and corresponding mx ; 

4:    store all mx for msv  to create k input chunks for the next layer; 

5:    train SVM on 
mx ;

 

6:    obtain ksv  set for k chunks;  0 kksv  ;
 

7:    combine ksv sets  for each pair of k chunks and corresponding kx ;  

8:    store all kx for ksv  to create input chunk for the next layer;  

9:    train SVM on kx ; 

10:   obtain isv  set for  kx ;  0 iisv   and ib ;  

11:   evaluate isv for global convergence; 

12:   store the final set isv  , ix and ib
 if further optimization is not required; 
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 Figure 4: An example of a chromosome. 

 

4.2 Fitness Function 

 

The total time        to process data chunks in one processing wave in Hadoop is the maximum time 

consumed by   participating mappers, where  

 

                                         ,               

 
According to divisible load theory, to achieve a minimum       , it is expected that all the mappers to 

complete data processing almost at the same time: 

                          

                        

Let 

    be the processing time of the     mapper and    can be computed following the work 

presented in [59]. 

    be the average time of the   mappers in data processing,    
   

 
   

 
 

 

The fitness function measures the distance between 
iT and T  which can be computed using Eq.(8). 

 

                                         
 
                                     (8) 

4.3 Selection  

 

The chromosomes in a population are sorted by their associated fitness values. A better fitness value 

of a chromosome provides it with a higher probability to survive through the selection step which is 

based on the roulette wheel method [60]. When a chromosome is added to a new population, it gains a 

number of slots on the wheel which are associated with the fitness value of that chromosome. Once 

each chromosome specifies slots on the wheel and the number of chromosomes to be selected for a 

new generation is set, the wheel can be started spinning. When the wheel stops, a slot will be located. 

The chromosome associated with the slot will be selected. Usually a chromosome with a larger fitness 

value occupies more slots on the wheel, which means that the chromosome with a higher statistical 

probability will be selected to go through the next generation. 

                

 

D2 D1 D3 D5 D4 D6Chromosome

Mappers Mapper1 Mapper2 Mapper3 Mapper4 Mapper5 Mapper6

D1 D2 D3 D4 D5 D6Data chunks
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4.4 Crossover 

 

Crossover recomposes the homologous chromosomes via mating to generate new chromosomes which 

are also called offspring. The generated offspring inherit the basic characteristics of their parents. 

Some of them may adapt to the fitness function better than their parents do, so they may be chosen as 

parents in the next generation. Based on crossover, the genetic algorithm can keep evolving until an 

optimal offspring has been found. In our design, a single-point crossover which refers to setting only 

one crossover point randomly in the chromosome is employed. The crossover point is randomly 

generated during the evolution process and the crossover rate is set to 0.6. Figure 5 shows an example 

of crossover. 

 

 

Figure 5: An example of crossover. 

 

The process of crossover of the genes in the chromosomes may differentiate the original total volume 

of data D =
1

k

i

i

D


 . Assume the original total volume of data is 
1

k

i

i

D


  and the volume of data after 

crossover is
1

k

i

i

d


 , then the difference 
1 1

k k

i i

i i

D D d
 

     should be considered. In the genetic 

algorithm, D  is divided into k  parts. The size of each part is randomly assigned. And then these 

k  parts will be randomly added to or removed from the k  genes in the chromosome. Thus the total 

size of processed data in one wave can be guaranteed. 

 

 

4.5 Mutation 

 

We conduct a mutation process in the genetic algorithm to avoid a local optimum. In this process, 

genes are mutated in chromosomes based on a small probability of 0.005. It is similar to the crossover 

process that the original total volume of data 
1

k

i

i

D


  may be changed when the value of a gene 

mutates. Assume the original data volume of the gene is iD  and the data volume after mutation is id , 

then the difference i iD D d    should be taken into account following the way taken in the 

crossover process.  

