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Abstract Object tracking is one of the most important processes for object recog-
nition in the field of computer vision. The aim is to find accurately a target object
in every frame of a video sequence. In this paper we propose a combination tech-
nique of two algorithms well-known among machine learning practitioners. Firstly,
we propose a deep learning approach to automatically extract the features that will
be used to represent the original images. Deep learning has been successfully ap-
plied in different computer vision applications. Secondly, object tracking can be
seen as a ranking problem, since the regions of an image can be ranked according
to their level of overlapping with the target object (ground truth in each video
frame). During object tracking, the target position and size can change, so the
algorithms have to propose several candidate regions in which the target can be
found. We propose to use a preference learning approach to build a ranking func-
tion which will be used to select the bounding box that ranks higher, i.e., that will
likely enclose the target object. The experimental results obtained by our method,
called DPL2 (Deep & Preference Learning), are competitive with respect to other
algorithms.

Keywords Deep learning · Preference learning · Object tracking

1 Introduction

The goal of object tracking systems is to precisely follow the trajectory of a moving
object in a video. This task attracts attention because it tackles several interesting
applications, including surveillance, vehicle navigation, augmented reality, human-
computer interactions and medical imaging, among others [33]. In the past decade,
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the research of object tracking makes significant progress and some algorithms
have been proposed [9,13,36,24]. However, object tracking is still a challenging
task because a robust tracker must deal with difficult situations in real world
environments such as illumination variations, full or partial occlusions of the target
object, scale changes, deformation, fast motion and background clutter, just to cite
the most important ones. In fact, no actual tracker is able to be successful in all
possible scenarios and most of them simplify the problem by imposing constraints
(e.g. assuming that the object motion is smooth) usually based on prior knowledge
about the actual application.

Object tracking systems can conventionally be classified into two categories:
generative and discriminative methods. The former usually learns a model that
represents the appearance of the target object and then try to find the most
similar object in each frame. Discriminative trackers train a classifier to separate
the target object from the complex background.

Trackers usually have three main components: object representation and fea-
ture selection methods [21], an object detection mechanism [5] and an update
strategy [12]. Objects can be represented by a set of features such as the shape,
appearance, color, texture, etc. These features can be i) manually chosen by an
expert, depending on the application domain, ii) automatically chosen, using a fea-
ture selection algorithm or iii) by the combination of both. In order to accurately
track the target object, the best target object representation needs to be selected.
The object detection mechanism is responsible for detecting the area in the image
occupied by the target object in every frame. Its prediction can be only based on
the information of the current frame, but there are also several approaches that
take advantage of using the temporal information from previous frames. Due to
the unexpected changes in the appearance of the target object, an update strategy
is usually required to obtain a robust tracker. For instance, in the case of following
a supervised discriminative tracking approach, the model must be updated to deal
with the drifting situations described above. Trackers proposed so far differ in at
least some of these components. See [33] for a complete survey of object tracking
approaches.

This paper presents a method for object tracking, called DPL2 , that is based
on applying two learning frameworks that have been successfully used in several
computer vision systems. They have not been used together in the context of ob-
ject tracking. Firstly, DPL2 applies a deep learning architecture to represent the
images. Thus, we extract invariant features with a multi-layer network. These fea-
tures will be used instead of raw pixels or other features obtained by means of im-
age analysis techniques which are sensible to, for instance, illumination variations.
This process has also the advantage of being computationally efficient because
such network is trained beforehand. Secondly, the model to detect and track the
target object is obtained using a supervised ranking algorithm. All the possible
bounding boxes of an image could be ranked by their degree of overlapping with
the target object. Thus, there are some regions that are preferable for tracking the
object. This reason leads us to use preference learning to build and keep updated
a ranking model that allows DPL2 to select the more promising region. Notice
that it is not necessary to obtain a perfect total ranking, it is sufficient that the
areas very close to the target object rank higher than the rest. Preference learning
perfectly fits this goal.
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The rest of the paper is organized as follows. After a brief discussion of the
related work in next section, our proposal based on deep learning and preference
learning is presented in Section 3. Then, we report a thoroughly experimenta-
tion devised to show the benefits of our approach. The paper ends drawing some
conclusions.

