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Abstract
Electronic Health Records (EHRs) are digital records associated with hospitalization, diag-
nosis, medications and so on. Secondary use of EHRs can promote the clinical informatics
applications and the development of healthcare undertaking. EHRs have the unique charac-
teristic where the patient visits are temporally ordered but the diagnosis codes within a visit
are randomly ordered. The hierarchical structure requires amulti-layer network to explore the
different relational information of EHRs. In this paper, we propose aMulti-Layer Representa-
tion Learning method (MLRL), which is capable of learning effective patient representation
by hierarchically exploring the valuable information in both diagnosis codes and patient
visits. Firstly, MLRL utilizes the multi-head attention mechanism to explore the potential
connections in diagnosis codes, and a linear transformation is implemented to further map
the code vectors to non-negative real-valued representations. The initial visit vectors are
then obtained by summarizing all the code representations. Secondly, the proposed method
combines Bidirectional Long Short-Term Memory with self-attention mechanism to learn
the weighted visit vectors which are aggregated to form the patient representation. Finally,
to evaluate the performance of MLRL, we apply it to patient’s mortality prediction on real
EHRs and the experimental results demonstrate that MLRL has a significant improvement
in prediction performance. MLRL achieves around 0.915 in Area Under Curve which is
superior to the results obtained by baseline methods. Furthermore, compared with raw data
and other data representations, the learned representation with MLRL shows its outstanding
results and availability on multiple different classifiers.
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1 Introduction

Electronic Health Records (EHRs) systems accumulate massive and a wide range of medi-
cal data concerning different aspects of healthcare. The explosive growth of EHRs in recent
years provides researchers the opportunities of accessing to the valuable medical information
which plays a significant role in describing patient’s condition, predicting patient’s mortality
and future morbidity, etc. At present, utilizing existing medical big data to provide better and
personalized medical services is the promising trend in the development of healthcare indus-
try. Nevertheless, due to the temporality, high-dimensionality, irregularity and complexity of
EHRs, the researches on EHRs are challenging.

Representation learning, which is regarded as a key step before any further applications,
provides opportunities for researches on EHRs. Representation learning aims to represent the
semantic information of the research objects as dense low-dimensional real-valued vectors
with the technology of machine learning [23], which provides more effective and robust
features for classification and regression. Recently, deep learning techniques have become
very popular and achieved great success in many fields [15,21,37], representation learning
which is based on these techniques also has attracted great attention since the learned vectors
are able to capture the implicit regularities and patterns [38].

Recurrent Neural Networks (RNNs) are deep learning models designed to handle time
series data [12]. Although traditional RNNs are not good at capturing long-term dependencies
of data, many variants are effective in addressing this issue [27]. Long Short-Term Memory
(LSTM) [14] is not only capable of processing lengthy temporal data more effectively, but
also can overcome the issue of vanishing gradient [18] with a gating mechanism.Meanwhile,
attentionmechanism is an effectivemethod, and its development renders the outputs ofmodels
more interpretable. Recently, they have often been combined with deep learningmethods and
successfully applied to multiple fields [22,33,35,40].

EHRs data for each patient consists of a sequence of patient visits, where each visit
contains a subset of diagnosis codes. However, a sequence of patient visits possess sequential
relationship among themwhich can’t be captured by simply aggregating code vectors. So the
effective representations need to be derived from the hierarchical learning of diagnosis codes
and patient visits. In this paper, we propose a Multi-Layer Representation Learning method
(MLRL) for patient’s EHRs. MLRL is implemented from two aspects: (1) Diagnosis code-
level representation. We use the multi-head attention mechanism to explore the potential
interactions and associations of the diagnosis codes. Then, the non-negative real-valued
code representations are obtained by the linear transformation; (2) Visit-level representation.
This part utilizes Bidirectional Long Short-TermMemory (BiLSTM) to explore the temporal
relationships among various patient visits. Furthermore, because the patient visits are unlikely
to contribute equally to the prediction of the target outcome, we combine the self-attention
mechanism to learn the weighted visit vectors which are aggregated to form the patient
representation.

Main contributions of this paper are as follows:

1. We propose a multi-layer representation learning method called MLRL to learn more
efficient and robust patient representation based on raw EHRs data. MLRL utilizes a
multi-level structure to explore the different relational information provided by EHRs
hierarchical characteristic, namely diagnosis code-level and visit-level information.

2. We evaluate MLRL on real EHRs dataset and conduct the experiments of patient’s mor-
tality prediction. Experimental results demonstrate the superior prediction performance
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achieved by MLRL. MLRL achieves around 0.915 in Area Under Curve (AUC) while
baselines are in the range of 0.8–0.9.