 

 

4.6 Termination 

 

Three conditions are used in the genetic algorithm to stop the search process: 
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 The evolution stops if the total number of iterations reaches a predefined number of iterations. 

 The evolution stops if the fittest chromosome of each generation has not changed much, i.e., 

the difference is less than 10
-4

 over a predefined number. 

 The evolution stops if all chromosomes have the same fitness values, i.e., when the algorithm 

has converged. 

 

5. Experimental Results 

We have incorporated RASMO into our image annotation system which is developed using the Java 

programming language and the WEKA package [24]. The image annotation system classifies visual 

features into pre-defined classes. Figure 6 shows the architecture of the system and Figure 7 shows a 

snapshot of the system. Images are first segmented into blocks. Then, the low-level features are 

extracted from the segmented image blocks. Each segmented block is represented by feature vectors. 

We assign the low-level feature vectors to pre-defined categories. The system learns the 

correspondence between low level visual features and image labels. The annotation system combines 

low-level MPEG-7 descriptors such as scalable color and edge histogram [25]. In the training stage, 

the SVM classifier is fed a set of training images in the form of attribute vectors with the associated 

labels. After a SVM model is trained, it is able to classify a new image into one of the learned class 

labels in the training set. 

 

 

Figure 6: Image annotation system architecture. 

5.1 Image Corpora 

The images are collected from the Corel database [37]. Images are classified into 10 classes, and each 

class of the images has one label associated with it. The 10 pre-defined labels are people, beach, 

mountain, bus, food, dinosaur, elephant, horses, flower and historic item. Typical images with 

384x256 pixels are used in the training process. Low level features of the images are extracted using 

the LIRE (Lucene Image REtrieval) library [28]. After extracting low level features a typical image is 

represented in the following form: 

0,256,12,1,-56,3,10,1,18,...........2,0,0,0,0,0,0,0,0,beach 

Each image is represented by 483 attributes, and the last attribute indicates the class name which 

indicates the category to which the image belongs to. 
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Figure 7: A snapshot of the image annotation system. 

5.2 Performance Evaluation 

RASMO is implemented using WEKA’s base machine learning libraries written in the Java 

programming language and tested in a Hadoop cluster. To evaluate RASMO, we extended the SMO 

algorithm provided in the Weka package, configured it and packaged it as a basic MapReduce job. The 

Hadoop cluster for this set of experiments consists of a total of 12 physical cores across 3 computer 

nodes as shown in Table 1. 
 

Table 1: Configurations for an experimental Hadoop cluster. 

 
Hardware environment 

  CPU Number of Cores RAM 

Node 1 Intel Quad Core 4 4GB 

Node 2 Intel Quad Core 4 4GB 
Node 3 Intel Quad Core 4 4GB 

            Software environment  

SVM 

SVM kernels  

WEKA 3.6.0 (SMO) 

Polynomial  

 

OS Fedora10  
Hadoop Hadoop 0.20  

Java JDK 1.6  

 

 

We evaluated the performance of RASMO from the aspects of execution time and accuracy. Figure 8 

shows the computation efficiency of the RASMO in SVM training using 12 mappers. The 

experimental results demonstrate that the sequential SMO is faster than RASMO when the number of 

training instances is small (e.g. between 5000 and 8000) due to the computation overhead incurred in 

Hadoop startup. However, RASMO starts to outperform the sequential SMO with an increasing 

number of instances in terms of training time required. Figure 9 shows that RASMO is highly scalable 

with a reduction in execution time when the number of participating MapReduce mappers varies from 

4 to 12.    
 



14 

 

Figure 8: The computation efficiency of RASMO using 12 mappers. 

 

 

Figure 9: The computation efficiency of RASMO in 4 scenarios. 

 

 

Figure 10 shows that RASMO is scalable with a reduced execution time when the number of 

participating MapReduce mappers varies from 1 to 12 using 60000 training instances.   
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Figure 10: The computation scalability of RASMO in the experimental environment. 

