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Abstract Virtual Learning Environments are growing in importance as fast as
e-learning is becoming highly demanded by universities and students all over the
world. This paper investigates how to automatically evaluate User eXperience in
this domain using Sentiment Analysis techniques. For this purpose, a corpus with
the opinions given by a total of 583 users (107 English speakers and 476 Span-
ish speakers) about three Learning Management Systems in different courses has
been built. All the collected opinions were manually labeled with polarity infor-
mation (positive, negative or neutral) by three human annotators, both at the
whole opinion and sentence levels. We have applied our state-of-the-art sentiment
analysis models, trained with a corpus of a different semantic domain (a Twitter
corpus), to study the use of cross-domain models for this task. Cross-domain mod-
els based on Deep Neural Networks (Convolutional Neural Networks, Transformer
Encoders and Attentional BLSTM models) have been tested. In order to contrast
our results, three commercial systems for the same task (MeaningCloud, Microsoft
Text Analytics and Google Cloud) were also tested. The obtained results are very
promising and they give an insight to keep going the research of applying senti-
ment analysis tools on User eXperience evaluation. This is a pioneering idea to
provide a better and accurate understanding on human needs in the interaction
with Virtual Learning Environments and a step towards the development of au-
tomatic tools that capture the feed-back of user perception for designing Virtual
Learning Environments centered in user’s emotions, beliefs, preferences, percep-
tions, responses, behaviors and accomplishments that occur before, during and
after the interaction.
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1 Introduction

Human Computer Interaction (HCI) tools developers, agents and industry require
to focus their interactive systems on end-users in order to design and provide
quality systems upon the international standards requirements ISO. These inter-
active systems are the “combination of hardware, software and/or services that
receives input from, and communicates output to, users” (ISO 9241-210:2019) [I8§].
This international standard is related to ergonomics of human system-interaction
and human-centered design for interactive systems. It provides requirements and
recommendations for human-centered design principles and activities throughout
the life cycle of computer-based interactive systems. It is intended to be used by
those managing design processes, and is concerned with ways in which both hard-
ware and software components of interactive systems can enhance human—system
interaction.

Therefore “User eXperience” (UX) enhances human interaction within the
hardware or software components, being the UX concept multidimensional and
centered in human needs. This UX concept goes beyond usability, interaction ex-
perience and design by involving two main qualities: traditional HCI usability and
accessibility balanced with hedonic and affective design [42]. In this perspective,
in [I4], UX is described as a consequence of a user’s internal state (predispositions,
expectations, needs, motivation, mood, etc.), the characteristics of the designed
system (e.g. complexity, purpose, usability, functionality, etc.), and the context (or
the environment) within which the interaction occurs (e.g. organizational/social
setting, meaningfulness of the activity, voluntariness of use, etc.). Therefore, these
authors conclude that UX is considering three perspectives: emotion and affect of
the user, technology and the hedonic instrument and the experiential aspect. As a
result, UX includes a multidimensional concept and focuses in human needs and
the aspects of beauty, fun, pleasure, and personal growth rather than the value of
the product or instrument used [14], which improves or worsens along the time of
use [21].

UX has to be considered when designing and redesigning hardware and soft-
ware applications. In this way, in the last years, UX has been taken into account
when designing Virtual Learning Environments (VLEs) [42]. VLEs includes a wide
range of technology-enabled learning environments, such as Learning Management
Systems (LMSs), computer games or Virtual Worlds.

Traditionally, evaluation of UX in VLEs (or in any other product or service),
has always been addressed by conventional questionnaires. In this regard, we used
the validated User Experience Questionnaire (UEQ) [32], conducted on students
of biomedical postgraduate studies and Massive Open Online Courses (MOOCs)
students. Three LMSs have been evaluated using this adapted UEQ: an ad-hoc
system called “Conecto” (in Spanish and English languages), an open-source Moo-
dle personalized system (in Spanish), and an edX platform (both in Spanish and
English languages).