This work is an extended version of the research published at ICONIP-16 [25],
which includes a more detailed analysis of related works, a more exhaustive ex-
perimentation as well as a deeper analysis of the results.

2 Related work

In the work of Wu et al. [31] several trackers are experimentally compared and
an object tracking benchmark is presented. We will use this benchmark in our
experiments. Jia et al. [13] propose a tracking method based on a structural local
sparse appearance model. Such representation combines spatial information and
partial information of the target based on a alignment-pooling method. Addition-
ally, incremental subspace learning and sparse representation are used to update
the templates to handle drifting situations. Zhong et al. [36] employ a sparsity-
collaborative model that exploits both holistic templates and local representations.
The method combines a discriminative classifier and a generative model. Its up-
date scheme takes into account the latest observations and the original template.
The method presented in [9] is based on structured output prediction by the defi-
nition of an appropriate output space to represent the needs of the tracker. Then,
a kernelized structured output support vector machine is learned to obtain an
adaptive tracking system. The object model is updated using online learning tech-
niques. Kwon and Lee [17] search for the appropriate trackers in each frame. Since
the sequence may vary over time, the trackers should be modified or replaced. To
take this decision, the system obtains samples of the state of the target and of
the own trackers. The trackers are sampled using a Markov Chain Monte Carlo
method from a predefined tracker space composed of different building blocks, for
instance, motion models. The sampled trackers run in parallel, interacting and
covering different target variations. The work of Kalal et al. [15] is based on a
binary classifier trained with labeled and unlabeled examples. It uses an iterative
learning process guided by positive and negative constraints that restrict the la-
beling of the unlabeled data. The method evaluates the classifier on the unlabeled
examples, identifying those that are in contradiction with structural constraints.
Those examples are added to the training set and the classifier is retrained.

The work done by Wang et al. [30] is the most comparable to our work within
the framework of deep learning in the context of object tracking. The difference
with respect to DPL2 is that a classifier is used instead of a ranker, thus the
representation strategy is the same, but the model follows a completely different
strategy. In [3] a tracking system based on Laplacian ranking SVM is presented.
The tracker incorporates the labeled information of the object in the initial and
the latest frames to deal with drift changes, like occlusion, and the weakly labeled
information from the current frame to adapt to substantial changes of the appear-
ance. Another difference with our approach is that Bai and Tang use Haar-like
features to represent each image patch and we employ a deep learning network.
The method described in [6] is also based on preference learning, but the authors
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Fig. 1 The overall framework of our proposed DPL2 algorithm. 1) Positive boxes near to the
target object and negative boxes away from the object are selected; 2) deep features to describe
each example are extracted; 3) preference learning is applied in order to build a ranking model;
and 4) the learned model ranks several patches and the best one is selected as the object in
the next frame.

propose an online learning ranking algorithm in the co-training framework. Two
ranking models are built with different types of features and are fused into a
semi-supervised learning process.

3 Deep & Preference Learning Tracker

This section is devoted to describe in detail the main components of our proposal.
Figure 1 depicts the structure of DPL2 algorithm that has four main steps. Firstly,
according to the position of target object in the frame, p positive boxes near to the
target object are selected as positive examples and n negative boxes away from the
object as negative examples. The positive examples are obtained by moving the
target box just ±1 pixel from the true position, while the negative ones are obtained
by displacing the box a distance greater than ±width/4 in both axis (width and
height represent the size of the target object in the first frame). Then, DPL2 uses
a deep learning network to extract deep features to describe each example selected
in the previous step. The goal of this step is to obtain invariant features to make
tracking more robust against variations in the video sequence. In the third step, the
deep learning model is then integrated with preference learning to build a ranking
model to detect the object. Such a model is learned using a set of preferences
judgements. This set is formed by all possible pairs of a positive example and a
negative example. The model should learn that the positive examples are preferable
to the negative ones. Finally, to detect the object in the next frames, DPL2 uses
particle filter to select several particle images around the position of the target
object in the previous frame. Then, the model outputs the ranking of all particle
images; the one that ranks higher is selected as the best position and size of target
object in the frame. This last step (number 4 in Figure 1) is repeated to track the
object across each frame of the video sequence. The rest of steps (1-3) are only
re-executed when a model update is required as it shall be described in Section 3.3.

