
Learning Sparse Feature Representations using

Probabilistic Quadtrees and Deep Belief Nets

Saikat Basu1, Manohar Karki1, Sangram Ganguly2, Robert
DiBiano1, Supratik Mukhopadhyay1 and Ramakrishna Nemani3

1Department of Computer Science, Louisiana State University
2Bay Area Environmental Research Institute/ NASA Ames

Research Center
3NASA Advanced Supercomputing Division/ NASA Ames

Research Center

September 14, 2015

Abstract

Learning sparse feature representations is a useful instrument
for solving an unsupervised learning problem. In this paper, we
present three labeled handwritten digit datasets, collectively called
n-MNIST. Then, we propose a novel framework for the classifica-
tion of handwritten digits that learns sparse representations using
probabilistic quadtrees and Deep Belief Nets. On the MNIST and
n-MNIST datasets, our framework shows promising results and sig-
nificantly outperforms traditional Deep Belief Networks.

1 Introduction

Deep Learning has gained popularity over the last decade due to its ability
to learn data representations in an unsupervised manner and generalize
to unseen data samples using hierarchical representations. The most re-
cent and best-known Deep learning model is the Deep Belief Network [1].
In [2], Deep Belief Networks have been used for modeling acoustic signals
and have been shown to outperform traditional approaches using Gaus-
sian Mixture Models for Automatic Speech Recognition (ASR). Deep Be-
lief Network is trained one layer at a time using Restricted Boltzmann
Machines (RBM). A sparse feature learning algorithm for Deep Belief

1

ar
X

iv
:1

50
9.

03
41

3v
1 

 [
cs

.C
V

] 
 1

1 
Se

p 
20

15



Networks was proposed in [3]. However, their work was focused on maxi-
mization of information content in the learned representations. Restricted
Boltzmann Machines, on the other hand, are trained by minimizing a con-
trastive term in the loss function.

The main contributions of our work are twofold – (1) We first present
three labeled handwritten digit datasets, collectively called n-MNIST,
created by adding white gaussian noise, motion blur and reduced contrast
to the original MNIST dataset[4]. (2) Then, we present a framework
for the classification of handwritten digits that a) learns probabilistic
quadtrees from the dataset, b) performs a Depth First Search on the
quadtrees to create sparse representations in the form of linear vectors,
and c) feeds the linear vectors into a Deep Belief Network for classification.
On the MNIST and n-MNIST datasets, our framework shows promising
results and significantly outperforms traditional Deep Belief Networks.

2 Datasets1

We evaluate our framework on the MNIST dataset[4] of handwritten dig-
its as well as three artificial datasets collectively called n-MNIST (noisy
MNIST) created by adding – (1) additive white gaussian noise, (2) motion
blur and (3) a combination of additive white gaussian noise and reduced
contrast to the MNIST dataset. Some of the images from these datasets
are shown in Figure 1.

(a) MNIST with Additive
White Gaussian Noise

(b) MNIST with Motion
Blur

(c) MNIST with AWGN
and reduced contrast

Figure 1: Example images from the n-MNIST dataset created as part of
the experiments

1The datasets are available at the web link [5] along with a detailed description of
the methods and parameters used to create them
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3 Probabilistic Quadtrees for Learning Sparse
Representations

We propose a novel technique based on probabilistic quadtrees that can
reduce the dimensionality of a dataset in a probabilistically sound way.
We learn the structure of the quadtree from the samples of a dataset. A
quadtree splits each image into four equi-sized windows, and then per-
forms a test of homogeneity on each image window. If a block meets the
homogeneity criterion, it is not divided any further into sub-windows. If
otherwise, it does not meet the criterion, it is again subdivided into four
sub-windows, and the test criterion is in turn applied to those smaller win-
dows. This process is repeated on all the sub-windows until each meets
the homogeneity criterion. The resulting data structure can have win-
dows of several different sizes. The homogeneity criterion can be defined
as follows - Split a block if the maximum value of the block elements
minus the minimum value is greater than a threshold τ . Threshold τ
is specified as a value between 0 and 1 (chosen here as 0.27 by experi-
ments). Denoting the homogeneity criterion for sample d as Hd, this can
be formally presented as follows:

Hd =

true, if max
i∈d

(i)−min
i∈d

(i) ≤ τ | τ ∈ [0, 1]

false, if max
i∈d

(i)−min
i∈d

(i) > τ | τ ∈ [0, 1]
(1)

Alternatively, the homogeneity criterion can be considered propor-
tional to the standard deviation of the probability distribution of the
dataset. So, higher the standard deviation, higher the average texture
of a block and higher is the probability of the block being divided into
sub-blocks.

In the learned quadtree structure for a given dataset, a node is di-
vided into smaller windows if the homogeneity criterion is not met for
any sample in the dataset. The node is not divided into smaller windows
only if the homogeneity criterion is met by all samples in the dataset.

We can consider each node of the quadtree as a binary random variable
X, which can take one of two values 1 or 0 based on whether it is divided
into smaller windows or not. So, for a total of N samples in dataset D,
the random variable X may take on one of N + 1 possible split state
values: one value for each of the samples not meeting the homogeneity
criterion, and one value indicating that all samples meet the homogeneity
criterion. This can be formally presented as follows:
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X =

{
1, if ∃d ∈ D | D = {d0, d1, d2, ..., dN} ∩ {Hd = false}
0, if ∀d ∈ D | D = {d0, d1, d2, ..., dN} ∩ {Hd = true}

(2)

Once learned, the probabilistic quadtree helps in reducing the dimen-
sionality of the data, which captures the statistics of the training samples
in the dataset. A depth first search on the learned tree yields a linear
vector that is then fed into an unsupervised learning framework.