In this paper, instead of evaluating UX in this traditional way, we have ad-
dressed the problem in a novel way applying machine learning tools to the users’
opinions, expressed freely in natural language. Preliminary work was done in [35].
Deep learning cross-domain models (Convolutional Neural Networks, Transformer
Encoders and Attentional BLSTM models) trained with tweets and different gen-
eral systems for text analytics (such as MeaningCloud [27], 28], Google Cloud [13],
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and Microsoft Text Analytics [29]) are used to this end. The application of senti-
ment analysis tools on UX opinions will provide a better and accurate understand-
ing on human needs in the interaction with VLEs. The ultimate goal of this work
is to develop further tools of automatic feed-back of user perception for designing
user-centered VLEs valued by users for its usability, quality and pleasure of use.

This paper is organized as follows. Next Section gives a brief overview about
the state of the art of the work presented here. Section |[3| describes the data collec-
tion from the questionnaires and the labeling process. The evaluation metrics are
introduced in Section [ The used models for sentiment analysis are described in
Section [f] and Section [f] presents our proposal. Section [7] presents the experimental
results and their analysis. Finally, the conclusions and future directions are drawn
in the last Section.

2 State of the Art

Sentiment analysis is one of the most active areas in Natural Language Processing
since the early 2000s. The pioneering works in this field [30} [39] pointed out the
importance of “sentiment classification” for a large number of tasks such as mes-
sage filtering, recommender systems or business intelligence applications. Other
sentiment analysis approaches were addressed by manually generating polarity
lexicons [23| [41]. However, the efforts required to develop these resources and the
good performance of machine learning systems on this task made the research
community to move towards data driven approaches. A survey of the most widely
used machine learning approaches for the sentiment analysis problem can be found
in [22].

Recently, the predominant systems to perform sentiment analysis are neural
network based approaches [43]. The most popular models are Convolutional Neural
Networks (CNN) [I9], Long Short Term Memories (LSTM) [I5], and combinations
of CNN and LSTM [34]. Moreover, the enrichment of this architectures by using
attention mechanisms [2] and Transformers [40] are lately used.

The interest on sentiment analysis has increased along with the popularity
of the social networks and the user interactions on them. The most studied so-
cial network for sentiment analysis tasks is Twitter, where the users are allowed
to broadcast opinions about any topic by using only 280 characters and media
content.

Several workshops are organized in order to address the sentiment analysis
task in Twitter, providing corpora and resources to the participants for training
and evaluating their systems. The most known workshops are the International
Workshop on Semantic Evaluation (SemEval) and the Workshop on Semantic
Analysis at SEPLN (TASS) for English and Spanish language, respectively.

For the last task of English sentiment analysis presented at SemEval [33], most
of the participating teams proposed neural network models mainly based on LSTM
and CNN;, being the two best systems based on these approaches along with pre-
trained word embeddings on big collections of tweets. Concretely, the winner team
proposed a two layer bidirectional LSTM with attention mechanisms [3], while
the second ranked team addressed the task by using a combination of LSTM and
CNN [4].
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For the Spanish sentiment analysis task of TASS 2019 [7], the predominant
presence of deep learning components was also observable, where almost all the
systems proposed by the participants made use of them. It is worthly to note the
great interest on the Transformer model [40], being used mainly with the aim of
fine-tuning pre-trained contextual representations of words [6].

Our team proposed a system focused on encoding pre-trained skipgram word
embeddings by using a Transformer encoder to carry out the classification [12].
It turned out to be the best system, being the first ranked system. The system
of the second ranked team used a logistic regression classifier on top of different
representations, such as word embeddings and bag of characters, by focusing on a
novel way of data augmentation [24].

In addition to these kinds of systems, a large number of commercial products
and frameworks have also proliferated to facilitate the development and deploy-
ment of sentiment analysis systems based on machine learning, such as Google
Cloud [13], IBM Watson [17], Microsoft Text Analytics [29], MeaningCloud [28]
or Stanford Core NLP [25]. These products allow us to perform text analytics
such as sentiment analysis, in a broad variety of domains and languages in an
easy way, obtaining also competitive results. For this reason, besides our neural
network models, other commercial models will be used in our work as explained
in Section

But, though the promising results on several tasks of natural language process-
ing and, in particular, on sentiment analysis, generally speaking, UX evaluation is
immature in most applications and, especially, in VLEs.

