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Abstract
Training a machine learning model on the data sets with missing labels is a challenging
task. Not all models can handle the problem of missing labels. However, if these data sets
are further corrupted with label noise, it becomes even more challenging to train a machine
learning model on such data sets. We propose to use a transductive support vector machine
(TSVM) for semi-supervised learning in this situation. We make this model robust to label
noise by using a truncated pinball loss function with it. We name our approach, pin-TSVM.
We provide both the primal and the dual formulations of the obtained robust TSVM for linear
and non-linear kernels. We also perform experiments on synthetic and real-world data sets to
prove the superior robustness of our model as compared to the existing approaches. To this
end, we use small as well as large-scale data sets to perform the experiments. We show that
the model is capable of training in the presence of label noise and finding the missing labels
of the data samples. We use this property of pin-TSVM to detect the coronavirus patients
based on their chest X-ray images.

Keywords Transductive support vector machine · Truncated pinball loss function · Robust
statistics · VGG-19 · COVID-19 · Semi-supervised learning
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1 Introduction

Support VectorMachine (SVM)[39] covers a considerable part ofmachine learning literature.
It is one of the most well-performing models in the family of supervised machine learning
models. Due to this, researchers applied SVM in various application areas, like bioinformatics
[8], medical sciences [17], time-series prediction [32], image classification [11] and signal
processing [33], etc.

Besides the pros, several cons also come under the description of SVM.Sensitivity towards
noise is one of them [35,36]. Time to time researchers have proposed several variants of SVM,
like transductive support vector machine (TSVM) [40], twin SVM (TWSVM) [20], one-class
SVM (OCSVM) [15], etc. The limitation of sensitivity towards noise is inherited in these
variants too as these variants also use the conventional hinge loss function, which is sensitive
to noise and outliers [35].Many research works in the literature of SVM focus on overcoming
the limitation of noise sensitivity. In addition to SVM, there are many works to deal with
the sensitivity issue in the classification and regression variants of SVM [37]. This is best
described in [35].

In all the above-discussed works, it is assumed that all the class labels are available during
the training of a model, i.e., they come under supervised machine learning. The assignment
of labels during data set creation is one of the costly and error-prone tasks. Therefore, in
practice, we often come across data sets with missing labels. Training the models over such
data sets comes under the category of semi-supervised learning. Transductive support vector
machine (TSVM) is a semi-supervised variant of SVM [40]. It was first proposed in [41]
and implemented in [6]. There are various applications in which TSVM is used for learning
purposes when there are some unlabeled data samples. The survey article [14] best describes
the rich literature of TSVM.

Similar to SVM, TSVM is also sensitive to the label noise. This is due to the presence
of a noise-sensitive loss function, e.g., the hinge loss function. The novelty of the present
study lies in the fact that we propose to use the truncated pinball loss function with TSVM
and solve the corresponding optimization problem by implementing both the primal and dual
forms.

Next, in Subsect. 1.1, we describe the conventional TSVMand the existing robust TSVMs.
Robust TSVM handles noise sensitivity. In Subsect. 1.2, we mention the motivation behind
this work and describe main contributions of this work.

1.1 A Brief Introduction of TSVM

For a setL = {(x1, y1), . . . , (xL , yL)}, x ∈ R
d , y ∈ {+1,−1} of L labeled training instances

and U unlabeled instances U = {xL+1, . . . , xL+U }, we need to find an optimal separating
hyperplane defined by θ = (w, b), where w is the weight vector and b is the bias term. The
decision function of the form

fθ (x) = wTφ(x) + b (1)

is used to label new samples, where the kernel function, φ, maps the original data into a
higher dimensional feature space.

We train SVM using L and the trained SVM provides the best separating hyperplane
with the largest possible margin. It then assign the labels to the U unlabeled instances of
the set U . TSVM is a combinatorial classifier of SVM and a constraint that the unlabeled
samples should be as far as possible from the margin [41]. The optimization formulation
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(a)H1(z) for Labeled Samples (b)H1(|z|) for Unlabeled Samples

Fig. 1 Hinge loss function

corresponding to this combinatorial problem is

argmin
w,b

1

2
‖w‖2 + C

L∑

i=1

ξi + C∗
L+U∑

i=L+1

ξi

subject to yi ( fθ (xi )) ≥ 1 − ξi , i = 1, . . . , L,

| fθ (xi )| ≥ 1 − ξi , i = L + 1, . . . , L +U , (2)

where C and C∗ are the weight controlling parameters corresponding to the labeled and
unlabeled instances. The minimization problem (2) can be written as an unconstrained opti-
mization problem of the form [6]

J (θ) = 1

2
‖w‖2 + C

L∑

i=1

H1(yi fθ (xi )) + C∗
L+U∑

i=L+1

H1(| fθ (xi )|), (3)

H1(z) = max{0, 1− z} is the hinge loss function [35], z = y fθ (x). In TSVM, H1(z) is used
for the labeled samples while H1(|z|) is used for the unlabeled samples. These are shown in
Fig. 1.