 

 

Furthermore we compared the accuracy of RASMO with that of the sequential SMO in classification 

using 5000 instances. In total 50 unlabeled images were tested (10 images at a time), the average 

accuracy level was considered. Table 2 shows the comparison results in classification accuracy. It is 

clear that the parallelization of RASMO has no significant effect on the accuracy level even after the 

first iteration which is close to the global optimum. The results show that RASMO achieves 94% of 

correct classifications which is almost the same as the sequential SMO. We have further conducted a 

10-fold cross-validation on the two classifiers. The root mean squared errors for the sequential and the 

parallel classifiers are 0.223 and 0.225 respectively.    

 

Table 2: Classification accuracy. 

 Sequential SMO RASMO 12 Mappers  

Correctly Classified 94.4 % 94.2 % 

Incorrectly Classified    5.6% 5.8% 

Root Mean Squared Error 0.223 0.225 

Total Number of Instances 5000 5000 

 

 

6. Simulation Results 

To further evaluate the effectiveness of RASMO in large scale MapReduce environments, we have 

implemented HSim [2], a Hadoop MapReduce simulator using the Java programming language.  In 

this section, we assess the performance of the RASMO in simulation environments. Using HSim, we 

simulated a number of Hadoop environments and evaluated the performance of RASMO in terms of 

scalability, load balancing effectiveness and overhead of the load balancing scheme.  

6.1 Scalability 

To further evaluate the scalability of the RASMO algorithm, we employed HSim and simulated a 

number of Hadoop environments using a varying number of nodes up to 250. Each Hadoop node was 

simulated with 4 mappers, and 4 input data sets were used in the simulation tests. Table 3 shows the 

configurations of the simulated Hadoop environments.  
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Table 3: Simulator configurations for scalability evaluation. 
Simulation Environment 

Number of simulated nodes: 250 

Data size: 100,000MB 

CPU processing speed: 0.75MB/s 
Hard drive reading speed: 80MB/s 

Hard drive writing speed: 40MB/s 

Memory reading speed: 6000MB/s 
Memory writing speed: 5000MB/s 

Network bandwidth: 1Gbps 

Total number of Map instances: 4 mappers per node 

 

 

From Figure 11 we can observe that the processing time of RASMO decreases as the number of nodes 

increases. It is also worth noting that there is no significant reduction in the processing time of 

RASMO beyond certain number of nodes. This is primarily due to the fact that Hadoop incurs a higher 

communication overhead when dealing with a larger number of computing nodes. 

 

 
Figure 11: The scalability of RASMO in simulation environments. 

 

6.2 Load Balancing 

Table 4 shows the configuration settings of the simulated Hadoop environments in evaluating the 

effectiveness of the load balancing scheme of RASMO. 

 
Table 4: Simulator configurations for load balance evaluation. 

Simulation Environment 

Number of simulated nodes 20 
Number of processors in each node 1 

Number of cores in each processor 2 

The processing speeds of processors depending on heterogeneities 
Heterogeneities from 0 to 2.28 

Number of hard disk in each node 1 
Reading speed of Hard disk 80MB/s 

Writing speed of Hard disk 40MB/s 

Number of Mapper each node employs 2 map instances  
Sort factor: 100 
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To evaluate the load balancing algorithm we simulated a cluster with 20 computing nodes. Each node 

has a processor with two cores. The number of mappers is equals to the number of cores. Therefore we 

run two mappers on a single processor with two cores.  

 

The speeds of the processors are generated based on the heterogeneities of the Hadoop cluster. In the 

simulation environments the total processing power of the cluster was       
 
    where n 

represents the number of the processors employed in the cluster and    represents the processing 

speed of     processor. For a Hadoop cluster with a total computing capacity denoted by  , the 

heterogeneity level can be defined using Eq.(9).  

 

                        
 
                    (9) 

 

where     is the average speed of computers in a Hadoop cluster.  
 