Some work has been done in eCommerce, using natural language processing to
improve their UX. For instance, to search products in a more intelligent way, using
sentiment analysis to extract insights from the reviews made by the customers
on the product or identifying trends and trying to answer best to the customers’
concerns. Several new conferences have recently been launched around these ideas,
such as the Workshop on Economics and Natural Language Processinﬂ or the
First International Workshop on e-Commerce and NL

Another research line covered in this paper is the use of cross-domain polarity
classification approach, that is, the texts to be classified belong to a different
domain from those used in the training phase. Most work has been done within the
classic approach, the so-called single-domain polarity classification, which classifies
texts in the same domain to which the texts used in the training phase belong to.
Due to the lack of training data (only opinions from 583 users), we used cross-
domain models, those trained with another domain (Twitter) and those trained
with general data.

3 Experimental Data

The validated User Experience Questionnaire (UEQ) [32] was used in order to
automatically evaluate UX in our VLEs. This questionnaire is a list of close-ended
questions, but we added questions concerning to sociodemographic data (age, sex,
etc.) and an open field “Other comments” (see Figure [1| for a screenshot of the

1 https://julielab.de/econlp/2019/
2 https://www.aclweb.org/portal/content/first-international-workshop-e-commerce-and-nlp
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32. What kind of user are you?
o Student
o Teacher/Tutor
0 Administrator
o Other

33. Have you previously used other e-learning platforms?
o Yes, I have used previously other e-learning platforms.
o No, I have not used previously other e-learning platforms.
o DK/NA

34. Please, let us know any comments about your experience on the environment of IVI e-learning
Master:

By doing this questionnaire you accept the use of your data for scientific purposes. This data is completely confidential
and only it will be used for current and future papers, reports and studies that might be produced after processing the
information by Fundacion IVI and UPV. Please, click on the blue button to send the questionnaire. Many thanks for your
contribution and tell us your experience.

Fig. 1 “Other comments” box from UX questionnaire delivered to English speaker users on
Conecto LMS of IVI Foundation Biomedical International Master (2017-2018 edition).

questionnaire in one VLE). It is a text entry box to express any opinion or comment
related to UX in the course, which is an opportunity to get new and more precise
information about their experience, not only by close-ended questions.

Three LMSs have been evaluated using this adapted UEQ: “Conecto”|’] which
is an ad-hoc system (for Spanish and English users), an open-source Moodle per-
sonalized system (for Spanish users) EL and an edX platform (both for Spanish and
English languagesﬂ. We have collected data in different editions of the courses,
obtaining an answer to the “Other comments” box from 583 users (107 English
speakers and 476 Spanish speakers) .

3.1 Polarity of Observations and Sentences

We have performed experiments at two different semantic levels of decreasing
complexity:

1. Observation. We measured the polarity of the whole observation. Each entry is
composed by one or more sentences. There were 476 Spanish and 107 English
observations. An average of 15 words both per Spanish observation and 20
words per English observation is found.

2. Sentence. As an observation from one user can be composed by one or more
sentences, we automatically split each observation into sentences, being one

3 https://postgrado.adeituv.es/es/cursos/salud-7/assisted-reproduction/datos_
generales.htm

4 https://medicinagenomica.com/eugmygo/
5 https://wuw.upvx.es/
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Table 1 Examples of tagged observations and sentences, with their polarity.

[ Unit Example Polarity |
Observation Qwverall, this e-learning master environment is very friendly. Positive
Sentence Qwerall, this e-learning master environment is very friendly. Positive

Observation It was good experience to some extent. However, I hope it  Neutral
concentrates more on practical aspect in the future.

Sentence It was good experience to some extent. Positive
Sentence Howewver, I hope it concentrates more on practical aspect in Negative
the future.

Observation Well-organized and structured course. Great study material — Neutral
(articles) but not enough time to read them all. Keep up the

good work.
Sentence Well-organized and structured course. Positive
Sentence Great study material (articles) but not enough time to read Neutral
them all.
Sentence Keep up the good work. Positive

sentence the text between points. We got 587 Spanish sentences and 184 English
sentences. The percentage of observations composed by more than one sentence
is 24% for the Spanish observations and 32% for the English ones. An average
of 12 words per Spanish and English sentences is found.

As stated before, one observation can be composed of more than one sentence,
and it is very usual to mix positive and negative opinions about different concepts
in different sentences, so many observations are tagged as neutral (see some ex-
amples in Table to illustrate this idea). This fact hides the intention of the user,
which is tagged as neutral when she or he is not, that is the reason we automat-
ically split the original observations into sentences and measuring the polarity of
each sentence.

