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Abstract
Many methods have been developed for financial risk analysis. In general, the conventional 
unsupervised approaches lack sufficient accuracy and semantics for the clustering, and the 
supervised approaches rely on large amount of training data for the classification. This 
paper explores the semi-supervised scheme for the financial data prediction, in which accu-
rate predictions are expected with a small amount of labeled data. Due to lack of sufficient 
distinguishability in financial data, it is hard for the existing semi-supervised approaches to 
obtain satisfactory results. In order to improve the performance, we first convert the input 
labeled clues to the global prior probability, and propagate the’soft’ prior probability to 
learn the posterior probability instead of directly propagating the’hard’ labeled data. A 
label diffusion model is then constructed to adaptively fuse the information at feature space 
and label space, which makes the structures of data affinity and labeling more consistent. 
Experiments on two public real financial datasets validate the effectiveness of the proposed 
method.

Keywords  Financial risk analysis · Data clustering · Semi-supervised learning · Affinity 
diffusion

1  Introduction

The outbreak of the (COVID-19) pandemic on the global scale led to the significant change 
in the world over the past year, destabilizing the global economy and stock markets. The 
massive economic hit from COVID-19 has dramatically increased financial risk and forced 
an increasing number of companies into bankruptcy. Financial risks, such as credit risk, 
operational risk, and business risk are generally uncertainties with any form of financing, 
which causes the difficulty of data analysis. Data analysis can help predict risk in advance, 
which is a key step for company decision-making [1, 2] in order to minimize the defaults. 
The evolving nature of the COVID-19 pandemic and the associated economic uncertainties 
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require more efforts to support financial resilience. Therefore, the research on risk predic-
tion is particularly important.

Many methods have been proposed for financial data analysis, which can be generally 
divided into two categories: unsupervised approaches and fully-supervised approaches. 
Typical unsupervised methods include the popular clustering algorithms, such as the 
k-means algorithm [3], expectation–maximization (EM) algorithm [4] and graph-partition-
ing algorithm [5]. In [6], Kohonen’s self-organizing feature map is utilized to uncover auto-
mobile bodily injury claims fraud. In [7], a fuzzy clustering system is developed to detect 
anomalous behaviors in healthcare provider claims. In [8], unsupervised neural networks 
are utilized to identify fraud in mobile communications. In [9], hierarchical clustering 
method is developed to predict risks in insurance industry. These methods can automati-
cally analyze the data without any prior information. However, they are generally limited to 
the accuracy of data analysis. Since no label prior is provided, they also cannot assign the 
clusters to the corresponding labels (lack of semantic understanding). Therefore, it’s hard to 
evaluate the performance of these unsupervised clustering methods. As suggested in [10], 
a multiple criteria decision making strategy can better evaluate clustering algorithms in the 
domain of risk analysis. Typical fully-supervised methods include the machine learning-
based methods [11, 12]. Compared with unsupervised methods, fully-supervised methods 
can generally achieve higher prediction accuracy. However, the high-quality performance 
of fully-supervised methods relies on large amount of training data. They are inapplicable 
when not enough labeled data is provided. Due to uncertainty in financial data, these fully-
supervised approaches generally lack versatility. For example, a trained model for credit 
risk analysis cannot be applied for business risk analysis. They need to retrain the model 
with the new labeled data in business risk.

To address the above problems, in this paper, the semi-supervised scheme is explored 
for financial data analysis. Only a small amount of labeled data is needed in semi-super-
vised scheme. Then all the unlabeled data can be automatically clustered based on the 
labeled data. Compared with unsupervised methods, the label (normal or abnormal) of 
each data can be specifically determined in semi-supervised strategy since each label prior 
is provided. Furthermore, the provided label information can help to improve the cluster-
ing performance. Compared with fully-supervised methods, semi-supervised scheme has 
greater versatility and it can be directly applied to different data without any additional 
cost. Moreover, only a small amount of labeled data is needed to obtain a semantic clas-
sification. Comprehensively, semi-supervised scheme is more practical for financial data 
analysis.