3. We apply the learned data representation to various classifiers for prediction tasks. The
experimental results with the representation learned by MLRL consistently and signif-
icantly outperform those achieved with representations based on raw data and baseline
methods.

The rest of the paper is arranged as follows: In Sect. 2, we review the related work,
including EHRs researches and the applications of representation learning in the medical
field. Section 3 analyzes the overall architecture of the proposed method, and describes the
relevant theory and processing details. Section 4 conducts the experiments based on the real
EHRs, and the experimental results are analyzed and discussed in detail. Finally, Sect. 5
concludes the study and points out the future work.

2 RelatedWork

2.1 EHRs

Mining EHRs is a hot research topic in healthcare informatics, and massive amount of EHRs
data motivates researchers to extract valuable clinical information for advanced analysis [31].
In recent years, EHRs data with different structure types, such as clinical text records and
structured medical concepts, has been increasingly applied to multiple medical researches.

According to the research objectives and applications, we classify the research contents
of EHRs into three types: (1) Disease risk level prediction and classification. Li et al.[19]
proposed a stacked sparse auto-encoder (SSAE) based feature encoding algorithm. The pro-
posed SSAE can effectively train on a small-scale data and learn the significant feature
representation for PD diagnosis. Razavian et al. [28] used RNN and Convolutional Neu-
ral Networks (CNN) to perform the multi-task prediction based on patient’s laboratory test
results. Besides, there are also risk prediction [4], patient’s condition prediction [24] and so
on. (2) Feature representation. The purpose of feature representation is to better select the
effective features, discover important phenotypes and influencing factors concerning disease
risk level, etc. Du et al. [13] proposed a representation learning method for dynamic multi-
variate time series data, which can jointly learn the long-term temporal dependencies pattern
and non-linear correlation features of multivariate temporal data. A novel framework to learn
sparse longitudinal representations of patient’s medical records was presented in [39]. The
proposed model achieved higher predictive performance and the learned representation is
interpreted and visualized to bring clinical insights. (3) Clinical image processing with the
goal of data analysis, disease diagnosis, etc. Ardakani et al. [1] proposed a rapid and valid
method for COVID-19 (coronavirus disease 2019) diagnosis using an artificial intelligence
technique. They utilized 1020 CT slices from 108 patients with laboratory proven COVID-19
and 86 patients with other atypical and viral pneumonia diseases. Deng et al. [11] proposed
a feature fusion method based on positron emission tomography (PET) images and clinical
information, which is used to obtain features for lung metastasis prediction of soft tissue
sarcomas.

123



1420 S. Yang et al.

2.2 Representation Learning in EHRs

Representation learning technology in medical field is applied to learn the high level abstract
representations of the medical data with the characteristics of irregularity, complexity and so
on. Because the diversity of medical data types, the architectures and functions of patient-
oriented representation learning methods are different.

In most of previous representation learning methods on medical data, diagnosis is usually
treated as a kind of medical activities [5], because a patient’s multiple visits may corre-
spond to different diagnose information. The importance of diagnosis codes should be taken
seriously. A recurrent neural network based denoising autoencoder, proposed in [29], was
employed to encode in-hospital records of each patient into a low dimensional dense vector.
The patient representation they learned is used to the prediction of clinical events. Never-
theless, they directly represented each patient visit as a multi-dimensional multi-hot vector
composed of 0 and 1, and did not mining the important related information existing in codes.
A deep learning approach for phenotyping from patient EHRs [7] was also not learned code
representations by utilizing the code characteristics. Ashfaq et al. [2] leveraged the Paragraph
Vector for Distributed Bag of Words (PV-DBOW) to generate simple numerical vectors of
codes. Nevertheless, their process of obtaining representations did not consider the impor-
tance of the codes in current visit, that is the code weight. Besides, the patient’s multiple visit
sequences also plays an important and different role in the target outcome prediction. Wang
et al. [34] proposed a representation learning model for patient medical records. They aimed
to capture the co-occurrence information and long-term dependence between clinical events,
but ignored the visit sequentiality and the differences in the contribution of patient visits to
the prediction task. Miotto et al. [25] proposed an unsupervised method, called DeepPatient,
which generated patient representation from the original clinical information via a stack of
denoising autoencoders (SDA). In their research, the classified diagnosis codes were used as
training labels to evaluate the predictive results of diseases. However, in the vector learning
process of patient EHRs, they did not consider the sequentiality and temporality of patient
visits.

In our research, the proposed method is based on EHRs concept representation [30] and
the idea of multi-layer structure is introduced to our proposed method, which aims to learn
the patient representation by taking into account the different relational information existing
in diagnosis codes and patient visits.

