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Abstract This paper proposes the Mesh Neural Network (MNN), a novel archi-
tecture which allows neurons to be connected in any topology, to efficiently route
information. In MNNSs, information is propagated between neurons throughout a
state transition function. State and error gradients are then directly computed
from state updates without backward computation. The MNN architecture and
the error propagation schema is formalized and derived in tensor algebra. The
proposed computational model can fully supply a gradient descent process, and
is potentially suitable for very large scale sparse NNs, due to its expressivity and
training efficiency, with respect to NNs based on back-propagation and computa-
tional graphs.
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Learning - Deep Learning

1 Introduction and background

A huge amount of research has been made during the last years on a variety
of applications of Artificial Neural Networks (ANNs). As a consequence, many
ANNSs architectures have been developed, generating surrogate models from dif-
ferent types of big data, such as image, audio, video, text, time series, and so on.
With ANNs, the underlying relationships among data can be approximated with
little knowledge of the system to be modelled. In spite of this success, ANNs are
computational models vaguely inspired to biological brains, and require relevant
computation and management with respect to the biological counterpart.
Specifically, Deep Learning is achieving good levels of performance, via archi-
tectures composed of several layers. The Deep Learning research is mostly based on
gradient-based optimization methods and on the well-known backpropagation (BP)
algorithm. In essence, BP includes a forward and backward layer-wise computation
of the loss function with respect to the neurons weights. Actually, BP is not biolog-
ically plausible. Moreover, convergence problems, such as vanishing and exploding
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gradients, occur when using many layers. Finally, BP can be very unstable when
dealing with recurrent networks and can be ineffective to exploit long-lasting rela-
tionships [1]. In the last decade, an increasing number of alternative strategies have
proposed to simplify the ANN training. A first strategy consists in removing the
backward computation by deriving a forward only computation. A reference work
for this approach is [2]. Specifically, the proposed method improves the efficiency of
Jacobian matrix computation, for fully or partially connected ANNs. An interest-
ing advantage of this approach is that it can train arbitrarily connected ANNs, and
not just Multi-Layer Perceptron (MLP)-based architectures. Indeed, ANNs with
connections across layers are much more powerful than MLPs. A more recent re-
search in which the Jacobian matrix is calculated only in the forward computation
was made by Guo et al. [3]. In general, to remove the backward computation is not
costless: an additional calculation in the forward computation must be considered.
However, the forward-only computation is more parallelizable than traditional for-
ward and backward computations, as the dataset is large and the number of hidden
neurons increases. A different strategy is presented in [4], in which the training
method is based on a different principle called information bottleneck, which does
not require backpropagation. In general, a performance comparison with BP is
difficult, since performance can heavily depend on the minibatch size. The mini-
batch size is usually a constant that is based on available GPU memory. On the
other side, a quantity of interest is the learning convergence, which is unknown
for either BP or other methods. Since the backward computation is removed for
such approaches, they are more suitable for parallel computation. Another type
of strategy is proposed by Jaderberg [5]: a model for predicting gradient, called
synthetic gradient, is calculated in place of true backpropagation error gradients.
With such synthetic gradients, layers can be independently updated, removing
forward and update locking.

According to this research trend, this paper formally introduces recent ad-
vances leading to a novel, arbitrarily connected, ANNs architecture, in which error
gradients are computed throughout a state transition function without backward
computation. The paper is organized as follows. In Section 2, the fundamentals of
the problem are defined. A formal derivation of the proposed architecture is pre-
sented in Section 3. Section 4 covers the implementation and experimental aspects.
Section 5 is devoted to conclusions and future work.