3.1 Deep Learning

Many tracker systems use the raw pixels or handcrafted features, such as pixel
histogram features, Haar-like features or Surf features, as the methods to represent
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Fig. 2 Structure of the Stacking Denoising Auto-Encoder (SDAE). During the offline training
phase SDAE learns the weights that allow to encode (W1. . . W4) and decode (W4’. . . W1’) each
image. Once the weights are learned, during the tracking phase each patch is encoded in a 256
dimensional space. This representation is used as a vector of features in the preference learning
algorithm

the tracked object. However, all these low-level and superficial features do not
usually work for difficult video sequences.

Although there are many variants of deep learning architectures, all of them
are based on the same main idea. A deep learning method is a representation-
learning technique that using raw data produces computational models to discover
the representations needed for subsequent learning processes (like classification
or detection in our case). These models, composed of l processing layers (l >
1), learn data representations with multiple degrees of abstraction; each degree
transforms the representation at previous level into more abstract representation.
Very complex functions can be learned when l is sufficiently large. The higher layer
captures discriminative variations, suppressing irrelevant ones. Another important
aspect is that these networks are not designed by practitioners, but learned using
general-purpose procedures.

In recent years, deep learning architectures have succeeded to be implemented
in numerous practical applications in many research areas, especially in computer
vision, like face recognition and image classification, because deep learning archi-
tectures are able to learn more invariant and inherent features via the multi-layer
learning described before. Deep learning yields high-level image features that are
more accurate and stable in order to represent the essence of the images. Even in
the case of complex videos, this approach provides better features of the moving
object to prevent drifting away from the target. For all these reasons, deep learn-
ing is used in our tracking system for learning an object representation which is
robust against variations.

Examples of deep learning methods include Deep Belief Networks (DBN), Con-
volutional Neural Networks (CNN) [20,22,37], Deep Boltzmann Machines (DBM)
and Stacked Denoising Auto-Encoders (SDAE). However, lately the most popular
deep learning architectures are probably CNN [18,19] and SDAE [26,30]. Here, we
choose the SDAE architecture, shown in Figure 2, just as an example to study how
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Fig. 3 Deep feature extraction using the encoder substructure of the previously trained SDAE

current deep learning techniques perform in combination with preference learning
to tackle object tracking tasks.

A SDAE model is composed of two parts, an encoder and a decoder. Each part
contains a network that are usually connected (the last layer of the encoder is the
first layer of the decoder). The building block of SDAE is the denoising autoencoder
(DAE) that is a variant of conventional autoencoder. The main property of a DAE
network is that it is able to encode the image in a smaller feature space and then
recover the original image from the encoded version.

The encoder part is codified by a nonlinear activation function fθ(x). The aim
of fθ is to transform the original image vector xi into a different representation
yi. Here, θ = {W , b} and W denote the weights matrix of the encoder part, whose
size depends on the number on layers l and the units of each layer, and b is the bias
term. The decoder follows the same formulation and it is described by a function
gθ′(yi), being θ′ = {W ′, b′}, W ′ the weights matrix of the decoder part and b′ its
bias term. The goal of the decoder is to map the hidden representation back to a
reconstructed input zi. Obviously, the decoding process is the inverse process of
encoding. But the key element is that both networks are trained together trying to
minimize the difference between the reconstructed zi and the original input image
xi. The mathematical formulation is:

min
W ,W ′,b,b′

k∑
i=1

‖xi − zi‖22 + α(‖W ‖2F +
∥∥W ′∥∥2

F
). (1)

Here, the number of original images is k. yi = fθ(Wxi+b) and zi = gθ′(W
′yi+b′)

represents the outputs of both networks (encoder and decoder) for a given example
xi. α is the regularization parameter for trading off between the error and the
complexity of both networks, which is measured by means of the Frobenius norm
‖·‖F .