3 Multi-layer Representation LearningMethod

In this section, we first present an overview of MLRL and then we describe the components
of our proposed method in detail.

3.1 Overview of MLRL

MLRL consists of the following parts: diagnosis code-level representation layer, visit-level
representation layer and prediction layer.

As shown in Fig. 1, in the diagnosis code-level representation layer, we first embed the
discrete diagnosis codes to the vectors by an embedding matrix. Then, the initial code rep-
resentations are obtained by utilizing the multi-head attention mechanism to explore the
potential connections existing in codes. Finally, the linear transformation and rectified linear
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Fig. 1 The structure of MLRL

Fig. 2 The visits for a patient

unit (ReLU) activation function are introduced into the layer to map every code to the non-
negative real-valued representation. The method of combining BiLSTM with self-attention
mechanism is implemented to the visit-level representation layer. Based on the initial visit
vectors which are aggregated by the learned code representations, the patient representation
is obtained by the weighted sum of the learned visit vectors. The last layer is a fully connected
layer with softmax classifier for patient’s mortality prediction.
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Fig. 3 Multi-head attention
mechanism

3.2 Diagnosis Code-Level Representation

Assume that there areN patients, each patient has T visits and each visit containsM diagnosis
codes. The visits for a patient is illustrated in Fig. 2. ctmn represents the diagnosis code
numbered m that occurred in the tth visit of the nth patient.

There is valuable and implicit interrelated information in the disordered diagnosis codes
within each visit, and the specific method is required to explore the connections and learn
the vector representations.

Given the tth visit of the nth patient stn = {
ct1n , . . . , ctmn , . . . , ctMn

}
, n ∈ [1, N ], t ∈ [1, T ],

m ∈ [1, M], the diagnosis codes is embedded to the vectors with an embedding matrix.

st
′
n = Wembs

t
n (1)

where st
′
n = {

et1n , . . . , etmn , . . . , etMn
}
.

Then, the multi-head attention mechanism [32] is used to learn the initial code repre-
sentations. Every head in the attention mechanism represents an attention layer, i.e. Scaled
Dot-Product Attention. The attention function is defined in Eq. 2.

Attention (Q, K , V ) = softmax
(
QKT√

dk

)
V

where Q, K , V = st
′
n WQ, st

′
n WK , st

′
n WV

(2)

where Q, K and V are matrices representing queries, keys and values in the attention mech-
anism respectively; WQ , WK and WV are trainable parameter matrices.

Multi-head attention mechanism in Fig. 3 executes the attention function in parallel to
produce the different output values which are then concatenated and linearly converted,
yielding the final outputs utn = {

ut1n , . . . , utmn , . . . , utMn
}
.

utn = MultiHeadAttention
(
st

′
n

)

= concat(head1
(
st

′
n

)
, . . . , head i

(
st

′
n

)
, . . . , headh

(
st

′
n

))
WO

where headi = Attention (Qi , Ki , Vi )

(3)

where h represents the parallel attention layers, or heads. WO is a parameter matrice.
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Finally, the non-negative real-valued code representations ztn = {
zt1n , . . . , ztmn , . . . , ztMn

}

are obtained by the following formula.

ztn = ReLU
(
Wzu

t
n + bz

)
(4)

where Wz and bz are trainable parameter vectors of the linear transformation.
In order to obtain the initial visit vectors, the representations of diagnosis codes included

in each visit are aggregated as follows.

vtn =
∑

m

ztmn (5)

Therefore, we can obtain a sequence of visit vectors for a patient vn = {
v1n, v

2
n, . . . , v

t
n,

. . . , vTn
}
.

3.3 Visit-Level Representation

We describe the details of visit representations in the following. Because the visits of patients
are temporally ordered and interrelated, BiLSTM, which is good at capturing long-term
dependencies both forwards and backwards, is introduced to process the data and exploit the
sequential information. LSTM has three gates with different types: the forget gate ft , the
input gate it and the output gate ot , they together control how information is updated to the
state. At time t, the forget gate ft determines how much past information is discarded, and it
is updated as follows.

ft = σ
(
W f xt +U f ht−1 + b f

)
(6)

where xt is used as input to the memory cell at time t.
it represents the input gate and determines what information to be retained currently.

it = σ (Wi xt +Uiht−1 + bi ) (7)

The calculation method of candidate state C̃t is similar to the traditional RNNs.

C̃t = tanh (Wcxt +Ucht−1 + bc) (8)

Ct is the updated cell state.