In the semi-supervised model [13–15], the label information can be propagated from 
labeled data to unlabeled data based on their pairwise relationships. The data manifold is 
represented as a weighted graph, where the vertices in the graph represent each data and 
the edge connecting two adjacent vertices is determined by the initial pairwise similarity 
values. After the diffusion, the geometry of the data manifold can be effectively captured. 
However, due to lack of sufficient distinguishability, the conventional semi-supervised 
approach [13] cannot obtain accurate risk prediction with limited labeled data, and also be 
sensitive to the number of labeled data. Furthermore, the pairwise similarity is not always 
consistent with the category information, which causes the label prior cannot be correctly 
propagated following the mismatched smoothing structure.

The contributions of this paper can be described as: first, instead of directly propagat-
ing the’hard’ prior label information, we transform the’hard’ prior information to the’soft’ 
global probability first, and then the’soft’ prior probability is propagated to learn the 
posterior probability, which helps to produce more accurate risk prediction and specific 
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semantic labeling without the demand of a large number of labeled data; second, the label 
prior is utilized to correct the pairwise relationship, trying to make the structures of data 
affinity and labeling more consistent, and an automatic fusion strategy is proposed to effec-
tively combine the data affinity and the labeling information by an adaptive label diffusion 
framework.

2 � Conventional Semi‑supervised Model

A set of financial data can be denoted as X =
{
xi
}N

i=1
 , where xi ∈ ℝ

d represents the risk 
factors of each data, d is the number of attributes, and N represents the number of data. 
The purpose of data clustering is to assign each data xi ∈ X a risk discriminating label 
fi ∈ L , where the label set L generally contains two label values, one is normal (no risk) 
and the other is abnormal (risky). In semi-supervised scheme, a small amount of data is 
labeled for each label first. The labeled data set with each label l ∈ L is denoted as Xl ⊂ X . 
The label information is then propagated from the labeled data to unlabeled data follow-
ing the structure of their pairwise similarities W = [Wij]N×N, generally defined as a typical 
Gaussian function:

where i and j represent the data xi and xj , respectively. The automatic constant � is utilized 
to control the strength of the weight and EP(⋅) represents the expectation over all data pairs. 
It can be noticed that the weight Wij is large (close to 1) if their attribute characteristics are 
similar, and vice versa.

As described in [13], the label learning process with respect to the label l ∈ L can be 
formulated as minimizing:

where Πl = [�il]N×1 represents the posterior probability of being learned with the label l . 
di =

∑N

j=1
Wij and � = (1 − �)∕� (0 < 𝛼 < 1) is utilized to balance these two energy terms. 

zil represents the’hard’ prior label information, where zil equals 1 if xi is labeled with l , and 
otherwise equals 0.

The first energy term in Eq. (3) restricts that if the pairwise similarity Wij is large, xi and 
xj should have similar posterior probabilities. The second energy term in Eq.  (3) tries to 
keep the posterior probability be consistent with the’hard’ prior condition.

After derivation optimization, it has:

(1)Wij = exp

(
−�

‖‖‖xi − xj
‖‖‖
2

2

)

(2)
� =

1

2EP

(
‖‖‖xi − xj

‖‖‖
2

2

)

(3)E(Πl) =

N∑

i,j=1

Wij(�il − �jl)
2 + �

N∑

i=1

di(�il − zil)
2

(4)Πl = (1 − �)(I − �P)−1Zl
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where P = D−1W with D = diag([d1, ..., dN]) , I is an identity matrix, and Zl = [zil]N×1 . 
Suggested by [13], the above probability learning process is also equivalent to the follow-
ing label diffusion strategy:

where t represents the diffusion steps. Π(t+1)

l
 converges to the same solution with Eq. (4) 

when t → ∞ . The final labeling can be obtained as:

3 � The Proposed Model

The above ‘hard’ label diffusion model is not suitable for data analysis since the limited 
label information cannot be correctly propagated following the inaccurate structure of data 
affinity. We estimate the ‘soft’ prior probability from the ‘hard’ labeled data first, which 
can also be regarded as a unary diffusion process from the local seeds to the global prob-
abilities. The prior probability that xi belongs to the label l can be estimated as:

where cl represents the clustering center produced by unsupervised clustering algorithms, 
such as the k-means algorithm [3], from the labeled data set Xl . The value is normalized 
under the constraint 