3.2 Manual Labeling

The units (whole observations and sentences) had to be labeled according to its
polarity (positive, negative, or neutral). In a first step, positive and negative sen-
tences were manually annotated, being tagged as neutral those sentences without
presence of any emotion or feelings (e.g., “No applicable.”) or when the sentence
provided both positive and negative feelings (e.g., “Some of the modules were
very interesting and valuable but some of them confusing as too genetic details in-
volved.”). Three human annotators (as in [38]) did the annotation of each sentence
as positive, negative or neutral.

Secondly, as an observation is a sequence of sentences, and, following Socher’s
work [38], based on the structure of the discourse of the observations, observation
labeling was carried out from the polarity level of the sentences which compose
the observation. The core idea is that the polarity of an observation will be au-
tomatically set as positive if it is composed of positive sentences; similarly, it will
be set as negative if every sentences is negative; and finally, it will be tagged as
neutral if it is composed of positive and negative and/or neutral sentences.

In order to evaluate the inter-annotator agreement we used the following mea-
sures: Krippendorf’s alpha («) [20], Cohen’s kappa (&) [5] and Scott’s pi (7) [37],
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Table 2 Observations and sentences extracted from the “Other comments” box.

[ Unit | Language| Total [ Positive [ Negative | Neutral |
Observation | Spanish 476 | 338 (71%) 85 (18%) | 53 (11%)
English 107 | 56 (52%) | 30 (28%) | 21 (20%)
Sentence Spanish 587 | 404 (69%) | 142 (24%) | 41 ( 7%)
English 184 | 90 (419%) | 80 (43%) | 14 ( 8%)

both for the observation and sentence levels of the labeling. The obtained re-
sults suggest a high correlation among the labeling work of the three annotators
at both levels, concretely, « = k = m = 0.88 for whole Spanish observations,
a =k =7 = 0.90 for Spanish sentences, « = k = m = 0.84 for whole English
observations and o = k = m = 0.90 for English sentences.

These results seem to suggest that the sentiment is more detectable at sentence
level than at observation level, where several opinions with different polarity are
more likely to happen, therefore, observations are more difficult to label.

The total number of units and the class distributions can be seen in Table
As it can be observed, there are more positive than negative samples. The neutral
category decreased from the whole comment (a complex statement) to the sentence
(usually, with polarity or, less frequently, with lack of sentiment). All samples were
used as test set, and they were automatically labeled by using the proposed models
(the neural networks systems developed in this work and other general models from
commercial tools) and compared with the ground truth label.

4 Evaluation Metrics

Different evaluation metrics were used in order to test the systems. Concretely,
as defined below, accuracy (Ace, Eq. and macro F1 (MF1, Eq. were used
to reduce the impact of corpus imbalance in the evaluation. Moreover, the Fi per
class ¢ (positive, negative, or neutral class) as defined in Eq. was computed to
observe the behavior of our systems at class level.

Zcec erﬂc [f(l‘) = C]

Acc = (1)
|£2]
2.P.-R
Fr=2"c "t 2
' P+ R. @
1 c
MF ==Y Fi (3)
|C| ceC

{2 is the set of samples, 2. are the samples of class ¢ in {2, y(z) is the prediction
of the model f for a given sample z, C is the set of classes, [-] denotes the Iverson
bracket, and P. and R. are the precision and recall measure of each class, defined
as follows:

~ Yaen lf(®) = R, — Ywen, (@) =d

Yzcaly(@) =d - 92|

(4)
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Moreover, the macro-precision (M P) and macro-recall (M R) are also consid-
ered in order to compare the results of our supervised systems with those officially
published at SemEval and TASS workshops.

MP:LZPC MR:LZRC (5)
‘C| ceC ‘C‘ ceC

5 Cross-Domain Polarity Models

Cross-domain models for both Spanish and English were used to address the prob-
lem of sentiment analysis on VLEs. On the one hand, Deep Neural Networks such
as Convolutional Neural Networks (CNN), Attentional Bidirectional Long Short
Term Memory, and Transformer Encoders (TE) models were used to train models
for sentiment analysis tasks on Twitter, both in Spanish and English, proposed
in international competitions [33] 26] [7]. On the other hand, we used the senti-
ment analysis module provided by several commercial “Software as a service” text
analytics products: MeaningCloud [28], Microsoft Text Analytics [29] and Google
Cloud [13], which act as general domain polarity classifiers both for the English
and the Spanish languages.