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

ot is the output gate and ht is the output value.

ot = σ (Woxt +Uoht−1 + bo) (10)

ht = ot ∗ tanh (Ct ) (11)

Based on the initial visit vectors, the learning process of patient representation is as follows.
First of all, BiLSTM is used to encode the vectors and generate the hidden states hn ={
h1n, h

2
n, . . . , h

t
n, . . . , h

T
n

}
, which is concatenated by the forward output

−→
hn and backward

output
←−
hn .

−→
hn = −−−−→

LST M (vn) (12)
←−
hn = ←−−−−

LST M (vn) (13)

hn =
[−→
hn ,

←−
hn

]
(14)
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Furthermore, an attention mechanism [20] is applied to reward patient visits that are clues
to correctly predict patient’s mortality, and we compute the patient representation xn as a
weighted sum of the hidden state vectors based on the learned weights.

αn = softmax
(
W2 tanh

(
W1h

T
n

))
(15)

xn =
∑

t

αt
nh

t
n (16)

where αn = {
α1
n, α

2
n, . . . , α

t
n, . . . , α

T
n

}
, W1 and W2 are parameter matrices.

Therefore, a sequence of representations of patients x = {x1, x2, . . . , xn, . . . , xN } are
obtained.

3.4 Patient’s Mortality Prediction

The results obtained by the representation learning method are high level representations of
patients which can be used as the features for patient’s mortality prediction. We add a fully
connected layer with softmax classifier for the final outcome prediction as follows,

pre = softmax
(
Wprex + bpre

)
(17)

where Wpre is a parameter matrice and bpre is a bias vector.
The cross-entropy is introduced to calculate the prediction loss as follows,

L = − 1

N

N∑

n

[
yn log (pren) + (1 − yn) log (1 − pren)

] + 1

N

N∑

n

∥∥ααT − I
∥∥2
F (18)

where yn is a binary variable in prediction problems. We use the dot product of α and its
transpose, subtracted by an identity matrix, as a penalization term to focus attention on
multiple diverse areas instead of just being limited to a certain aspect.

4 Experimental Results and Analysis

4.1 Data Set

Medical Information Mart for Intensive Care (MIMIC-III) [16] is a large, single-center
database, which is jointly released by Computational Physiology Laboratory of the Mas-
sachusetts Institute of Technology, the Beth Israel Deaconess Medical Center (BIDMC) and
PhilipsHealthcare in 2006. The database has 26 kinds of data tables involving hospitalization,
patient’s information, diagnosis, medication, and so on [6].

We extract the patients who have more than one visits and use the diagnosis information
in terms of the first three digits of International Classification of Diseases-9 (ICD-9) codes to
construct the EHRs sequences. For the extracted and classified diagnosis codes, we number
them in order to better carry out code embedding. Specifically, each visit sequence in Fig.
2 is composed of a series of digital numbers representing diagnosis codes. The patient’s
mortality yi ∈ {0, 1} (0 means survival, 1 means death) is extracted for training labels. The
basic information of the database is shown in Table 1.

The reasons for selecting diagnosis codes as the features of clinical prediction tasks are as
follows. On the one hand, the diagnosis codes can reflect the patient’s illness and conditions
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Table 1 Basic statistics of the MIMIC-III database

Data Set MIMIC-III

# of patients 7537

# of visits 19,993

Avg. # of visits per patient 2.65

# of the first three digits of the unique diagnosis codes 849

Avg. # of the first three digits of the unique diagnosis codes per visit 11.92

Max # of the first three digits of the unique diagnosis codes per visit 39

during the hospitalization, which plays an important role in predicting patient’s mortality; On
the other hand, there are valuable implicit associations between them. For example, diabetic
patients may also suffer from diabetes-related complications (e.g. cardiovascular disease) to
a large extent, which indicates that theremay be some valuable potential correlations between
diabetes and its complications.

The codes follow a certain hierarchical pattern where the classification granularity of
the disease gradually increases. For example, the diagnosis code 250.00 represents diabetes
without mention of complications, 250.10 indicates diabetes with ketoacidosis and 250.20
indicates diabetes with hyperosmolarity. In this study, we group the codes into high-order
categories by selecting the first three digits of them to reduce information overload and have
a generalized specifcity level. The operation also makes the codes more generalized and
hierarchical. The classified codes have also been widely practiced in multiple researches
[7,8,10,25,26].

4.2 EvaluationMetrics

We use AUC, accuracy, recall and F1 score as the evaluation metrics. The ROC curve is a
plot of true positive rate (TPR) versus false positive rate (FPR), which are defined in Eqs.
(19) and (20) respectively. AUC is computed by integrating the ROC curve.

T PR = T P

T P + FN
(19)

FPR = FP

FP + T N
(20)

Accuracy refers to the proportion of the number of samples with correct classification
among the total number of samples as follows.