2 Problem statement

An Artificial Neurons Layer (ANL) with n; inputs and n, outputs can be described
by its layer weights matriz W € R™**" and activation function ¢(x) : R — R"°.
Let us consider activation functions for which it holds that ¢(x); = ¢(x;) (where
o(x) : R — R). Each column W, ; of W represents the weights vector from the
inputs to the i-th perceptron, in which biases are represented as weights of fic-
titious inputs that always produce the constant value 1. Given the input vector
x € R™, the output vector y € R™ of the ANL is y = ¢(xW). In multilayer neural
networks, or MLPs, ANLs are stacked, i.e., the ANL; is fed by the output of the
ANL;_;: each set of weights connecting the i-th layer is represented by a differ-
ent matrix W;, and the input/output layers are considered as special topological
elements with respect to the hidden layers.
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In the popular BP training algorithm, the gradients of the weights are itera-
tively computed exploiting a propagation rule between layers [6l[7]. Let us consider
a generic error function E(y,y) : R™2 _ R that computes the error between a
network output y and a desired one y, and a generic error function with respect
to the o-th output yo Fo(vo,70) : R> — R. Let us assume that E(y,¥) is a com-
position of E,(yo,Yo) for every output unit. Considering an MLP with n; layers,
the objective of the BP algorithm is to compute the gradients of every output
error %};’i’%) with respect to every parameter p;. Such gradients can be used by
a Stochastic Gradient Descent (SGD) algorithm to train the MLP [8]. Let net; , be
the o-th output of the i-th hidden layer. Applying the chain rule for differentiating
composite functions to %};’%)7 the corresponding error gradient is:

8E(yo,y7) _ 8E(yo,y7) Yo _ aE(netL 1 o»yo) Onetr,_q ,0
Op;  Oyo  Opi  Onetp_i, Op;

(1)

aE(netnl,lro,y*o

The derivative ) depends on the error function and is known. In the

anetnl 1,
. . Onet, o
derivative neaTLl each parameter of a layer influences the output values of all
' . Onetn, 1,0 . .
the subsequent layers. Hence, in order to compute %, the chain rule is ap-

plied up to the term 87:;75‘ 2. For this purpose, the BP algorithm iteratively applies

the chain rule on each layer in reverse order for efficiently computing the partial
derivatives with respect to all parameters. More formally, given the output of the
I-th layer, net; = ¢(net;_1 W), let us say its o-th element t; , = (net;_3 W;)o.
The chain rule is applied to ¢(t;,), and in order to compute the term %ﬁl:’), t
needs to be saved for each layer. ’

To train ANNs without a layered topology, the approach commonly used is
the automatic differentiation on computational graphs (CGs) [9], in which compu-
tations are represented in a graph. In essence, for each operation (e.g., matrix
multiplication, element-wise sum, etc.) the inputs zo, 1, -+ ,zn—1 and the output
y are represented as incoming and outgoing edges of a graph, respectively. For each
edge 3 7{ is computed. For a given ANN, the operations to compute its output y,
and thelerror E(yo,7o) are then represented as a CG. Let us consider, a “factoring
path”, i.e., a path between two nodes in which the derivatives g Y encountered on
the traversed edges are all multiplied together. Then, the partial "derivative of the
error function with respect to a parameter, i.e., %}j’%), is the sum of all the

reverse factoring paths from E(yo,%o) to p;, i.e., the paths belonging to the set P;:

8E(yo,yo) Z H 7‘ (2)

PEP; (z, y)ep

A CG representation is a general formalism to represent all network topolo-
gies, such as feedforward, recurrent, convolutional, residual, and so on. To train
arbitrarily connected ANNs topologies is very important, because ANNs with con-
nections across layers are much more powerful than classical MLP architectures.
However, a CG increases the space complexity with respect to a corresponding
MLP-based representation (where an MLP representation is possible). Indeed, the
underlying data structure needs to store both the graph topology and the par-
tial derivatives % of each edge. Moreover, it results in a higher time complexity,
because all the reverse factoring paths have to be found.
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In the next section, a novel ANNs representation is introduced, which is ca-
pable of training arbitrarily connected neural networks and, as a consequence,
ANNs with reduced number of neurons and good generalization capabilities. The
interesting properties of the training algorithm is the lack of a backpropagated
computation, and an iteration without need of memory relationships than the one
with the previous step. Hence, the proposed method is much simpler than tra-
ditional forward and backward procedure. Indeed, the training iteration can be
described by three matrix operations. Due to the possibility of training unstruc-
tured ANNSs, the proposed architectural model is called Mesh Neural Network
(MNN).