5.1 Deep Neural Networks

To determine the polarity of the students’ opinions, we used several polarity su-
pervised models based on the use of word embeddings and deep learning. Unfortu-
nately, due to the lack of training data, it was not possible to learn robust models
specifically for the task described in this paper.

Instead, we used models trained by our research group, for similar tasks related
to the social network Twitter [33] 26 [7] both for English and Spanish. The English
corpus (including the partitions for training, development and testing purposes)
is provided in the Subtask A of Task 4 from SemEval 2017 [33] intended to detect
the overall sentiment of a tweet. The Spanish corpus is a combination of two TASS
editions (2017 [26] and 2019 [7]) with the aim of increasing the corpus size and
taking into account several Spanish variants (including Spain, Mexico, Costa Rica
and Uruguay). Due to the masters are opened to international students, several
Spanish variants can be used by them, therefore, it is interesting to consider some
of these variants during the training phase of the supervised models. In the Spanish
case, partitions for training, development and testing were built following a 80%-
10%-10% proportion. Table |3| shows some details of the corpora used to train the
models.

As input for CNN, TE and BLSTM models, each opinion is represented as a
N x d matrix where each word of the opinion - up to a maximum of N - is repre-
sented as a d-dimensional embedding. Depending on the language, different word
embeddins are used. For Spanish, 300-dimensional skip gram word embeddings
were learned from 87 millions of tweets [16], whereas for English, 400-dimensional
skip gram word embeddings from [8] were used.
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Table 3 Characteristics of the corpora used to train the Deep Neural Network models (both
for English and Spanish).

[ Task | Set [ Total [ Positive Negative Neutral None
SermBval | TP | 39656 | 15705 (40%) | 6203 (15%) | 17745 (45%) N/A
(Englisn) | Test | 12281 | 2375 (19%) | 8072 (32%) | 5087 (49%) N/A

& Total | 51040 | 18080 (35%) | 10175 (10%) | 23635 (46%) N/A
TAsg | Train | 11755 | 4211 (36%) | 4250 (36%) | 1321 (11%) | 1973 (17%)
(Spanish) Test 1507 547 (36%) 543 (36%) 155 (11%) 262 (17%)
p Total | 13262 | 4758 (36%) | 4793 (36%) | 1476 (11%) | 2235 (I7%)

5.1.1 Convolutional Neural Networks

This architecture is inspired by the work described in [19], which obtained com-
petitive results in text classification tasks such as sentiment analysis or irony
detection.

We applied several one-dimensional (the width of the filter is constant and equal
to the dimension of the embeddings) convolutions with different height filters, in
order to extract the sequential structure of the text. Concretely, heights from 1 to
3 with 256 filters for each height are used. Subsequently, we applied Global Max
Pooling to the feature maps in order to extract the most salient features for each
region size.

The final decision is carried out by a softmax fully-connected layer. Table [
show the performance of the models for the test set of the two tasks [11 [31].

Note that for TASS, the distinction between the classes Neutral (with both pos-
itive and negative feelings) and None (lack of sentiment) is made during training
and test. However, when the model trained for TASS is applied to our UX evalua-
tion task, both classes are merged. That is, given a test opinion z, argmax,, p(ylx) €
{Neutral, None} — y = Neutral. This is also true for all the other Deep Learning
systems presented in this section.

5.1.2 Transformer Encoder

Our system is based on the Transformer [40] model. Initially proposed for machine
translation, the Transformer model dispenses with convolution and recurrences
to learn long-range relationships. Instead of this kind of mechanisms, it relies on
multi-head self-attention, where multiple attentions among the terms of a sequence
are computed in parallel to take into account different relationships among them.