Accuracy = T P + T N

T P + T N + FP + FN
(21)

Recall means the number of correct positive results divided by the number of positive
results that should have been returned.

Recall = T P

T P + T N
(22)

F1 score is the harmonic mean of classification precision and recall. The formula is as
follows.

F1 = 2 × T P

2 × T P + FP + FN
(23)
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Table 2 Mean of TP, FP, TN and FN for confusion matrix

Real status
Positive Negative

Predicted status Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

The meanings of TP, FP, TN and FN are shown in Table 2.

4.3 Comparative Algorithms

In order to evaluate the performance of MLRL in patient’s mortality prediction as well as its
effectiveness of feature learning, we compare MLRL with baseline methods as follows.

(1) Logistic regression (LR)

The inputs of LR [10] are the aggregated vectors formed by the visits of patients. Specif-
ically, without vector learning, the patient vector as input is directly constructed from the
original visit sequences.

(2) Multi-layer perception (MLP)

MLP [10] uses the same inputs as LR, and introduce a hidden layer with size 400 between
the input and output.

(3) Deep patient

Deep Patient [25], an unsupervised representation learning method, aims to learn the
patient representation from raw clinical data by a stack of denoising autoencoders (SDA).
In this paper, we use the patient’s visits as input and train a three-layer stacked autoencoder
to minimize the reconstruction error. The number of hidden units per layer is set to 400.
This setting makes the dimension of the output representation consistent with other meth-
ods. Similarly, this method also directly learns the visit vectors and constructs the patient
representations based on them.

(4) Med2Vec

Med2Vec [9] is a scalable two-layer neural network for learning lower dimensional rep-
resentations of medical concepts. This method follows the idea of skip-gram to learn the
code representations, and predicts the codes appearing in the following visit based on the
current visit information. The hidden layer size of the network is set to 400. Since the original
Med2Vec is used for multiple variable prediction, we change the final softmax function to
implement binary prediction task (i.e. patient’s mortality prediction).

(5) BiLSTM-soft (BiLSTM-Softmax)

BiLSTM-Soft [3] utilizes BiLSTM to process the patient visits and learn their representa-
tions. Then, the patient representation, formed by the aggregated visit representations, is used
as the features to train the softmax classifier for prediction task. The inputs of this method
are the original patient visit sequences shown in Fig. 2. Both forward LSTM and backward
LSTM with 200 hidden units constitute BiLSTM.
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Table 3 MLRL parameter
settings

Parameters Values

Optimizer Adam

Learning rate 1e−4

h(heads) 8

dk 50

dv 50

dmodel 400

Hidden layer size 200

Batch size 500

Epochs 50

Table 4 The prediction performance of MLRL and baseline methods

Methods AUC Accuracy Recall F1 score

LR 0.812 ± 0.007 0.762 ± 0.006 0.767 ± 0.007 0.767 ± 0.009

MLP 0.811 ± 0.008 0.760 ± 0.006 0.766 ± 0.009 0.767 ± 0.012

Deep patient 0.822 ± 0.011 0.776 ± 0.009 0.775 ± 0.012 0.772 ± 0.012

Med2Vec 0.901 ± 0.010 0.778 ± 0.008 0.780 ± 0.013 0.778 ± 0.012

BiLSTM-Soft 0.889 ± 0.009 0.766 ± 0.008 0.767 ± 0.012 0.766 ± 0.011

BiLSTM-Att-Soft 0.897 ± 0.009 0.775 ± 0.009 0.773 ± 0.011 0.773 ± 0.013

MLRL 0.915 ± 0.009 0.785 ± 0.007 0.791 ± 0.012 0.792 ± 0.012

(6) BiLSTM-Att-Soft (BiLSTM -Attention-Softmax)

BiLSTM-Att-Soft method [36] performs the same process as BiLSTM-Soft and keep
parameter settings consistent, but combine an attention mechanism to learn the weights
which are generated for patient visits. Neither of these BiLSTM-based methods learn the
representations of the diagnosis codes occurring in patient visits, and both directly process
the original visit sequences.

4.4 Experimental Results

4.4.1 Experimental Results and Analysis for Patient’s Mortality Prediction

We randomly divide the dataset into ten mutually exclusive subsets with the same mortality,
of which eight subsets are used to train the models and the remaining two subsets are used for
validation and testing respectively. Most of the data constitutes the training set for training
the model, the validation set is used to test the generalization ability of the model and find
out whether the model has over-fitting phenomenon in time, the test set is used to verify the
model performance.