3 Formal derivation of a Mesh Neural Network
3.1 Structure, activation and state of an MNN

The proposed MNN is based on a matrix representation that is not a transfer
matrix, but it is an adjacency matriz (AM), i.e., a square matrix representing
the ANN as a finite graph. The elements of the AM indicate whether pairs of
vertices are adjacent or not in the graph, by means of a non-zero or zero weight,
respectively.

More formally, an AM A is a matrix in which each element A; ; represents
the weight from the node i to the node j. For example MLPs are a subset of the
representable topologies with AMs: since in MLPs only connections between layers
are possible, their AMs are block matrices. Figure [1| shows an MLP topology with
the corresponding AM. Here, each W; is the weights matrix of the i-th layer and
occupies a corresponding block in the AM.

o

-

Wol O | O
0
0

NN

(a) ANN Topology (b) Adjacency Matrix

Fig. 1 An MLP and its adjacency matrix
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An example of unstructured topology and its corresponding AM is shown in
Figure

[0 0 wo2 wo,z3 O 0 0 0 wog O
@ @ 00 0 wis 0 wiswig 0 0 0
«A 00 O 0 0 w25 O 0 0 0
\ 00 O 0 0 0 0 0 0 w39
00 O 0 0 0 0 wyq7 O 0
00 O 0 0 0 0 0 0 ws,9
00 0 0 wss 0 0 0 wss O
00wr2 O 0 0 0 0 wrg wryo
00 O 0 0 0 0 0 0 0
00 O 0 0 0 0 0 0 0 |
(a) ANN Topology (b) Adjacency Matrix

Fig. 2 An unstructured ANN and its adjacency matrix

A generic MNN topology with n neurons is represented by a matrix A € R™*",
It is worth noting that this representation does not include the topological distinc-
tion between input, hidden and output neurons. Let n;,n,, and n, be the number
of input, hidden and output neurons. Since all neurons are identified by a position
in the matrix, a good convention (hereinafter called “iho positioning convention”)
to distinguish the three sets without loss of generality is to assign them a position-
ing: to consider the first n; elements as input neurons, the subsequent n;, elements
as hidden neurons, and the last n, elements as output neurons.

Let the state be s; € R™ the output value of each neuron in the MNN at the
i-th instant of time. The output of an MNN is provided along a temporal sequence,
whose length depends on the distances between input and output neurons. This
allows an MNN to exhibit temporal dynamic behavior. Let us recall that: (i) 4; ;
represents the weight from neuron 4 to neuron j; (ii) the h-th neuron output is
computed as gp(Z,ICV:O wy pr); (i) biases are represented as weights of fictitious
inputs that always produce the constant value 1. Hence, given an initial state sp,
which is set to the input value for input neurons and to zero for the other neurons,
the next state is calculated as:

Sn = @(Sn—lA) (3)

At each time tick, the state transition of each neuron can influence the outputs
values of all adjacent neurons. For subsequent ticks, the initial piece of information
contained in sg can traverse subsequent neurons and can influence their states, up
to the output neurons.
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3.2 Derivation of state and error gradients

In this section, the error derivative M for every parameter p; of an MNN
are formally determined. It can be observed from Equation (3) that the unique
parameter is A. Let us assume an MNN with n neurons, of Wthh n; input neurons
and n, output neurons positioned in the matrix according to the iho ordering
convention. Let be the MNN processed for ¢ states. The o-th output value is then

Yo = St—1,0 = ¢(st—2A)o where o € {n —no,--- ,n — 1}. Recalling the chain rule:
aE(ym?To) aE(ymyo) 88t 1,0 (4)
Op; Yo Op;