The TSVM has the limitation of assigning all the unlabeled samples to one of the classes,
leading to abysmal accuracy. To solve this problem, Chapelle and Zien [13] used a significant
relaxed balancing constraint:

1

U

L+U∑

i=L+1

fθ (xi ) = 1

L

L∑

i=1

yi . (4)

TSVM is used inmany applications, like cancer classifications [26], classification ofmammo-
graphic abnormalities [46], glaucoma classification [47], image retrieval [10], ship category
recognition [27], etc.

Li et al. [23] proposed a robust TSVM for multi-view classification. They observed that
the multi-view representation of data from a different perspective could effectively improve
the generalization performance [23]. Training a model on huge data sets is a tedious task.
Training on small labeled sets is also challenging since the model has insufficient learning
instances. Xu et al. [44] proposed an improved version of TSVM that can learn a small labeled
training set well and applied this to the motor imagery based brain-computer interface.
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Table 1 Various TSVMs that are robust towards noise

S. No. Reference For labeled samples For unlabeled samples

1 Semi-supervised SVM [41] Hinge loss Symmetric hinge loss

2 Transductive inference [19] Hinge loss Symmetric hinge loss

3 Semi-supervised
classification by low
density separation [13]

Hinge loss Symmetric sigmoid loss

4 Large scale transductive
SVM [16]

Hinge loss Symmetric ramp loss

5 Large-scale robust
transductive SVMs [9]

Ramp loss Symmetric ramp loss

Besides these, there are also many formulations in which researchers added robustness
to the conventional TSVM by changing the loss functions. These methods are tabulated in
Table 1. This table mentions the loss function for labeled and unlabeled samples that are used
by various researchers to make the TSVM robust to noise. These loss functions include the
conventional hinge loss function, symmetric sigmoid loss function [24] and the ramp loss
function [25].

A recent work on TSVM proposed to address its problem with Universum data [42]. In
that work, Xiao et al. followed two steps: to select informative examples from the Universum
data and to use that data for semi-supervised classification [42]. They used Lagrange method
to solve it further. Another recent work on TSVM handled the problem of lack of sparsity in
LapSVM [5]. To do this, Zheng et al. [49] used L1 norm in LapSVM. The method performed
well (in terms of accuracy) on UCI data sets. Recently, SSL is also extended to various
applications like fault identification in electricity distribution networks [22], for intrusion
detection system [30] and enhanced prediction of heart disease [38].

In this work, we focus on the following three challenges:

(i) To train the model in the presence of a significant number of unlabeled data.
(ii) To train the model to handle small as well as large data sets effectively.
(iii) To train the model under the varied amount of label noise in the data.

1.2 Motivation and Contribution

The robust behavior of the pinball loss function [34] is the primary motivation behind this
work. The use of pinball loss function in other variants of SVM, like TWSVM [43], also
made the model robust towards label noise. Since the use of pinball loss function affects the
sparsity of a classifier [34], we use the truncated pinball loss function in this work, which
leads to less computational time (shown experimentally in Sect. 3). We list here the main
contributions of this work:

(i) We use the truncated pinball loss function in place of the conventional hinge loss in
TSVM. This makes the model robust towards the label noise.

(ii) The use of the truncated pinball loss function makes the model sparse, hence requiring
fewer variables to contribute in the decision-making process of the model. This reduces
the computational time of the model.

(iii) We use the proposed model for the detection of disease caused by the coronavirus in
a human body. To do this, we train the model on the chest X-ray images. The results
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Fig. 2 Truncated pinball loss
function with τ = s = 0.5

(shown in Sect. 4) indicate that the model can be used to predict if a patient is infected
by coronavirus or not.

In the next section, we describe the proposed robust TSVM with a truncated pinball loss
function. In Sect. 3, we report the results of the experiments performed using the proposed
approach and compare those with the existing approaches. Further, in Sect. 4, we show that
the proposed approach can be used to predict the COVID-19 infected patients. Finally, we
conclude the work in Sect. 5.