∑
l∈L 𝜋̄il = 1 . If xi is close to the clustering center, its prior probability 

𝜋̄il is large, and vice versa.
In order to keep the labeling and data affinity consistent, we should try to merge these 

two kinds of information before the label diffusion. For easy combination, we represent 
them in the same dimensional space:

where Π̄l = [𝜋̄il]N×1 . W (1) represents data similarity in the feature space and W (2) ∈ ℝ
N×N is 

a similarity matrix in the label space.
Borrowing ideas from the binary affinity fusion model in image retrieval [16], the auto-

matic fusion strategy for data analysis is described as:

where H is the number of fusion components ( H = 2 ), d(h)
i

=
∑N

j=1
W

(h)

ij
 , � = [�h]H×1 

( 0 ≤ �h ≤ 1 ), and � is an adjusting parameter to control the influence of the last energy 
term. The fusion coefficients �1 and �2 can be automatically learned. Compared with the 
affinity fusion with diffusion model [16], the proposed model focuses on automatically 
determining the fusion coefficient for the information at the feature space and the label 
space, respectively, by a unary label diffusion framework.

(5)Π
(t+1)

l
= �PΠ

(t)

l
+ (1 − �)Zl

(6)f = argmax
l

Πl

(7)𝜋̄il = exp
(
−‖‖xi − cl

‖‖2
)

(8)W (1) = W

(9)W (2) =
∑

l∈L

Π̄lΠ̄
T
l

(10)

E(Πl, 𝛽) =

H�

h=1

𝛽h

�
N�

i,j=1

W
(h)

ij

�
𝜋il − 𝜋jl

�2
+ 𝜆

N�

i=1

d
(h)

i

�
𝜋il − 𝜋̄il

�2
�
+

1

2
𝛾‖𝛽‖2

2
, s.t

H�

h=1

𝛽h = 1
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Equation (10) can be reformulated as the matrix form:

where L(h) = D(h) −W (h) is the Laplacian matrix with D(h) = diag([d
(h)

1
, ..., d

(h)

N
]).

Two variables are contained in Eq. (11) and their values are updated iteratively. Differ-
entiating E(Πl, �) with respect to Πl first, it has:

Substituting Lagrange term into Eq. (11) and differentiating E(Πl, �) with respect to �h , 
it has:

where Mh = ΠT
l
L(h)Πl + 𝜆(Πl − Π̄l)

TD(h)(Πl − Π̄l) . Based on the constraint 0 ≤ �h ≤ 1 , we 
can derive � ≥ |M1 −M2| . Consequently, the detailed steps of the proposed algorithm are 
described as:

1. Initializing the parameters: � and �
2. Setting the initial �h = 1∕H and f old = [−1]N×1

3. Estimating prior probability Π̄l with Eq. (7)
4. Computing W (1) and W (2) with Eqs. (8–9)
5. Estimating posterior probability Πl with Eq. (12)
6. Updating the value of � with Eq. (13)
7. Computing the new labeling f new with Eq. (6)
8. Checking the termination condition: if f new equals
f old , stop; otherwise f old = f new , go to 5

4 � Experiments

To evaluate the performance of the proposed semi-supervised clustering algorithm for 
financial risk prediction, two public credit approval risk data sets: German [17] and Aus-
tralian [18] credit card application data sets, and one public Chinese growth enterprise 
market (GEM) dataset, are selected in this paper. There are common uncertainties with dif-
ferent forms of financing in these three datasets and the potential financial risks lead to the 
necessary risk prediction in order to minimize the defaults in advance. Therefore, the above 
datasets are suitable for our experiments. The compared clustering approaches include the 
popular k-means (KM) algorithm [3], the expectation–maximization (EM) algorithm [4], 
the repeated-bisection (RB) algorithm [19], the graph-partitioning (GP) algorithm [5], the 
density-based (DB) algorithm [20], the conventional semi-supervised learning (SSL) algo-
rithm [13] and the state-of-the-art tensor product graph-based (TPG) algorithm [21].