Let us consider a generic state sn = @(tn) where tn = sp_1A. According to
the chain rule, the derivative for a generic output o is:
Osno _ Op(tne) Otno _ Op(tno) Asn_1A)

- = T Otn, ) (5)
aAivj at’ﬂ,o aAi,j atn,a BAM

where (sn_1A), is:

N

(SnflA)o = Z Sn—l,kAk,o (6)
k=0

Let us distinguish two cases in Equation @: (i) if o = j, one of the Ay, is
A; j; (ii) if o # 4, all the Ay, are constant with respect to A; ;. Let us consider
the case o = j. For linearity of differentiation:

N
(Y sn—1kAk;) N
8(Sn71A)j _ k;X::O ! J _ Z a(sn—l,kAk,j) (7)

0A; ; 04, ;

In the partial derivatives
Moreover, in the case k # i, the matrix elements Ay, ; are constants with respect
to A; ;. Let us distinguish in Equation (7)) the term with k =

%":"”) all the s,,_; j elements depend on A; ;.

N N
Z O(sp—1,kA%k,;5) _ Z O(sp—1,KkAk,;) n O(sn—1,i4i,5) (8)
= 8Am- Hm o BAZ-J- aAm-

Since Ay ; is a constant, the first term of Equation is:

N N

O(sp—1,kA%,; Js k
S, il S Tl ®

k=0, k#j I k=0, k#j "

By applying the product rule to the second term of Equation :

8(‘Sn—l,iAi,j) 0sp—1 Ji 04; asn—l,i

A =
94, 9A;, ’3+8A”S” LT A

Aij+sn—1, (10)



8 Federico A. Galatolo et al.

The term 6;2:_ ljl A; j can be integrated in the summation of Formula @)z

N N
Z O(sp—1,kAk,j) _ OSn—1,k

0A; ; 3Ti,jAk’j +on—1 (11)

k=0 k=0

Similarly, considering the case o # j in Equation @, the Ay, elements are
constant with respect to A; ;, leading to:

N
8( Z Sn—LkAk,o)
k=0

8(Sn_1A)O . .
A DA, =2 ko (12)

Hence, Equation can be formulated as follows:

N

a‘P(tn,o) Ospn— Jk . _ s

88n o Otn o (kz::O aAi,ljk Akv] + Sn—l,i) if o= J

DAi; ) oettns) L 05 1 . ‘ (13)
It .o ( 94, ; Ak,o) ifo#j

k=0

As a result, Equation determines a very efficient algorithm for computing
the partial derivative of the MNN state, which is, in turn, essential for applying

an SGD-based training. In three terms: (i) the partial derivatives of the activation
function %7::)’ (ii) the previous states s,y j, and (iii) the partial derivatives
asn—l,k

previous state — EEwat Consequently, it is possible to compute both the next states

sn,o and the next state partial derivatives gj{;’;, concurrently and in the same

iteration step. Moreover, an iteration does not need to store any intermediate
values except for those of the current state, which can then be overwritten in
the next iteration. Since the error gradient can be directly calculated from state
gradient, Equation results in a simplified iterative method without any memory
dependency than the one with the previous step.

Operations in Equation can be performed with scalars, vectors, and ma-
trices, and then can be reformulated so as to be efficiently performed with tensors.
In the next section, Equation and the error gradient propagation schema are
formalized and derived by tensor algebra.

3.2.1 Tensor Algebra formulation of the error gradient

Let us denote by Vasn € RNXNXN the tensor of the partial derivatives gZ‘L‘J’
0Sn,o0
VASn)ijo= : 14
( A n)l,LO aAi,j ( )
and by Vxp(x) the tensor of partial derivatives %fii)
dp(x;
(Vap(o0)); = 2220 (15)

8:ri
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and by 5, € RNXNXN 4 tensor such that:

~ sni ifo=j
Siio= ’ 16
"o {0 otherwise (16)

Hence, it is possible to formulate Equation [13] as:

Vasn = Vi, o(tn) © (Vasn_1A +5p) (17)

where the symbol ® denotes the Hadamard product.