In the simulation, the value of heterogeneity varied from 0 to 2.28. The reading and writing speeds of 

hard disk were measured from the experimental results. In the RASMO algorithm, mappers are the 

actual processing units. Therefore balancing the workloads of the mappers in the first layer in the 

cascade SVM model is the core part of the load balancing algorithm. We employed 10GB data in the 

tests.      

 

Figure 12 shows the performance of RASMO with load balancing. We can observe that when the level 

of heterogeneity is less than 1.08 indicating not too heterogeneous environments, the load balancing 

scheme does not make any difference to the RASMO algorithm in performance. However the load 

balancing scheme reduces the overhead of RASMO significantly when the level of heterogeneity 

increases showing that the resource aware RASMO can optimize resource utilization in highly 

heterogeneous computing environments. 

 

 

Figure 12: The impact of load balancing with various levels of heterogeneity. 

 

We kept the degree of heterogeneity the same in the simulated cluster but varied the size of data from 

1GB to 10GB. This set of tests was used to evaluate how the load balancing scheme performs with 

different sizes of data sets. Figure13 shows that the load balancing scheme always reduces the 

overhead of RASMO in SVM training using varied volumes of data.  
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Figure 13: The performance of RASMO with a varied volume of data. 

 

6.3 Convergence of the Genetic Algorithm 

The load balancing scheme builds on the genetic algorithm presented in Section 4 whose convergence 

speed affects the computation efficiency of RASMO in training. To analyze the convergence of the 

genetic algorithm, we varied the number of generations from 1 to 1000 and measured the execution 

time of RASMO in processing a dataset of 10GB in a simulated Hadoop environment using the 

configuration settings shown in Table 4. Figure 14 shows that RASMO reaches a stable performance 

in computation when the genetic algorithm evolves through 300 generations.  

 

 

Figure 14: Convergence of the genetic algorithm. 
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7. Conclusion 

In this paper we have presented and evaluated RASMO, a resource aware parallel SVM algorithm that 

capitalizes on the scalability, parallelism and resiliency of MapReduce for large scale image 

annotations. By partitioning the training dataset into smaller subsets and optimizing the partitioned 

subsets across a cluster of computing nodes in multiple stages, the RASMO algorithm reduces the 

training time significantly compared to a standalone SMO algorithm while maintaining high level of 

accuracy in classification. We introduced a genetic algorithm based load balancing scheme to optimize 

the performance of RASMO in heterogeneous environment. The load balancing scheme reduces the 

overhead of RASMO significantly with an increasing levels of heterogeneity showing that the 

resource aware RASMO can optimize resource utilization in highly heterogeneous computing 

environments. Both the experimental and simulation results have shown the effectiveness of RASMO 

in training. To evaluate the scalability of the RASMO algorithm, we employed HSim and simulated a 

number of Hadoop environments using a varying number of nodes up to 250. We have observed that 

the processing time of RASMO decreases as the number of nodes increases. We have analyzed the 

convergence speed of the genetic algorithm in a simulated Hadoop environment. The simulation 

results have shown that RASMO has a quick convergence process in reaching a stable performance.  

 

We are planning to implement a distributed multiclass SVM algorithm based on one against one 

technique [52] for high efficiency. For a multiclass problem, it trains all possible binary SVM 

classifiers which are computationally expensive. The computation task has to be distributed among a 

cluster of computers. In addition we are planning to consider load balancing scheme in a dynamic 

heterogeneous environment where the resources and computational capabilities are changed dynamical 

during Hadoop job execution. We also are planning to evaluate the RASMO on virtualized utility 

computing environments, such as Amazon’s Elastic Compute Cloud (EC2) to further study the 

behaviour of the algorithm in cloud environment. Finally we are considering using a much larger 

number of classes of images to evaluate the performance of the algorithm in terms of classification 

accuracy and training overhead. 
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