Following the training approach described in [30], DPL2 uses the Tiny Images
dataset [28] to train the SDAE model offline. Such dataset contains 80 million
images of 32x32 pixels. The idea is to obtain a generic representation model for
any real world image. The network architecture has five layers l = 5 with 2560
units in the first hidden layer (overcomplete filters). Then, the number of units
is reduced by a half in each layer, so the final layer has just 256 units. A logistic
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Fig. 4 Schematic view of the training and use of the preference learning module in DPL2 .
In this figure we represented image patches for illustrative purposes but, in fact, we use their
encoded version given by the trained SDAE. The examples used to train the preference learning
process (PL model) are triplets of the form (image1, image2, label), where label can be either
+1, when image1 is preferred to image2, or -1, when image2 is preferred to image1

sigmoid activation function, ρ(x) = 1
1+e−x , is used for fθ and gθ. Figure 3 shows

an example of use of the encoder to obtain the deep features of an image.

3.2 Preference Learning

Although there are other approaches to learn preferences, following [2,11,14] we
will try to induce a real preference or ranking function r : Rd → R, that is, from
the space of objects considered, our images represented using SDAE (d = 256),
to the reals. r should be learned in such a way that it maximizes the probability
of having r(v) > r(u) whenever v is preferable to u (v � u). In our case, v is
preferable whenever its level of overlapping with the target object is greater than
the one of u.

To learn such function r we start from the set of positive and negative patches
extracted from the first frame, as shown in Figure 4. This set of objects is endowed
with a partial order that can be expressed by a collection of preference judgments
where any positive patch is always preferred to any negative patch:

PJ = {vi � uj : i = 1..p, j = 1..n}. (2)

In order to induce the ranking function, we can use the approach presented by
Herbrich et al. in [11]. So, we look for a function R : Rd ×Rd → R such that

∀vi,uj ∈ Rd, R(vi,uj)>0⇔ R(vi,0)>R(uj ,0). (3)
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Then, the ranking function r can be simply defined by

∀x ∈ Rd, r(x) = R(x, 0). (4)

Given the set of preference judgments PJ (2), we can specify R by means of
the constraints

R(vi,uj)>0 and R(uj ,vi)<0, ∀(vi,uj) ∈ PJ. (5)

Therefore, we construct a dataset of preference judgements, PJ , using pairs
of image patches so that a good (positive) patch which includes the target in the
image is preferred to a bad (negative) patch which only includes partially (or not
at all) the target. These pairs give rise to a binary classification problem, where
a pair of correctly ordered patches (good, bad) belongs to class +1 and a pair
of incorrectly ordered patches (bad, good) belongs to class -1. Then, DPL2 uses
Support Vector Machines (SVM) [29] to address this classification task, so we need
to solve the following optimization problem:

min
w,ξ

1

2
‖w‖2 + C

∑
i,j

ξij , (6)

s.t. 〈w,vi − uj〉 ≥ 1− ξij ,
ξij ≥ 0, ∀(vi,uj) ∈ PJ.

The final ranking function is:

r(x) = 〈w,x〉 =
∑
i,j

βij〈vi − uj ,x〉, (7)

in which βij 6= 0 represents the Lagrange multipliers of the so-called support
vectors. Notice that there is not bias term because the positives and negatives
pairs in PJ are symmetric with respect to the origin.

3.3 Model update

Previous studies [1,9,12,13,15] have shown that updating the mechanism to detect
the object is crucial for obtaining robust tracking. For instance, when the illumi-
nation changes suddenly or when the target object is partially occluded, it is easy
that the tracker losses the position or the size of the object. The goal of the up-
date method is to take into account for such drifting situations that happen in the
video sequence, obtaining a final tracking after learning that is able to smoothly
follow the object even when there are important variations in the appearance of
the object.