(11)E
�
Πl, 𝛽

�
=

H�

h=1

𝛽h

�
ΠT

l
L(h)Πl + 𝜆

�
Πl − Π̄l

�T
D(h)

�
Πl − Π̄l

��
+

1

2
𝛾‖𝛽‖2

2

(12)Πl = (1 − 𝛼)

(
H∑

h=1

𝛽hD
(h) − 𝛼

H∑

h=1

𝛽hW
(h)

)−1 H∑

h=1

𝛽hD
(h)Π̄l

(13)
�h =

1

H
+

H∑
h=1

Mh

H�
−

Mh

�
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It is hard to judge the performance of the algorithm with a single evaluation index. In 
this paper, four quantitative indexes: Precision, Purity [19], True Positive Rate (TPR) and 
True Negative Rate (TNR) are utilized to evaluate the compared methods. Precision rep-
resents the percentage of a cluster that contains positive objects, where in risk analysis, 
a positive class normally refers to bankrupt, fraudulent or erroneous activities. Purity is a 
simple measure of the number of correctly assigned objects in clustering. TPR measures 
in all positive instances how many instances are predicted to be positive category (correct 
prediction rate for positive instances), and TNR measures in all negative instances how 
many instances are predicted to be negative category (correct prediction rate for negative 
instances). Negative class is normal activities in risk analysis. More detailed definition of 
the above indexes can refer to this paper [10]. For the four evaluation indexes, a larger 
value represents a better clustering result.

Two controlling parameters � and � are involved in the proposed algorithm and we set 
them to 0.3 and 10,000, respectively. For the semi-supervised algorithms SSL and the pro-
posed method, 10% data is randomly selected as the labeled samples each time. We repeat 
the experiment 20 times and select the average performance as the final result.

The German credit card application data set was provided by UCI machine learning 
databases [17], which contain 1000 instances with 24 dimensional features and 1 label 
variable. The features correspond to the status of existing checking account, duration, 
credit history, purpose of credit application, credit amount, education level, employment 
status, personal status, other debtors, present residence, property type, age, job, and so on. 
The label variable describes whether an instance is accepted or declined, in which 70% 
instances are accepted and 30% instances are declined. Table 1 lists the Precision, Purity, 
TPR and TNR values of all compared methods in this data set, where the results of KM, 
EM, RB, GP and DB are reported in [10]. It can be seen that KM, EM, RB and DB obtain 
low precision values (below 0.3). Though GP obtains a high precision value 0.61, the TPR 
and TNR values are low. The proposed method obtains the highest precision, purity and 
TNR values among all the compared methods. Furthermore, compared with semi-super-
vised methods SSL and TPG, the proposed method obtains better performance in preci-
sion, purity, TPR and TNR, which validates the effectiveness of the proposed model in this 
data set.

The Australian credit card application data set was provided by a large bank and con-
cerns consumer credit card applications [18], which contains 690 instances with 14 dimen-
sional features and 1 label variable. To protect confidentiality of the data, attribute names 
and values have been changes to meaningless symbols. Attribute types include continuous, 
nominal with small number of values, and nominal with larger numbers of values [17].

Table 1   Comparison of 
performance on German credit 
card application data set

Methods Precision Purity TPR TNR

KM 0.30 0.70 0.78 0.22
EM 0.25 0.70 0.58 0.26
RB 0.26 0.70 0.62 0.24
GP 0.61 0.69 0.29 0.58
DB 0.30 0.70 0.79 0.23
SSL 0.48 0.71 0.48 0.78
TPG 0.55 0.72 0.52 0.23
Ours 0.62 0.76 0.56 0.85
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The label variable describes whether an instance is accepted or declined, in which 55.5% 
instances are accepted and 44.5% instances are declined. Table 2 lists the Precision, Purity, 
TPR and TNR values of all compared methods in this data set, where the results of KM, 
EM, RB, GP and DB are reported in [10]. It can be seen that RB obtains the highest preci-
sion and TNR values 0.92 and 0.92. By comparison, the proposed method obtains slightly 
lower precision and TNR values 0.88 and 0.91 than RB. However, the proposed method 
produces much higher purity and TPR values than RB. Compared with semi-supervised 
methods SSL and TPG, the proposed method obtains higher values in precision, purity, 
TPR and TNR, which validates the effectiveness of the proposed model in this data set. By 
comprehensive comparison with all the methods, our method obtains the best performance 
in Australian credit card application data set.