2 pin-TSVM: A Robust Transductive Support Vector Machine with
Truncated Pinball Loss Function

In this section, we describe the robust TSVM formulation using truncated pinball loss func-
tion. The truncated pinball loss function is

Pτ,s(z) = H1+τ (z) − (Hτ (z + s) − τ s) =

⎧
⎪⎨

⎪⎩

τ s, if z ≥ 1 + s

−τ(1 − z), if 1 < z < 1 + s

1 − z, if z ≤ 1

(5)

where 0 ≤ τ ≤ 1. It is shown in Fig. 2. Please note that s > 0 is the hinge point [34].
In (3), we replace the hinge loss function by the truncated pinball loss function. Accord-

ingly, J (θ) in (3) becomes

J (θ) = 1

2
‖w‖2 + C

L∑

i=1

Pτ,s(z) + C∗
L+U∑

i=L+1

Pτ,s(z). (6)

To avoid the poor classification of the unlabeled samples, we also use the same constraint as
described earlier in (4). Now, putting in (6), we get

J (θ) =1

2
‖w‖2 + C

L∑

i=1

(H1+τ (yi fθ (xi )) − Hτ (yi fθ (xi ) + s) − τ s)

+ C∗
L+U∑

i=L+1

(H1+τ (yi fθ (xi )) − Hτ (yi fθ (xi ) + s) − τ s) . (7)
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Now, we represent each unlabeled sample as two instances labeled with both positive and
negative classes. This leads to the creation of new samples [9]

yi = +1, i ∈ [L + 1, . . . , L +U ],
yi = −1, i ∈ [L +U + 1, . . . , L + 2U ],
xi = xi−U , i ∈ [L +U + 1, . . . , L + 2U ]. (8)

We can now split this function into convex (Jconvex(θ)) and concave (Jconcave(θ)) parts [34]:

Jconvex(θ) = 1

2
‖w‖2 + C

L∑

i=1

H1+τ (yi fθ (xi )) + C∗
L+2U∑

i=L+1

H1+τ (yi fθ (xi )) (9)

and Jconcave(θ) = −C
L∑

i=1

Hτ (yi fθ (xi ) + s) + CLτ s

− C∗
L+2U∑

i=L+1

Hτ (yi fθ (xi ) + s) + C∗(2U )τ s. (10)

To perform the minimization of J (θ) with respect to θ = (w, b), we use the concave-
convex procedure (CCCP) [45] as given by Algorithm 1. CCCP decomposes the non-convex
function into a concave and a convex part. It uses an iterative procedure where in each
iteration, concave part is approximated by its tangent [9]. In Algorithm 1, J

′
(θ) represents

∂ J (θ)
∂θ

. The convergence of CCCP algorithm is given in [45].

Algorithm 1 The Concave-Convex Procedure (CCCP) [45]
Input: Jconcave(θ) and Jconvex(θ)

1: Initialize θ0.
2: repeat

3: θ t+1 = argmin
θ

(
Jconvex(θ) + J

′
concave(θ

t )θ
)

4: until the convergence of θ t .

Next, we find the gradient of Jconcave(θ) with respect to θ

Δθ Jconcave(θ) = ∂

∂θ
Jconcave(θ) = −C

L∑

i=1

(
∂Hτ (θ)

∂ fθ (xi )

) (
∂ fθ (xi )

∂θ

)

− C∗
L+2U∑

i=L+1

(
∂Hτ (θ)

∂ fθ (xi )

) (
∂ fθ (xi )

∂θ

)
.

Now,
∂Hτ (θ)

∂θ
= τ · ∂ fθ (xi )

∂θ
· (−yi ).

Therefore,
∂

∂θ
Jconcave(θ) = −C

L∑

i=1

τ yi
∂ fθ (xi )

∂θ
− C∗

L+2U∑

i=L+1

τ yi
∂ fθ (xi )

∂θ

=
L+2U∑

i=1

βi yi
∂ fθ (xi )

∂θ
, (11)
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where

− βi =
{
Cτ, if 1 ≤ i ≤ L

C∗τ, if L + 1 ≤ i ≤ L + 2U .
(12)

Therefore, the problem (7) can now be stated [45] as the minimization of

Jconvex(θ) + ∂ Jconcave(θ)

∂θ

= Jconvex(θ) +
(
L+2U∑

i=1

βi yi
∂ fθ (xi )

∂θ

)
θ

= 1

2
‖w‖2 + C

L∑

i=1

H1+τ (yi fθ (xi )) + C∗
L+2U∑

i=L+1

H1+τ (yi fθ (xi )) +
L+2U∑

i=1

βi yi fθ (xi ).