In the case of discriminative tracking algorithms, like DPL2 , the model used
for detection must be updated. DPL2 updates the model learned solving the opti-
mization problem in (6) using two different strategies. First, when the description
of the predicted region for the current frame is significantly different from the
average description of the predicted region of the 10 previous frames. If this situ-
ation occurs the preference judgments (2) used to update the model are obtained
combining the 10 previous predicted regions (as positive examples) and n = 30
negative examples generated randomly. The second rule is even simpler: every t
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frames the model is updated following the same procedure just described. The new
model replaces the previous one and it is used to predict the position of the object
in the next frames.
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Fig. 5 Success plots with different threshold values. For each video, only the results of the top
seven trackers are depicted. The trackers systems are ranked in the legend according to their
success rate at the overlap threshold 0.5. Following [31,32], colors in the graphs are related to
the position of the algorithms in the performance ranking.
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4 Experimental results and discussion

The aim of the experiments reported in this section is to compare the performance
of DPL2 with the best current tracking systems. The selection of such trackers
was based on the results of the experimental study recently published in [31,32].
The best top 14 object tracking algorithms were selected, concretely: SCM [36],
Struck [9], ASLA [13], L1APG [4], CT [34], TLD [15], IVT [27], MTT [35], CSK [10],
MIL [1], LSK [23], VTS [17], VTD [16] and CXT [8].

In order to fairly compare all the trackers, we used the same datasets, eval-
uation metrics and the original implementations and results of these trackers re-
ported in [31,32] but we had to limit the number of experiments due to space
restrictions. For the datasets we randomly selected 14 videos with different dif-
ficulty degree: hard videos (Bolt, Coke, Soccer and Woman), medium-difficulty
videos (David, Deer, Shaking and Trellis) and easy videos (Car4, CarDark, Fish,
Jogging2, Singer1 and Walking). The evaluation method used was OPE (One-
Pass Evaluation), that is, the algorithm is initialized with the ground-truth object
stated in the first frame and the results for the rest of the frames are computed.
The scores reported here correspond to two commonly used performance metrics:
Success Rate and Precision. Additionally, we also compute Area Under Curve
(AUC) scores to measure the overall performance of the trackers.

The parameters used to execute DPL2 were the following. The number of
positive and negative examples were p = 10 and n = 30 respectively, thus the PJ set
(2) used to learn the tracking model had always 300 positive preference judgments
(and their respective 300 negative preference judgements). The examples were
generated moving the left top corner of the ground-truth region of the first frame.
The positive examples are just moved ±1 pixels, while in the case of the negatives
this distance is always greater than ±width/4 in the X-axis and ±height/4 (Y-axis);
width and heigth represent the size of the target object in the first frame. When
the model is updated, see Section 3.3, the same process is applied but instead of
using the ground-truth region of each frame, the predicted regions are employed.
Finally, to detect the object DPL2 generates 100 particles randomly around the
position of the predicted region in the previous frame; the one that obtains a higher
value applying the ranking function (7) is returned.

4.1 Quantitative Comparison

The first metric to compare the performance of object tracking algorithms is the
Success Rate which measures the overlap rate of each frame. This overlap is defined
as the intersection area between the predicted tracking box (rt) and the ground-
truth area (r0) divided by the union area of these two regions. In symbols, S =
rt∩r0/rt∪r0. Calculating the percentage of the number of successful frames whose
overlap rate is larger than 0.5, we can measure the ability of the trackers to capture
most of the area occupied by the target object. However, using just a specific
threshold value, it cannot comprehensively depict the overall performance of each
tracker. So we draw the success plots of each tracker by making the threshold value
vary from 0 to 1. Due to the limited space, only the results of six videos are shown
in Figure 5. The rest can be found in the supplementary material 1. As we can see,

1 https://doi.org/10.13140/RG.2.2.18362.18881
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the performance of DPL2 in terms of Success Rate is rather good. DPL2 is clearly
the best in two of the sequences (bolt and soccer), is similar to best performers in
other three videos (coke, deer, jogging2) and it is only worst in one of them (car4).
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Fig. 6 Precision percentage plots with different location error thresholds for the top seven
trackers. The trackers systems are ranked in the legend according to the percentage of frames
in which the error of the tracker is less than 20 pixels. Following [31,32], colors in the graphs
are related to the position of the algorithms in the performance ranking.