As a result, the error gradient Forward-Only Propagation (FOP) algorithm of
an MNN can be formulated in terms of the following steps, i.e., initialization, state
derivatives forward propagation, and error derivative computation:

Vas<+ 0

for i in {1,2,--- ,ny — 1} do
Soin; < T
t<—sA .
Vas <+ Vip(t) © (Vas A+YS)
s < ¢(t)

end

Yy < s[n —np :n]

VaAE(y,Y) < VyE(y,¥) © Vas

Algorithm 1 FOP algorithm for the error gradient of an MNN

where n; is the number of timesteps needed to the input to traverse the network
and provide a sufficiently accurate output. In Recurrent Neural Networks (RNNs) a
careful consideration is required to determine the value of ns, because any recurrent
connection results in a potentially undefined number of loops. However, a relevant
advantage of MNN with respect to RNN based on back-propagation is that an
MNN does not need to save the prior steps determined by a loop. In RNNs a
bounded-history approximation strategy is used to simplify the computation and
provide an adequate approximation to the true gradient: relevant information is
saved in the fixed number of timesteps n; and any information older than that is
forgotten. According to this strategy, in Backpropagation Through Time [10], a
backward pass through the most recent n; time steps is performed at each time
the network is run through an additional time step. In contrast, in MNN the lack
of an error backpropagation sensibly reduces the impact of ny: it should be large
enough to capture the temporal structure of the problem to model. Thus, after n
timesteps the computation is simply truncated to take the output value. It is worth
noting that already in the training phase weights are adjusted according to the
specified n¢. Consequently, recurrent connections are adequately weakened when
producing noise on the error, reducing the impact of the recurrent computation.In
conclusion, a sufficiently large n; results in an adequate approximation to the true
gradient, and it is not a sensitive parameter of the network.

The next section is devoted to the Python implementation and the evaluation
of the proposed MNN.
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4 Implementation and experimental studies

The MNN model has been developed, tested and publicly released on the Github
platform, to make possible the initial roll-out of the approach, and to foster its
application on various research environments. The implementation is based on
numpy|[11], a widespread package for tensor algebra in Python. The interested
reader is referred to [12] for further implementation details.

The correctness of the symbolic derivatives is a critical aspect of the proposed
network. To ensure it, in addition to the symbolic differentiation (SD), another im-
plementation has been generated, in which gradients are calculated via automatic
differentiation (AD) [I3]. AD transforms a target function into a large graph of
symbolic differentiation at elementary operation level, which are highly paralleliz-
able [I4]. This computational graph can efficiently manage orders of magnitude of
gradients, providing highly accurate numerical values. Nevertheless, the AD-based
system can be used for testing purposes only, since it is based on a back-propagated
gradient error that has been criticized in the premise of this research work. To
develop an efficient and coherent implementation of the proposed approach, the
symbolic derivatives are then fundamental. To empirically evaluate the functional
equivalence of the SD-based and the AD-based networks, the absolute differences
between their corresponding output values have been computed over 100 tests. The
two networks have been equipped with 5 input, 10 hidden and 3 output nodes. In
each test, the two comparative networks have been set with (the same) random
weights, and fed with a batch of (the same) 10 random inputs. As a result, the
95% confidence intervals of both the state and the gradient absolute differences
are very low: 0.00024+0.000047 and 0.00001140.0000053, respectively. The source
code of the numerical test code has been publicly released [12].

4.1 Synthetic problems

In order to investigate the capabilities of the MNN model the dataset generator of
scikit-learn[15] has been used to produce five types of two-dimensional dataset well-
known in the literature (Figures [6): (a) Moons: a two-classes dataset made by
two interleaving circles; (b) Circles: a two-class dataset made by concentric circles;
(c) Spirals, which is considered as a good evaluation of training algorithms [2]; (d)
Single Blobs: a three-class dataset made by isotropic Gaussian blobs with standard
deviation 1.0, 2.5, 0.5; (e) Double Blobs: a three-class dataset made by two groups
of isotropic Gaussian blobs with standard deviation 1.0.