On top of the tweet representations, Nz = 1 transformer encoders are applied,
which relies on multi-head scaled dot-product attention with A = 8 different heads
and di, = dq = d, = 64 attention dimensionality. To do this we used an architecture
similar to the one described in [40], including the layer normalization [I] and the
residual connections. Due to a vector representation is required to train classifiers
on top of these encoders, a global average pooling mechanism was applied to the
output of the encoder, and it is used as input to a feed-forward neural network,
with only one hidden layer, whose output layer computes a probability distribution
over the classes of the task.
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Table 4 Performance of the supervised Deep Learning systems on SemEval 2017 Task 4
(English) and TASS (Spanish) for the test set.

CNN TE BLSTM
Acc MP MR MFy| Acc MP MR MF; | Acc MP MR MFM
Spanish | 66.29 55.63 55.07 54.05 | 66.82 58.40 57.93 57.63 | 65.49 55.40 52.81 52.71
English | 63.88 63.27 62.24 62.59 | 63.35 62.24 63.97 62.74 | 64.54 63.43 65.30 64.19

5.1.8 Attentional Bidirectional Long Short Term Memory

The system is based on Bidirectional Long Short Term Memory (BLSTM) [15] [36]
with attention mechanisms. On top of the tweet representations, one 256-dimensional
BLSTM is applied and, a context vector is computed from the outputs of the
BLSTM network following [2]. In this way, the context vector is a weighted sum
of the BLSTM outputs, where the weight associated to each output is computed
by means of a feed-forward neural network which is jointly trained with all the
other components of the system. Then, the context vector is used as input to a
feed-forward neural network with one 256 dimensional hidden layer, whose output
layer computes a probability distribution over the classes of the task. Again, the
Neutral and None classes are merged when the model is applied on the Spanish
UX task, due to the distinction between them in the TASS corpus.

Table [] show the performance of the models for the test set of the SemEval
2017 and TASS 2019 tasks [111,[31]. Again, the Neutral and None classes are merged
when the model is applied on the Spanish UX task, due to the distinction between
them in the TASS corpus.

5.2 Commercial Systems
5.2.1 MeaningCloud

MeaningCloud is a Software as a Service product [28] that provides a large number
of tools, easy to use and to deploy, for text processing, analytics and text/audio
mining, with the aim of facilitating the resolution of natural language process-
ing problems to developers. It includes tools for summarization, topic extraction,
language identification and sentiment analysis and it supports several languages.

We have used the sentiment analysis module in this work. This module allowed
us to use a classifier, trained in a general domain with texts in multiple languages,
to determine the global polarity of user opinions on VLEs. Concretely, we use the
field score tag in the response of the MeaningCloud API, that indicates the global
polarity of the text in 6 different levels: strong positive, positive, neutral, negative,
strong negative and without sentiment (None). To carry out our experiments,
we collapsed the strong sentiments, i.e., strong positive and strong negative are
considered as Positive and Negative, respectively. Moreover, the Neutral/None
classes are merged in only one class (Neutral).
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5.2.2 Google Cloud

Natural Language API of Google Cloud [13] allows to perform several kinds of
analysis such as syntactic parsing, entity or sentiment analysis, in general domain
texts and also for several languages. It is based on machine learning with the aim
of analyzing the structure and the meaning of documents. For sentiment analysis,
it computes two values for each document, score and magnitude. The overall sen-
timent of the document is computed by the score € [—1, 1], where negative values
refer to Negative sentiment, positive values refer to Positive sentiment and values
closer to 0 could suggest the absence of sentiment (None) or the neutralization of
positive and negative sentiments (Neutral). In order to distinguish between None
and Neutral, the system computes the magnitude € [0,inf[ which quantifies the
sentiment content in the document, so that documents with score closer to 0 will
be Neutral if its magnitude indicates the presence of sentiment (magnitude > 0)
or None if there is not (magnitude = 0). In our case, we only used the score value
due to in the UX corpus, the Neutral class indicates both situations.

In order to carry out the experimentation and a fair comparison with the
supervised systems based on Deep Neural Networks, we fixed a threshold € to a
reasonable value of € = 0.15, so that if —e < score < ¢, then the polarity is Neutral;
if score < —e, then it is Negative; and, otherwise, the polarity is Positive.

5.2.3 Microsoft Text Analytics

Text Analytics API of Microsoft Azure [29] provides automatic tools to evaluate
opinions and topics, such as sentence extraction, entity recognition and sentiment
analysis. The system is based on machine learning and it uses different features
such as n-grams, word embeddings and part-of-speech tags, being compatible with
several languages. The sentiment analysis module computes a score € [0, 1], being
0 the most Negative value and 1 the most Positive, where values closer to 0.5
suggests Neutral polarity, due to the objectivity or the neutralization of positive
and negative sentiments.