Another widely used evaluation metric is Precision that computes the average
euclidean distance between the center locations of the predicted regions and the
ground-truth positions of all the frames. Figure 6 depicts the Precision percentage,
that is the percentage of frames in which the error of the tracker is less than a given
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number of pixels. The scores of DPL2 are competitive for all the video sequences,
and in one of them is clearly the best tracker (soccer).
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Fig. 7 Average Success Rate (top) and Precision (bottom) plots of all video frames. Ranks
in the legend are computed using the rea under the curve of Success Rate and the percentage
Precision for 20 pixels. Following [31,32], colors in the graphs are related to the position of the
algorithms in the performance ranking.

In order to analyze the overall performance of the tracking algorithms consid-
ered, we collected together the results of all trackers over the 14 video sequences,
totally 5704 frames, obtaining the average values for Success Rate and Precision.
These plots are in Figure 7. As we can see, DPL2 performs quite well for both
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Fig. 8 Comparison using the area under the curve of Success Rate (left) and precision (right)
of all algorithms against each other using the Nemenyi test. Groups of classifiers that are not
significantly different at p = 0.05 are connected (critical difference, CD, greater than 5.732)

metrics, its scores are similar to those of SCM which is one of the best trackers ac-
cording to [31]. Although DPL2 ranks the best for Success Rate when threshold is
0.5, it seems that its performance decays when the value of the threshold increases.
Actually, this means that DPL2 is the best to detect at least part of the object,
but it is a little bit worse for capturing a bigger area. This result suggest one of the
possible directions to improve DPL2 . Looking at the Precision plots of all videos,
we can conclude that when such threshold is smaller than 12 pixels, the Precision
scores of SCM and ASLA are slightly better than those of DPL2 . However, when
the location error threshold becomes large, DPL2 clearly outperforms the rest of
the trackers. This means that is a quite robust tracker that rarely losses the track
of the object.

Besides, for comprehensively analyzing the overall performance of each tracker
from a statistical point of view, Table 1 reports the scores of the Area Under
the Curve (AUC) of the Success Rate and the results for Precision percentage
for all the tracking systems over all the video sequences. To sum up the results,
the average rank of each tracker is the last row of each table. Following [7], a
two-step statistical test procedure was carried out. The first step consists of a
Friedman test of the null hypothesis that states that the trackers perform equally.
Such hypothesis is rejected. Then, a Nemenyi test is performed to compare the
methods in a pairwise way. Both tests are based on average ranks. The comparison
includes 15 trackers over 14 videos, so the critical difference (CD) in the Nemenyi
test is 5.732 for significance level of 5%. The results are in Figure 8.

It is worth noting that DPL2 ranks higher in both cases followed by SCM
and Struck algorithms. Moreover, only DPL2 and SCM are significantly better
according to a Nemenyi test than the worst trackers (MIL and CT). However, as
we can observe in Figure 8, most of the differences are not statistically significant.
This is due in part to the fact that the number of algorithms compared is greater
than the number of video sequences, so the critical difference 5.7 is quite difficult to
reach. In any case, the overall results discussed in this section are quite promising,
supporting the main hypothesis of this work which is that preference learning and
deep learning are both well-tailored to tackle object tracking tasks.
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4.2 Qualitative Comparison

To compare the methods considered form a qualitative point of view, we run all the
15 object tracking approaches on the 14 video sequences, drawing the predicted
bounding boxes of each tracker on every frame. All these videos are included as
supplementary material.