To specially verify the effectiveness among the semi-supervised approaches, we fur-
ther chosen the Chinese GEM dataset provided by the Wind database1 to conduct the 
comparison, from which we selected 360 companies from 2016 to 2018 with 24 dimen-
sional features. The features correspond to the status of existing return on equity, return on 
total assets, net profit margin, gross profit margin, earnings per share, current ratio, quick 
ratio, equity ratio, receivables turnover ratio, current assets turnover, total assets turnover, 
working capital turnover rate, sales to cash ratio, operation safety rate, intangible assets 
ratio, and so on. Meeting one of the following conditions: 1) net assets are negative, 2) 
the net profit is negative and the net interest rate of the previous year is less than 10%, 
3) the opinion category of audit report is qualified opinion or unable to express opinion, 
then an instance was identified as at risk. As a result, 75% instances are accepted and 25% 
instances are declined in this dataset. Table 3 lists the Precision, TPR and TNR values of 

Table 2   Comparison of 
performance on Australian credit 
card application data set

Methods Precision Purity TPR TNR

KM 0.78 0.85 0.92 0.79
EM 0.70 0.73 0.67 0.77
RB 0.92 0.81 0.73 0.92
GP 0.57 0.66 0.95 0.43
DB 0.81 0.82 0.78 0.85
SSL 0.82 0.58 0.27 0.82
TPG 0.83 0.85 0.84 0.69
Ours 0.84 0.87 0.88 0.87

Table 3   Comparison of performance on Chinese GEM dataset

Methods 2018 2017 2016

Precision TPR TNR Precision TPR TNR Precision TPR TNR

SSL 0.85 0.47 0.98 0.80 0.41 0.95 0.80 0.31 0.97
TPG 0.87 0.69 0.93 0.81 0.74 0.82 0.82 0.66 0.88
Ours 0.89 0.71 0.95 0.84 0.74 0.87 0.83 0.71 0.87

1  https://​www.​wind.​com.​cn.

https://www.wind.com.cn
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the semi-supervised approaches SSL, TPG and the proposed method on the data from 2016 
to 2018. Though SSL obtains the highest TNR values, its TPR values are very low, which 
implies many risky instances are wrongly classified into the risk-free category. It’s obvious 
the proposed method produces the superior performance with the highest Precision and 
TPR values.

The similarity matrices W (1) (at the feature space) and W (2) (at the label space) are auto-
matically merged by a label diffusion framework in this paper. To test the effectiveness of 
the proposed fusion strategy, Tables 4, 5 list the comparison results with and w/o fusion 
in German credit card application data set and Australian credit card application data set, 
respectively. From the quantitative comparisons in these two data sets, we can find that the 
proposed method with fusion produces higher Precision, Purity and TNR values than the 
approach without fusion.

The number of labeled data can affect the performance of the semi-supervised algo-
rithms. Figure  1 shows the performance of the proposed algorithm with different 

Table 4   Comparison results with 
and w/o fusion in German credit 
card application data set

Precision Purity TPR TNR

Without fusion 0.58 0.75 0.61 0.80
With fusion 0.62 0.76 0.56 0.85

Table 5   Comparison results with 
and w/o fusion in Australian 
credit card application data set

Precision Purity TPR TNR

Without fusion 0.83 0.86 0.88 0.85
With fusion 0.84 0.87 0.88 0.87

Fig. 1   Precision, Purity, TPR and TNR of the proposed method with different percentage of labeled data in 
Australian credit card application data set
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percentage of labeled data in Australian credit card application data set. It can be seen that 
the values of Precision, Purity, TPR and TNR become higher along with the increase of the 
percentage of the labeled data. It can be also noticed that the values of Precision, Purity, 
TPR and TNR are around 0.8 with only 1% labeled data, which is still better than the most 
compared methods.