In this case, the classification rule is the same as the previously commented for
the Google system, but with € = 0.05 and moving the origin from 0 to 0.5; i.e., if
0.5 — € < score < 0.5 + ¢, then the polarity is Neutral; if score < 0.5 — ¢, then it
is Negative; and, otherwise, the polarity is Positive.

6 Our Proposal

In this paper, we address the UX evaluation problem in a novel way. To do this,
we propose to apply machine learning tools to the users’ opinions, expressed freely
in natural language and additionally, due to the lack of training data in the UX
domain, we propose to use general-purpose and cross-domain systems. A scheme of
our proposal is illustrated in Figure [2] We used six different systems to analyze the
polarity of the students’ opinions about the learning platform. On the one hand,
we have considered three general-purpose commercial systems (MeaningCloud [2§],
Google Cloud [13], and Microsoft Text Analytics [29]). On the other hand, we have
used three deep learning cross-domain models (Convolutional Neural Networks,
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Fig. 2 A scheme of our proposal for evaluating UX about E-learning platforms using general
and cross-domain sentiment analysis systems.

Transformer Encoders and Attentional BLSTM models) developed by our team
and initially trained for the sentiment analysis problem in Twitter [111 [9] [10].

7 Experimental Results

We applied the cross-domain polarity models presented in Section [f] to the pro-
posed task which consists of determining the polarity (positive, negative, or neu-
tral) of the users’ opinions about the learning platform. The opinions, as explained
in Section [3] are processed as the whole observation from one user or, if the obser-
vation is composed of more than one sentence, each single sentence. The results
obtained with each type of polarity models for observations and sentences in the
two considered languages are shown in Tables from [B] to

First of all, it is important to highlight the good results obtained by all the
systems for the Positive class (FF°® row in all tables), which is also the highest
frequency class, as observed in Table [2| However, the Neutral class has a totally
different behavior. All systems obtained much worse results for this class, with
differences of almost 50 points for the same system between FP°® and FP**“. It
should be noted that the Acc confidence intervals (excluded from the tables) are
wide, ranging from =+3.23% to =£9.38%, mainly due to the small size of the
corpora. Therefore, there is a considerable amount of uncertainty on the results
and the following conclusions should be taken with caution.

Regarding the experiments using the Spanish observations, BLSTM, TE and
MeaningCloud systems achieved the best results (see Table , being the TE sys-
tem the best one in terms of M F; and the MeaningCloud system the best one
considering only Acc. In the case of the Spanish sentence level experiments (Ta-
ble @, our BSLTM system achieved the best performance. As in general in all
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Table 5 Experiments at observation level on the Spanish samples.

Spanish Observations
CNN TE BLSTM Mean.C. Google Microsoft
Acc 76.68 77.94 78.15 78.57 77.73 70.59
MFy 53.06 61.72 58.55 59.47 55.64 51.98
FPos 87.52 88.86 88.24 88.32 87.72 83.21
F9 66.33 66.67 68.82 68.35 65.25 60.87
Fpev 5.33 29.63 18.60 21.74 13.95 11.86

Table 6 Experiments at sentence level on the Spanish samples.

Spanish Sentences
CNN TE BLSTM Mean.C. Google Microsoft
Acc 78.19 76.49 80.07 76.15 76.49 68.14
MFy 55.38 58.73 61.62 55.69 51.71 49.35
FPes 87.30 87.41 87.65 87.75 87.20 82.38
F[e9 70.83 67.92 74.13 66.94 60.71 55.74
Fev 8.00 20.87 23.08 12.39 7.23 9.93

the experimentation, the Positive class (both in observations and sentences ex-
periments) obtained the highest Fi results, and the Neutral class the one with
the lowest. At sentence level, our three cross-domain models trained with tweets
showed a better behavior than those from general-domain commercial systems.
We hypothesize that this is due to the greater similarity of sentences and tweets
compared to the whole observation, with larger length than one tweet. That is, the
test samples at sentence level are more similar to those used to learn our models
and therefore these models perform better.