Furthermore, according to the average ranks based on Success Rate, Precision
and the AUC of Success Rate (see Table 1), we can obtain the top 5 methods
in each ranking. To perform a qualitative comparison we take the union of all
these rankings, resulting in a group of seven trackers (ASLA, TLD, SCM, Struck,
VTS, CXT and DPL2 ). These systems were analyzed frame-by-frame. The idea
was to study the robustness of each method, particularly looking if the trackers
loss the target object. Figure 9 contains the results for six video sequences. For
each tracking system the figures show the overlap rate on each frame. The rest
of the graphs can be found in the supplementary material (that will be available
once the paper will be published).

Bolt video is a rather difficult tracking sequence because the target (Usain Bolt)
moves quite fast from frame to frame and also there are some interferences (the rest
of the athletes). We can observe that DPL2 is the overall best tracker. Although
at the beginning there are several frames in which DPL2 can not successfully track
the target, then it recovers the object using its update process. After that DPL2

maintains acceptable overlap rates for the rest of the video. At the same time,
we can see that other trackers only can track Bolt in the first 50 or 100 frames
and then fail to track him. Although the overlap rate of VTS tracker is very low,
it may slightly better than the rest trackers. But after 200 frames it also fails.
Considering the total of 350 frames, it seems that DPL2 outperforms the rest of
the methods.

In the Car4 sequence, the object being tracked is a moving car on a broad
road. The main challenges of this video are the illumination variations before and
after crossing a bridge and scale changes of the car. As the plots of Car4 show,
DPL2 tracks the car in a similar way than ASLA, TLD and SCM. And the average
overlap rate is better than those of other methods. However, the scores of DPL2

decreases and are relatively low when the car is under the bridge. This is caused
by the sudden illumination variation. However, in these 50 dark frames, DPL2 still
tracks the car and does not totally loss it. After the car passes under the bridge,
DPL2 rapidly recovers the size of tracked bounding box according to the scale of
the car. It seems that is able to handle reasonably well these drifting situations.

In Coke sequence there are continuous part and full occlusions of the object,
light variations, pose changes and in-plane rotations. The results show that only
DPL2 and Struck can accurately track the object despite these interference factors.
In particular, both loss the object at the end of the sequence but they recover the
track quite fast.

Deer is a short but very challenging video sequence due to the interference of
fast motion, similar background and pose and expression changes. In the Jogging2
sequence, the main challenging is the full occlusion produced by the big telegraph
pole. The behavior of DPL2 is similar in both cases, obtaining pretty good scores.
DPL2 maintains a high overlap rate, greater that 0.5 almost during all the se-
quences. Other methods obtain also good results, like Struck and CXT in the case
of Deer video and SCM in Jogging2 video. Interestingly, the success plots of DPL2
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Fig. 9 Qualitative comparison frame-by-frame with the best trackers. For each tracking sys-
tem the graphics show the overlap rate on each frame

are very sharp and narrow. This implies that when DPL2 losses the object, the
recovery is particularly fast.

Finally, Soccer sequence is one of the hardest video to track. It not only in-
cludes severe occlusion, scale variation, motion blur and fast motion, but exists the
phenomenon of background clutters in the whole process and illumination varia-
tion. DPL2 obtains worse results than in previous cases, specially at the beginning
of the sequence. However, it is the best method at the end of the video. Other
methods only accurately track the first 50 frames and then fail.
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5 Conclusions

The work presented in this paper explores the possibility of combining deep learn-
ing with the paradigm of preference learning to build an object tracking system.
The performance of the proposed method, DPL2 , is quite competitive with respect
to state-of-the-art methods, and sometimes is even better, both from a quantita-
tive and qualitative point of view. However, one of the most interesting aspects
of this study is that it seems that there is still room to improve the accuracy
of a tracking system based on the combination of deep learning and preference
learning.

The main conclusion that can be extracted from the qualitative frame-by-
frame comparison is that DPL2 is more stable than other trackers, it maintains
an acceptable overlap rate for most of the frames, and when it losses the object it
is able to recover it quite reliably.

Additionally, we have also outlined the object tracking task from a new point
of view: the preference learning. This will allow us to explore the development of
new algorithms that may increase performance. The application of this paradigm
opens up a new research line that can eventually be explored in the future.
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