Each dataset is made by 1,000 objects, balanced classes, and contains 10% of
noise. Finally, a dataset from UCI Machine Learning Repository has been used,
known as Iris [16]. Iris contains three classes of Iris plants. Each class consists of
50 objects characterised by 4 numeric features which describe, respectively, sepal
length, sepal width, petal length and petal width. Class Iris Setosa is linearly
separable from the other two. However, class Iris Versicolor and Iris Viginica are
not separable from each other.

The MNN topology represented in Figure [3| has been used. Specifically, two
output units have been assigned for the two classes datasets, and three output
units for the three classes datasets. On the other side, three inputs units have
been used: two inputs for the (z,y) features of the dataset, and one input for the
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bias input (constantly set to 1). 5 hidden units have been used. The Network has
been evaluated for 3 time ticks. The ReLU activation function has been used for
all units. Finally, the cross-entropy loss has been used as error function. For the
experiments using the Iris dataset, it has been used an MNN with 5 input units
(4 features and 1 bias), 10 hidden units and 3 output units (one for each class).

Figure 3 MNN topology used in experiments

The Adaptive Moment Estimation (Adam) [I7] has been used to compute
adaptive learning rates for each parameter of the gradient descent optimization
algorithms, carried out with batch method. A learning rate of 0.001 has been set.
The training has been carried on for 1000 epochs.
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Figure 4 Two-classes datasets and related decision regions
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Figure 5 Three-classes datasets and related decision regions

The dataset has been partitioned into 70% and 30% for training and testing
sets, respectively. Figures [d] [5} and [6] show with different gray levels the resulting
partitioning of the input domain made by the MNN. Here, the generalization
capabilities of the network are apparent. As a result, the MNN achieved the 100%
accuracy for all datasets. In terms of complexity, the number of nodes of the MNN
are 3+5+2 =10 and 3+ 5+ 3 = 11 for 2 and 3 class datasets, respectively. The
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corresponding number of parameters (weights) is 10-10 = 100 and 1111 = 121,
respectively. The interested reader is referred to [I2] for a color animation of the
MNN partitioning for each iteration. Table [I| shows the accuracy of the Spiral
model generated by an MNN for increasing hidden neurons. It is interesting that,
with 15 hidden neurons the problem is successfully modeled. Moreover, for a lower
number of neurons, up to 7, the accuracy decreases gradually, in contrast to MLP
and other approaches proposed in [2].

Hidden Neurons ‘ Accuracy
5 0.75 £ 0.079
7 0.95 £+ 0.029
10 0.94 £+ 0.039
13 0.95 4+ 0.026
15 0.99 £0.011

Table 1 Accuracy of the Spiral model generated by an MNN for increasing hidden neurons

Figure @(a) and Figure @(b) show the training loss and the training accuracy
over time for the Iris dataset. It is worth to note the convergence capabilities of
the network. As a result, the MNN achieved 97.00% + 1.62% accuracy over 10 runs
with a 30 confidence interval. In terms of complexity, the number of nodes of the
MNN is 5 4 10 + 3 = 18. The corresponding number of parameters (weights) is
18- 18 = 324.
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Figure 6 Training convergence of MNNs with Iris dataset
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4.2 Real-world problems