Regarding the experiments using the English samples, the best accuracy and
M F1 values were obtained by Google, Microsoft and our BLSTM model. At ob-
servation level, Google system obtained the best results, whereas at sentence level
the most competitive system was BLSTM. The worst results were obtained by the
CNN and the MeaningCloud system.

Microsoft model was the best detecting Negative samples. The TE system was
the worst system detecting the negative samples at observation level, while the
CNN model was the worst for detecting this class at the sentence level. As in
the case of the Spanish samples, in the English samples the Neutral class was the
class with the worst results, being the performance of all the systems for this class
much lower than for the other classes. The Neutral samples are more complex in
structure due to the neutralization of positive and negative elements in the same
unit or the absence of polarity. If we compare the Neutral results for English and
Spanish it is possible to see that the commercial system, with the exception of
MeaningCloud, achieved results that are slightly higher for the English opinions,
suggesting that these systems have been better adjusted for processing English
documents.

It is important to highlight the good behavior obtained by our cross-domain
models in comparison with the general-domain commercial systems that have been
used in the experimentation. They are quite competitive despite having been only
trained with tweets. Different from user opinions expressed in VLE, where a for-
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Table 7 Experiments at observation level on the English samples.

English Observations
CNN TE BLSTM Mean.C. Google Microsoft
Acc 57.01 57.94 68.22 60.75 66.36 71.03
MFy 49.01 47.55 56.02 50.87 58.54 56.13
FPos 74.78 78.33 86.61 76.42 77.69 82.54
F9 60.00 43.48 52.17 57.14 67.93 69.84
Fpev 12.24 20.83 29.27 19.05 30.00 16.00

Table 8 Experiments at sentence level on the English samples.

English Sentences
CNN TE BLSTM Mean.C. Google Microsoft
Acc 57.61 61.41 70.65 63.04 69.57 73.91
MF, 50.16 51.44 58.14 49.60 55.55 54.35
Ffos 80.23 81.97 89.12 79.19 80.42 82.13
Fe9 53.57 54.70 63.87 57.38 72.59 70.92
Fpeu 16.67 17.65 21.43 12.25 13.64 10.00

mal communication is carried out addressing a set of topics related to the course
that they have taken, the tweets are informal and they express opinions of many
different topics in a way influenced by the behavior of the Twitter social network
(slang, user mentions, hashtags, lexical errors, elongations, etc.). This seems to
suggest that there are related properties among the opinions expressed on VLE
and those expressed on Twitter.

As stated in [38]: “However, sentiment accuracies even for binary positive/negative
classification for single sentences has not exceeded 80% for several years. For more
difficult multiclass case including a neutral class, accuracy is often below 60% for
short messages on Twitter (Wang et al., 2012)”. The accuracies of our models are
in the state of the art for sentiment analysis in Twitter, and the evaluation metrics
are also very similar when the models are applied to our UX dataset, which is a
multiclass problem with 3 classes (Positive, Negative, Neutral).

8 Conclusions and Future Work

In this paper, we have presented a sentiment analysis task to opinions written in
natural language extracted from questionnaires of postgraduate biomedical and
MOOC s online learning students. As stated in the introduction, the application
of sentiment analysis tools on UX comments will provide a better and accurate
understanding on human needs in the interaction with VLEs. Three Learning
Management Systems have been evaluated, both in Spanish and English, applying
cross-domain polarity models trained with a corpus of a different domain (tweets
for each language) and general models for the language. The obtained results are
very promising and they give an insight to keep going the research of applying
sentiment analysis tools on User eXperience evaluation.

The ultimate goal is to develop further tools of automatic feed-back of user
perception for designing virtual learning environments valued by users for its us-
ability, quality and pleasure of use. For this, as a future work, we will address
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automatic aspect detection (pleasure of use, pleasure of learning, learning plat-
forms, video, slides, usability, etc.) and its polarity will be analyzed in order to
capture relevant aspects that influence on the students and, possibly, were not
considered during the questionnaire, or to analyze which aspects of a course tend
to be more negative or positive for the students. Finally, we are now continuing
working with questionnaires on MOOCs to collect larger amounts of data in or-
der to train models for the task of sentiment analysis at global and aspect level
on VLEs. A transfer learning approach from models trained with data of other
domains could also be applied in order to have more robust models for the task.
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