There are two controlling parameters � and � involved in the proposed model. Parameter 
� is utilized to control the extent of label diffusion in Eq. (12). Figure 2 shows the perfor-
mance curves with different values of � in German (left) and Australian (right) credit card 
application data sets. A too large value of � will lead to an over-smooth result that apart 
from the labeled data, the rest positive instances are easily misclassified as negative cate-
gory. Therefore, from the curves, we can find that the values of Precision and TNR become 
higher and the values of Purity and TPR become lower when � increases. Parameter � is 
utilized to control the fusion process in Eq. (13). As described before, the value of � should 
be larger than |M1 −M2| in each iteration in order to satisfy the constraint 0 ≤ �h ≤ 1 . 
Therefore, we should assign a large but not too large value to parameter � since a too large 
� will impose an average fusion constraint. Figure 3 shows the performance curves when � 
varies from 8000 to 25,000 in German (left) and Australian (right) credit card application 
data sets. It can be seen that in this interval values, the performance is not sensitive to the 
change of � . In this paper, the value of � can be loosely set to 10,000.

Fig. 2   Precision, Purity, TPR and TNR of the proposed method with different values of parameter � in Ger-
man (left) and Australian (right) credit card application data sets

Fig. 3   Precision, Purity, TPR and TNR of the proposed method with different values of parameter � in Ger-
man (left) and Australian (right) credit card application data sets
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5 � Algorithm Complexity Analysis

Table 6 lists the algorithm complexity and the average running times of the semi-super-
vised approaches SSL, TPG and the proposed method on an Intel Core i7-7700 K CPU 
with 16 GB memory running at 4.20 GHz in MATLAB R2017a. The algorithm complex-
ity of SSL and the proposed method are both O

(
N2

)
 , which mainly focuses on the inver-

sion operation of a similarity matrix. In the algorithm implementation, the multiplication 
of the inversion matrix by a single vector can be efficiently solved by the MATLAB divi-
sion operator ‘\’. The algorithm complexity of TPG is O

(
N2.4

)
 using the Coppersmith-

Winograd algorithm, which mainly focuses on the iterative matrix product operation for 
a higher-order tensor product graph optimization. Limited by the iterative optimization for 
Π and � , the average running time of the proposed method is 0.9 s which is slightly higher 
than SSL and TPG.

6 � Conclusion

In this paper, a semi-supervised clustering algorithm is proposed for financial risk analysis. 
In order to improve the performance of the conventional semi-supervised model, we first 
estimate the label prior probability from the labeled data, and this can be regarded as a dif-
fusion process from the local’hard’ labels to the global’soft’ probabilities. Then a label dif-
fusion model is designed to propagate the prior probabilities from labeled data to unlabeled 
data. Furthermore, to make the structures of data affinity and labeling more consistent, the 
similarity matrices in the feature space and label space are adaptively merged based on the 
label diffusion framework. The energy function can be effectively solved by an iterative 
optimization strategy. Experimental results on three public datasets demonstrate that the 
proposed method can obtain better performance than the compared methods.

Appendix

The derivation process for Eq. (12)

Differentiating E(Πl, �) with respect to Πl , it has:

(14)
𝜕E(Πl, 𝛽)

Πl

=

H∑

h=1

𝛽h[L
(h)Πl + 𝜆D(h)(Πl − Π̄l)]

Table 6   Algorithm complexity 
and average running times on the 
three datasets for SSL, TPG and 
the proposed method

Methods SSL TPG Ours

Complexity O
(
N2

)
O
(
N2.4

)
O
(
N2

)

Runtime (s) 0.1 0.4 0.9



3571Semi‑Supervised Clustering for Financial Risk Analysis﻿	

1 3

By setting Eq. (14) to zero, we can obtain:

Since � = (1 − �)∕� (defined in Eq. (3)), we can derive:

Then we can obtain:

The derivation process for 
 ≥ |M1 −M2|

Based on the condition 0 ≤ �h ≤ 1 , from Eq. (13) we can derive:

Since the merge of two similarity matrices ( H = 2 ) is explored in this paper, it has:
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