4 Deep Belief Network for Feature Learning

Deep Belief Network (DBN) consists of multiple layers of stochastic, la-
tent variables trained using an unsupervised learning algorithm followed
by a supervised learning phase using Feedforward Backpropagation Neu-
ral Networks. In the unsupervised pre-training stage, each layer is trained
using a Restricted Boltzmann Machine (RBM). Once trained, the weights
of the DBN are used to initialize the corresponding weights of a Neural
Network [6]. A Neural Network initialized in this manner converges much
faster than an otherwise uninitialized one. A DBN is a graphical model
[7] where neurons of the hidden layer are conditionally independent of
each other given a particular configuration of the visible layer and vice
versa. A DBN can be trained layer-wise by iteratively maximizing the
conditional probability of the input vectors or visible vectors given the
hidden vectors and a particular set of layer weights. As shown in [1], this
layer-wise training can help in improving the variational lower bound on
the probability of the input training data, which in turn leads to an im-
provement of the overall generative model. We first provide a formal
introduction to the Restricted Boltzmann Machine. The RBM can be
denoted by the energy function:

E(v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

hjwi,jvi (3)

where, the RBM consists of a matrix of layer weights W = (wi,j)
between the hidden units hj and the visible units vi. The ai and bj are
the bias weights for the visible units and the hidden units respectively.
The RBM takes the structure of a bipartite graph and hence it only has
inter-layer connections between the hidden or visible layer neurons but
no intra-layer connections within the hidden or visible layers. So, the
visible unit activations are mutually independent given a particular set
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of hidden unit activations and vice versa [8]. Hence, by setting either h
or v constant, we can compute the conditional distribution of the other
as follows:

P (hj = 1|v) = σ(bj +
m∑
i=1

wi,jvi) (4)

P (vi = 1|h) = σ(ai +

n∑
j=1

wi,jhj) (5)

where, σ denotes the log sigmoid function:

f(x) =
1

1 + e−x
(6)

The training algorithm maximizes the expected log probability as-
signed to the training dataset D. So if the training dataset D consists of
the visible vectors v, then the objective function is as follows:

argmax
W

E
[∑
v∈V

logP (v)
]

(7)

A Restricted Boltzmann Machine is trained using a Contrastive Di-
vergence algorithm [8]. Once trained the DBN is used to initialize the
weights of a feedforward backpropagation neural network that is then
used for classification.

5 Results and Comparative Studies

Various network architectures along with the test set error for the tradi-
tional DBN framework and the probabilistic quadtree based framework
on the MNIST and the three n-MNIST datasets are listed in Tables 1 and
2. From the Tables, it is evident that our best performing network out-
performs the best traditional Deep Belief Network on both the MNIST
and n-MNIST datasets. On the MNIST dataset, our best network ex-
hibits a relative improvement of ∼25% over the traditional DBN. For the
n-MNIST dataset, it provides a relative improvement of ∼36% for Addi-
tive White Gaussian Noise (AWGN), ∼26% for Motion Blur and ∼12%
for AWGN and Reduced contrast.
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MNIST n-MNIST with AWGN

Architecture Test Error Test Error Test Error Test Error
(Neurons) DBN(%) Ours(%) DBN(%) Ours(%)

50-50 4.64 2.93 89.95 13.41

100-100 3.01 2.45 91.43 12.01

150-150 2.34 2.21 89.95 13.49

200-200 2.08 1.96 88.49 10.56

250-250 1.93 1.83 88.49 13.00

300-300 2.02 1.80 68.18 11.24

350-350 1.96 1.74 90.31 13.15

400-400 1.95 1.67 49.27 10.96

450-450 1.93 1.38 32.26 12.62

500-500 1.86 1.43 69.68 9.93

Table 1: Test Error of a traditional DBN and our framework with various
architectures on MNIST and n-MNIST with AWGN

n-MNIST with n-MNIST with AWGN
Motion Blur and Reduced Contrast

Architecture Test Error Test Error Test Error Test Error
(Neurons) DBN(%) Ours(%) DBN(%) Ours(%)

50-50 5.64 4.17 10.21 9.29

100-100 4.68 3.31 9.43 9.21

150-150 3.99 3.29 16.40 9.00

200-200 3.74 3.03 15.57 8.79

250-250 3.74 2.60 52.31 8.94

300-300 3.50 3.04 32.29 8.28

350-350 3.82 2.91 86.31 8.90

400-400 3.74 3.01 68.78 8.31

450-450 3.91 2.75 51.32 8.36

500-500 3.66 2.83 68.19 7.84

Table 2: Test Error of a traditional DBN and our framework with vari-
ous architectures on n-MNIST with Motion Blur; and with AWGN and
Reduced Contrast

6 Discussion and Future Directions

Our learning framework based on probabilistic quadtrees significantly
outperforms traditional Deep Belief Networks on both the MNIST and
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n-MNIST datasets. Probabilistic quadtrees help in generating sparse rep-
resentations for the dataset and significantly improve the discriminative
power of the framework.

We plan to investigate the use of various pooling techniques like SPM
[9] as well as certain sparse representations like sparse coding [10] to
handle n-MNIST. Hierarchical representations like Convolutional DBN
[11] are other useful candidates for investigation. We believe that n-
MNIST will help researchers better apply and extend the research on
understanding representations for noisy object recognition datasets.
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