Adam optimizer [17] with a learning rate of 0.0001 is used tominimize the loss of the task,
and all methods are implemented in tensorflow. The detailed parameter settings ofMLRL are
shown in Table 3. In the process of parameter selection, we refer to the parameter settings of
attention mechanism and BiLSTM in [10,32], and make appropriate adjustments according
to our data dimensions. Besides, we set a loss threshold of 0.15 to train the model and get
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Fig. 4 The training process of MLRL and baseline methods

the training epoch. In order to ensure the validity of the comparison results, the parameters
(such as the optimizer, learning rate) of the network in baseline methods are consistent with
MLRL and the dimension of the output representations is guaranteed to be same.

The predictive performance ofMLRL and baselines is presented in Table 4, and the model
performance is evaluated with AUC, accuracy, recall, and F1 score.

According to Table 4, compared with other baselines, Deep Patient reports the better accu-
racy, recall andF1 scorewith its unsupervised deep learningnetwork.Med2Vecplays a certain
role in exploiting the potential connections of medical concepts, and its performance metrics
are slightly higher than other baselines. Furthermore, BiLSTM-based methods (including
BiLSTM-Soft and BiLSTM-Att-Soft) achieve better prediction performance. They achieve
an AUC close to 0.9, which is 7% higher than that obtained by the common classifiers such
as LR and MLP. This is because the methods are good at processing the patient visits with
chronological characteristic. In addition, it is worth mentioning that the results are improved
after an attention mechanism are combined with BiLSTM, which indicates that the atten-
tion mechanism plays a significant role in improving the model quality. Finally, MLRL with
multi-layer structure significantly outperforms all baseline methods, it achieves an AUC of
0.915 while baselines just get 0.8–0.9 (i.e., 1–10% improvement). In sum, MLRL does yield
obvious improvements for the prediction task.
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Fig. 5 Comparison of the results for different data representations
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Figure 4 shows the training process of MLRL and baseline methods. As shown in Fig.
4, we can find an obvious and important aspect of the experimental results, which is the
overfitting phenomenon in the methods. Constantly increasing the training epochs degrades
the performance of all of the methods, as it leads to overfitting. For example, overtraining
makes the results of BiLSTM-Soft show a downward trend. Similar behavior can be seen as
we train BiLSTM-Att-Soft for more epochs, which suggests that appropriate model training
is necessary and early stopping technique should be applied to the representation learning of
the medical field.

4.4.2 Analysis of Different Data Representations

To measure the quality of the data representation learned by MLRL and evaluate how well
it performs in prediction task on different classifiers, we conduct experiments for several
classifiers with different representations. Specifically, the experiment is to obtain the patient
representations learned by all methods, and then input them as features to different classifiers
for prediction tasks and compare the results. The classifierswe used include LR,MLP, LSTM,
random forest (RF) and support vector machine (SVM), and the baseline methods include
BiLSTM, BiLSTM-Att (BiLSTM-Attention), Deep Patient and Med2Vec.

Table 5 presents the prediction performance of different representations in terms of AUC,
accuracy, recall and F1 score. From Table 5, we can observe that compared with raw data,
the performance of all the representation learning methods improves, but MLRL shows
superior predictive performance, demonstrates their applicability in the prediction tasks. This
experimental results also show that all the methods can capture the effective information and
learn different patient representations which have different contributions to the final outcome
prediction. However, because the neural network-based baseline methods do not explore the
hierarchical EHRs structure, or do not focus on the valuable relational information in the
sequences, the prediction performance of them is not good as that achieved by MLRL which
learns the patient representation by the hierarchical learning of code and visit information.
In Table 5, the results of our learned representation are superior to those obtained by raw
data. Particularly for SVM classifier, MLRL achieves an AUC of 0.837 while raw data
just get 0.748, and other evaluation metrics are also improved about 7–12%. Meanwhile,
MLRL consistently outperforms all other feature learning baseline methods. Taking LSTM
classifier as an example, MLRL improves other baseline methods by 3.9%, 2.9%, 4.3% and
1.9% respectively in terms of AUC. In Fig. 5, we present a more intuitive comparison of all
the methods in terms of AUC, accuracy, recall and F1 score.

In sum, the performance of MLRL on patient’s mortality prediction are better than base-
line methods, which shows that taking advantage of the EHRs structure characteristics to
hierarchically exploit the significant information embedded in EHRs helps to learn more
effective representations.

5 Conclusion

In this paper, we propose MLRL to learn an effective deep representation of EHRs based on
RNNs and attention mechanisms. MLRL learns the patient representation by hierarchically
mining the valuable and effective information existed in diagnosis codes and patient visits.
Then, we apply the proposed method to patient’s mortality prediction with real EHRs data.
The experimental results demonstrate that MLRL is capable of achieving more accurate
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prediction and improving the prediction performance of the tasks. In addition, the evaluation
results of the data representation learned by MLRL significantly outperform those achieved
by raw EHRs data and other learned representations.