To investigate the effectiveness of the MNN architecture, some experiments have
been carried out on two real-world problems used for benchmarking machine learn-
ing algorithms: MNIST [I8] and Fashion-MNIST [19]. MNIST is a database of
handwritten digits images, whereas Fashion-MNIST is a dataset of fashion article
images. Both datasets are made by a training set of 60,000 examples, and a test set
of 10,000 examples. Each example is a 28x28 image, with pixels in 0-255 grayscale
values, associated with a class label of 10 possible classes. The task is to classify a
given image into one of such 10 classes. Figure [7] shows some representative sam-
ples of the datasets. Both datasets contain samples ambiguous even for humans:
MNIST and Fashion-MNIST have an average human performance of 98.29% [20]
and 83.5% [19], respectively. Such datasets are widely used and deeply investigated:
top-performing models, based on convolutional neural networks, achieve a classi-
fication accuracy higher than 99%, and have a layered structure made by feature
extraction and classification. Feature extraction can be performed by alternating
convolution and subsampling layers, whereas classification can be performed via
dense layers, such as a fully connected feed forward (i.e, MLP-based) neural net-
work. The purpose of this section is to use an MNN as a classification layer, to
carry out a comparative analysis between MNN and MLP. Rather than providing
the top performance, this solution simplifies the design of the classification layer
for the sake of simplicity. Indeed, for a fair comparison it is essential to avoid com-
plex architectures with many hyper-parameters, whose particular choices should
be subject to in-depth discussion. Similarly, there are many choices for convolu-
tional architectures, but using a general-purpose architecture with a high degree
of automation reduces such choices.
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With this premise, a Convolutional Auto-Encoder (CAE) is used for feature
extraction, followed by an MNN or MLP based network for classification. The
CAE is commonly used for unsupervised data encoding and noise reduction [21].
The following architecture is used in experiments. Encoding: a convolutional layer
with a 3x3 kernel size and 16 channels, stride 3 and padding 1; a rectified linear
unit (ReLU); a max pooling layer with 2x2 kernel size, stride 2; a convolutional
layer with a 3x3 kernel size and 8 channels, stride 2 and padding 1; a ReLU; a
max pooling layer with 2x2 kernel size, stride 2. Decoding: a transpose convolu-
tional layer with 3x3 kernel size and 16 channels, stride 2; a RelLU; a transpose
convolutional layer with 5x5 kernel size and 8 channels, stride 3, padding 1; a
ReLU; a transpose convolutional layer with 2x2 kernel size and 1 channel, stride
2, padding 1; a hyperbolic tangent activation function. Overall, the CAE provides
32 features to the classification layer. Both MLP and MNN classification layers
have been equipped with n; = 32 input and n, = 10 output neurons. The number
ny, of hidden neurons has been set accordingly, to have the same number of overall
connections for the two comparative networks. Since both datasets are spatial,
in the MNN network two recursion steps, i.e., ny = 3 , are sufficient. The MNN
network is statically pruned for better efficiency. Since the MNN model general-
izes the other perceptron-based topologies, there are custom pruning that makes
the MNN fully equivalent, for instance, to an RNN or to an MLP. However, for
a significant comparison, such custom pruning is avoided, in favor of a randomly
determined pruning.

Figure[B|represents the adjacency matrix of the MNN based classification layer.
Here, I, H, and O, represent the sets of indexes corresponding to the input, hidden
and output neurons. Each block can then be characterized by a pair of related sets.
In particular, white blocks have zero connections, whereas dotted blocks have a
given percentage of randomly selected connections.