(13)

By introducing the slack variable, ξ in (13), we get our final minimization problem [34]

min
θ,ξ

1

2
‖w‖2 + C

L∑

i=1

ξi + C∗
L+2U∑

i=L+1

ξi +
L+2U∑

i=1

βi yi fθ (xi )

subject to yi fθ (xi ) ≥ 1 − 1

1 + τ
ξi , ξi ≥ 0, i = 1, 2, . . . , L,

1

U

L+U∑

i=L+1

fθ (xi ) = 1

L

L∑

i=1

yi . (14)

We solve (14) by using the stochastic gradient descent (SGD) method [7] given in Algo-
rithm 2. To implement (14) using SGD, we require data set, D = {xi , yi }L+U

i=1 from which
we get the value of L and U . We also input λ, the learning rate of SGD and ε, the tolerance
value required in the convergence of Algorithm 2.

Since the CCCP algorithm converges fast [9] in maximum five iterations in our experi-
ments, we consider T = 5 in all the algorithms. However, we also mention the convergence
conditions in the algorithms (Step 12 in Algorithm 2, Step 13 in Algorithm 3 and Algorithm
4).

The time complexity of Algorithm 2 is mainly due to the Step 2 and the conventional steps
of SGD (Step 8 and Step 9). Step 2 is executed using the svmtrain() (LIBSVM) which has a
time complexity of O(n3) [12]. However, the time complexity of SGD is O(d̄/λε) [9], where
d̄ is used for the non-zero attributes of the data set, λ is the learning rate of SGD and ε is the
tolerance value. Therefore, the overall time complexity of Algorithm 2 is O(n3)+O(d̄/λε),
i.e. O(n3). We also implement pin-TSVM using the dual form of (14).
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Algorithm 2 pin-TSVMwith Stochastic Gradient Method to Get OptimalWeight Vector and
Bias Term
Input: D = {xi , yi }L+U

i=1 ;
T is the maximum number of iterations;
ε is the tolerance value;
L is the number of labeled instances in the data set D;
U is the number of unlabeled instances in the data set D;
λ0 > 0 is the learning rate of SGD;

Output: Optimal weight vector and bias term, wt and bt respectively.
1: Split the data set D into training set and test set.
2: Train SVM on training set and get w0 and b0.
3: Initialize t = 0 and ε > 0.
4: Compute β0

i for i = 1, 2, . . . , (L + 2U ) using (12).
5: while t ≤ T do
6: λt ← λ0

t .
7: for i ∈ randperm(L + 2U ) do
8: Compute the sub-gradient of (13) w.r.t w and b

gt =
{

−yi (1 + τ)C(C∗)xi + βi yi xi , if yi (w
T xi + b) ≤ 1,

βi yi xi , if yi (w
T xi + b) > 1

and

ht =
{

−yi (1 + τ)C(C∗) + βi yi , if yi (w
T xi + b) ≤ 1,

βi yi , if yi (w
T xi + b) > 1.

9: Update parameters

ŵt ← wt − λt

L + 2U
(wt + gt )

and

b̂t ← bt − λt

L + 2U
ht .

10: Set wt ← ŵt and bt ← b̂t
11: end for
12: if (t ≥ 2) &

∥∥wt − wt−1
∥∥ ≤ ε, break

13: Compute βt+1
i using (12).

14: Set t = t + 1.
15: end while

To get the dual form of (14), we find the Lagrangian function

L(w, b, ξ, α, ν) = 1

2
‖w‖2 + C

L∑

i=1

ξi + C∗
L+2U∑

i=L+1

ξi

+
L+2U∑

i=1

βi yi fθ (xi ) − α0

(
1

U

L+U∑

i=L+1

fθ (xi ) − 1

L

L∑

i=1

yi

)

−
L+2U∑

i=1

αi

(
yi (w

T xi + b) − 1 + 1

1 + τ
ξi

)
−

L+2U∑

i=1

νiξi , (15)
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where αi , νi ≥ 0, for i = 1, 2, . . . , (L + 2U ). The necessary Karush-Kuhn Tucker (KKT)
optimality conditions for (15) are

∂L

∂w
= w +

L+2U∑

i=1

βi yiφ(xi ) − α0

U

L+U∑

i=L+1

φ(xi ) −
L+2U∑

i=1

αi yiφ(xi ) = 0, (16)

∂L

∂b
= −

L+2U∑

i=1

βi yi + α0 +
L+2U∑

i=1

αi yi = 0 (17)

∂L

∂ξ
= C − αi

1 + τ
− νi = 0, 1 ≤ i ≤ L, (18)

∂L

∂ξ
= C∗ − αi

1 + τ
− νi = 0, L + 1 ≤ i ≤ L + 2U . (19)