In future work, we are going to study a wider range of medical events, such as the various
physical indicators and clinical notes, to further explore the valuable information. In addition,
we also refer to the descriptionof emotion in [41] andplan to explore the relationships between
patient’s emotions and diseases.

Acknowledgements We are grateful for the support of the National Natural Science Foundation of China
(61373149, 61672329, 91846205), the National Key R&DProgram (2017YFB1400102, 2016YFB1000602),
and SDNSFC (No. ZR2017ZB0420).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi A (2020) Application of deep learning
technique to manage covid-19 in routine clinical practice using ct images: results of 10 convolutional
neural networks. Comput Biol Med 121:103795

2. Ashfaq A, Sant’Anna AP, Lingman M (2019) Readmission prediction using deep learning on electronic
health records. J Biomed Inform 97:103256

3. Bai T, Zhang S, Egleston BL, Vucetic S (2018) Interpretable representation learning for healthcare via
capturing disease progression through time. In: Acm Sigkdd international conference, pp 43–51

4. Bernardini M, Morettini M, Romeo L (2020) Early temporal prediction of type 2 diabetes risk condition
from a general practitioner electronic health record: a multiple instance boosting approach. Artif Intell
Med 105:101847

5. Cai X, Gao J, Ngiam KY, Ooi BC, Zhang Y, Yuan X (2018) Medical concept embedding with time-
aware attention. In: Twenty-seventh international joint conference on artificial intelligence IJCAI-18, pp
3984–3990

6. Cheng J, Li B (2017) Research on mimic-iii electronic medical record dataset and its mining. J Inf Resour
Manag 04(7):37

7. Cheng Y, Wang F, Zhang P, Hu J (2016) Risk prediction with electronic health records: a deep learning
approach. In: SIAM international conference on data mining, pp 432–440

8. Choi E, Bahadori MT, Schuetz A, Stewart WF, Sun J (2015) Doctor ai: predicting clinical events via
recurrent neural networks. arXiv:1511.05942 (2015)

9. Choi E, Bahadori MT, Searles E, Coffey C, Thompson M, Bost J, Tejedorsojo J, Sun J (2016) Multi-layer
representation learning for medical concepts. In: Knowledge discovery and data mining, pp 1495–1504

10. Choi E, Bahadori MT, Sun J, Kulas J, Schuetz A, Stewart WF (2016) Retain: an interpretable predictive
model for healthcare using reverse time attention mechanism. In: Neural information processing systems,
pp 3504–3512

11. Deng J, Zeng W, Shi Y, Kong W, Guo S (2020) Fusion of FDG-pet image and clinical features for
prediction of lung metastasis in soft tissue sarcomas. Comput Math Methods Med 1:1–11

12. Dong H, Supratak A, Pan W, Wu C, Matthews PM, Guo Y (2018) Mixed neural network approach for
temporal sleep stage classification. IEEE Trans Neural Syst Rehabil Eng 26:324–333

13. Du S, Li T, Yang Y (2020) Multivariate time series forecasting via attention-based encoder-decoder
framework. Neurocomputing 388:269–279

14. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
15. Jiang Y, Zheng Y, Hou S, Chang Y, Gee JC (2017) Multimodal image alignment via linear mapping

between feature modalities. J Healthc Eng 2017:1–6
16. Johnson AEW, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi MM, Moody B, Szolovits P, Celi

LA, Mark RG (2016) Mimic-iii, a freely accessible critical care database. Sci Data 3(1):160035–160035
17. Kingma D, Ba J (2014) Adam: a method for stochastic optimization. In: International conference on

learning representations, pp 1–15

123

http://arxiv.org/abs/1511.05942


Multi-layer Representation Learning and Its Application to… 1433

18. Lecun Y, Bengio Y, Hinton GE (2015) Deep learning. Nature 521(7553):436–444
19. Li S, Lei H, Zhou F, Gardezi J, Lei B (2019) Longitudinal and multi-modal data learning for parkin-

son’s disease diagnosis via stacked sparse auto-encoder. In: 2019 IEEE 16th international symposium on
biomedical imaging (ISBI 2019) Venice, Italy, April 8–11, 2019

20. Lin Z, Feng M, Santos CND, Yu M, Xiang B, Zhou B, Bengio Y (2017) A structured self-attentive
sentence embedding. arXiv:1703.03130

21. Liu R, Wang H, Yu X (2018) Shared-nearest-neighbor-based clustering by fast search and find of density
peaks. Inform Sci 450:200–226