I

O

Figure 8 Pruned adjacency matrix

Specifically, the white blocks represent the following connection types: all-to-
input (I - I, HH — I, O — I), output-to-all (0 — I, O — H, O — O). The dotted
blocks represent the following connection types: input-to-hidden (I — H), input-to-
output (I — @), hidden-to-hidden (H — H), and hidden-to-output (H — Q). As a
consequence, assuming ny, = 50, the following connections and biases are available
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in the dotted area: (1 —p)- (n; +np) - (ny +no) + (np, +no), where p is the pruning
percentage, and the last term (nj + no) is the number of biases of hidden and
output nodes. In order to have a similar number of connections, the MLP hidden
neurons are made by two layers of h; and ha neurons. Hence, the total number of
connections, considering also biases, is (n;-h1 +hi) + (k1 -h2 + h2) + (h2 - 1o + no).
The 95% confidence intervals achieved via the MNN and MLP based classifiers,
calculated over 10 trials, are summarized in Table 2] It important to note that, for
each trial, the percentage of randomly selected connections in MNN is completely
renewed. As previously discussed, such classification rates are related to the fea-
tures generated by the CAE layer. Consequently, the rates are not comparable with
the top absolute performance of the literature. The significant result is that the
MNN and the MLP based classifiers achieve very similar performance for increas-
ing connections. For the sake of comparability, Table [2| shows only the settings
with a very similar number of connections for the two networks. The best per-
formance, of about 0.80 classification rate, is achieved via 1044-1047 connections.
To evaluate the complexity of the classification task, it has been experimentally
verified that for increasing number of connections (up to more than 3 thousand
connections), both classifiers are not able to overcome the 0.8 classification rate.

Architecture ‘ Hidden Neurons ‘ Pruning ‘ Connections ‘ MNIST ‘ Fashion MNIST
MNN 50 85% 798 0.772 £ 0.030 0.762 £ 0.005
MLP 14413 - 797 0.761 £ 0.065 0.750 £ 0.026
MNN 50 80% 1044 0.796 £+ 0.013 0.771 £ 0.004
MLP 17417 - 1047 0.789 + 0.035 0.786 £ 0.013

Table 2 Testing classification rates of the MLP and MNN based networks, on MNIST and
fashion-MNIST

5 Conclusions and future work

The purpose of this paper is to formally introduce recent advances leading to the
MNNSs, providing the key points to the reader.

Overall, the main advantages of the MNN model with the related FOP al-
gorithm are: (i) the state partial derivatives can be computed along the forward
propagation; (ii) the error gradient can be directly computed from state gradient;
(iii) the state partial derivative update makes use only of short-lived variables,
which can be overwritten at each state iteration; (iv) the state partial derivatives
concern only one multidimensional parameter; (v) the overall gradient computa-
tion relies only on tensor multiplications, which can be easily distributed on parallel
computing, thus potentially enabling large-scale sparse ANNSs training [22].

In contrast, the BP-based family of algorithms is limited to layer-wise architec-
tures, and needs to store all intermediate layer outputs, by comprising a forward
and backward propagation through the network. On the other side, the CG-based
gradient computation is not constrained in terms of network architecture, but it
needs to store a large graph topology and the partial derivatives of each compu-
tation node, and it needs to compute all factoring paths for each parameter.



Mesh Neural Networks with their Forward-Only gradient Propagation 19

Due to its unconstrained structure, an interesting research perspective of MNNs
is to adopt structural regularization techniques to dynamically drive the net-
work topology. For small datasets the network topology is highly dense to exploit
the available neurons, and then the adjacency matrix is highly dense. For large
datasets, in general there are two strategies that can make the adjacency matrix
sparse: a) offline pruning, i.e., to remove some types of connections according to
some heuristics; b) online pruning, i.e., to remove iteratively some connections
that do not contribute to model, in the training phase. The two strategies can
be combined. In general, the possibility to have a sparse matrix depends on the
problem complexity. Since the MNN needs large matrix operations, such strategies
should also be supported by a framework implementation that efficiently exploits
the hardware resources, e.g. via memory caching and highly parallel computation.
However, the commercially available machine learning framework provide opti-
mized libraries for back-propagated models. As a consequence, to test the MNN
architecture on very large datasets, an optimized framework should be imple-
mented on specific hardware. Such development is a long-term task and it is out
of the scope of this paper, which focuses on the formal derivation of the technique
and on pilot experimentation showing its potential application.

As a future work, in order to compare BP, CG and FOP according to a perfor-
mance perspective, the scalability of each algorithm should be evaluated in terms of
computational complexity. Moreover, a statistical performance evaluation should
be carried out on benchmark problems, considering large-scale applications.
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