22. Liu X, Li K, Li K (2020) Attentive semantic and perceptual faces completion using self-attention gener-
ative adversarial networks. Neural Process Lett 51(1):211–229

23. Liu Z, Sun M, Lin Y, Xie R (2016) Knowledge representation learning: a review. J Comput Res Dev
53(2):247–261

24. Ma F, Chitta R, Zhou J, You Q, Sun T, Gao J (2017) Dipole: Diagnosis prediction in healthcare via
attention-based bidirectional recurrent neural networks. In: Knowledge discovery and data mining, pp
1903–1911

25. Miotto R, Li L, Kidd BA, Dudley JT (2016) Deep patient: an unsupervised representation to predict the
future of patients from the electronic health records. Sci Rep 6(1):26094–26094

26. Nguyen P, Tran T,WickramasingheN, Venkatesh S (2017) Deepr: a convolutional net for medical records.
IEEE J Biomed Health Inf 21(1):22–30

27. Pandey SK, Janghel RR (2019) Recent deep learning techniques, challenges and its applications for
medical healthcare system: a review. Neural Process Lett 50(2):1907–1935

28. Razavian N, Marcus J, Sontag D (2016) Multi-task prediction of disease onsets from longitudinal lab
tests. arXiv:1608.00647

29. Ruan T, Lei L, Zhou Y, Zhai J, Gao J (2019) Representation learning for clinical time series prediction
tasks in electronic health records. BMC Med Inform Decis Making 19(8):259

30. Shickel B, Tighe PJ, Bihorac A, Rashidi P (2018) Deep EHR: a survey of recent advances in deep learning
techniques for electronic health record (EHR) analysis. IEEE J Biomed Health Inform 22(5):1589–1604

31. Solares JRA, Raimondi F, Zhu Y, Rahimian F, Canoy D, Tran J, Gomes ACP, Payberah AH, Zottoli M,
Nazarzadeh M et al (2020) Deep learning for electronic health records: a comparative review of multiple
deep neural architectures. J Biomed Inform 101:103337–103351

32. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017)
Attention is all you need. In: Neural information processing systems, pp 5998–6008

33. Wang W, Hu H (2019) Image captioning using region-based attention joint with time-varying attention.
Neural Process Lett 50(1):1005–1017

34. Wang Z, Li H, Liu L (2019) Predictive multi-level patient representations from electronic health records.
In: 2019 IEEE international conference on bioinformatics and biomedicine, pp 987–990

35. Xing S, Liu F, Wang Q, Zhao X, Li T (2019) A hierarchical attention model for rating prediction by
leveraging user and product reviews. Neurocomputing 332:417–427

36. Yang Y, Zheng X, Ji C (2019) Disease prediction model based on bilstm and attention mechanism. In:
2019 IEEE international conference on bioinformatics and biomedicine (BIBM), pp 1141–1148

37. Yu X, Wang H, Zheng X, Wang Y (2016) Effective algorithms for vertical mining probabilistic frequent
patterns in uncertain mobile environments. In: Ubiquitous computing, pp 137–151

38. Yuan Y, Xun G, Suo Q, Jia K, Zhang A (2019) Wave2vec: deep representation learning for clinical
temporal data. Neurocomputing 324:31–42

39. Zhang J, Kowsari K, BoukhechbaM (2020) Sparse longitudinal representations of electronic health record
data for the early detection of chronic kidney disease in diabetic patients. In: CoRR

40. Zhang S, Xu X, Pang Y, Han J (2019) Multi-layer attention based cnn for target-dependent sentiment
classification. In: Neural processing letters, pp 1–15

41. Zhang J, LiuX, Ren F (2016) The effects of group diversity and organizational support on group creativity.
Acta Psychol Sin 48(12):1551–1560

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1703.03130
http://arxiv.org/abs/1608.00647

	Multi-layer Representation Learning and Its Application to Electronic Health Records
	Abstract
	1 Introduction
	2 Related Work
	2.1 EHRs
	2.2 Representation Learning in EHRs 

	3 Multi-layer Representation Learning Method
	3.1 Overview of MLRL
	3.2 Diagnosis Code-Level Representation
	3.3 Visit-Level Representation
	3.4 Patient's Mortality Prediction

	4 Experimental Results and Analysis
	4.1 Data Set
	4.2 Evaluation Metrics
	4.3 Comparative Algorithms
	4.4 Experimental Results
	4.4.1 Experimental Results and Analysis for Patient's Mortality Prediction 
	4.4.2 Analysis of Different Data Representations


	5 Conclusion
	Acknowledgements
	References