For simplification, we define a new sample

φ(x0) = 1

U

L+U∑

i=L+1

φ(xi ), y0 = 1. (20)

From (16), we get

w = α0

U

L+U∑

i=L+1

φ(xi ) +
L+2U∑

i=1

αi yiφ(xi ) −
L+2U∑

i=1

βi yiφ(xi )

= α0φ(x0) +
L+2U∑

i=1

yiφ(xi )(αi − βi )

=
L+2U∑

i=0

yiφ(xi )(αi − βi ), (21)

where β0 = 0 and y0 = 1. On putting the value of (21) in (15), we get

L(b, ξ, α, ν) =1

2

(
L+2U∑

i=0

yiφ(xi )(αi − βi )

)T ⎛

⎝
L+2U∑

j=0

y jφ(x j )(α j − β j )

⎞

⎠

+ C
L∑

i=1

ξi + C∗
L+2U∑

i=L+1

ξi +
L+2U∑

i=1

βi yi

⎡

⎢⎣

⎛

⎝
L+2U∑

j=0

y jφ(x j )(α j − β j )

⎞

⎠
T

φ(xi ) + b

⎤

⎥⎦

− α0

⎛

⎜⎝
1

U

L+U∑

i=L+1

⎡

⎢⎣

⎛

⎝
L+2U∑

j=0

y jφ(x j )(α j − β j )

⎞

⎠
T

φ(xi ) + b

⎤

⎥⎦ − 1

L

L∑

i=1

yi

⎞

⎟⎠

−
L+2U∑

i=1

αi

⎛

⎜⎝yi

⎛

⎜⎝

⎡

⎣
L+2U∑

j=0

y jφ(x j )(α j − β j )

⎤

⎦
T

φ(xi ) + b

⎞

⎟⎠ − 1 + 1

1 + τ
ξi

⎞

⎟⎠ −
L+2U∑

i=1

νi ξi .

On simplification,

L(b, ξ, α, ν) =1

2

L+2U∑

i, j=0

yi y j (αi − βi )(α j − β j )φ(xi )
Tφ(x j )
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+
L+2U∑

i=1

βi yi

⎛

⎝
L+2U∑

j=0

y j (α j − β j )φ(x j )

⎞

⎠ φ(xi )

+ b
L+2U∑

i=1

βi yi − α0

U

L+U∑

i=L+1

⎛

⎝
L+2U∑

j=0

y j (α j − β j )φ(x j )

⎞

⎠φ(xi ) − α0

U
b

+ α0

L

L∑

i=1

yi −
L+2U∑

i=1

αi yi

⎛

⎝
L+2U∑

j=0

y jφ(x j )(α j − β j )

⎞

⎠φ(xi )

− b
L+2U∑

i=1

αi yi +
L+2U∑

i=1

αi −
L+2U∑

i=1

αi

1 + τ
ξi −

L+2U∑

i=1

νiξi

+ C
L∑

i=1

ξi + C∗
L+2U∑

i=L+1

ξi . (22)

Now, adding and subtracting α0y0
(∑L+2U

j=0 y jφ(x j )(α j − β j )
)

φ(x0) from (22), we get

L(b, ξ, α, ν) = − 1

2

L+2U∑

i, j=0

yi y j (αi − βi )(α j − β j )φ(xi )
Tφ(x j )

+
L+2U∑

i=1

βi yi

⎛

⎝
L+2U∑

j=0

y j (α j − β j )φ(x j )φ(xi )

⎞

⎠ + b
L+2U∑

i=1

βi yi

− α0

U

L+U∑

i=L+1

⎛

⎝
L+2U∑

j=0

y j (α j − β j )φ(x j )

⎞

⎠ φ(xi ) − α0

U
b

+ α0

L

L∑

i=1

yi − b
L+2U∑

i=1

αi yi +
L+2U∑

i=1

αi

+ α0y0

⎛

⎝
L+2U∑

j=0

y j (α j − β j )φ(x j )

⎞

⎠φ(x0). (23)

Simplifying (23) using (18) and (20), we get

min
α

1

2

L+2U∑

i, j=0

yi y j (αi − βi )(α j − β j )φ(xi )
T /φ(x j )

− α0

L

L∑

i=1

yi −
L+2U∑

i=1

αi

subject to
L+2U∑

i=0

yi (αi − βi ) = 0,

0 ≤ αi ≤ (1 + τ)C, 1 ≤ i ≤ L,

0 ≤ αi ≤ (1 + τ)C∗, L + 1 ≤ i ≤ L + 2U . (24)

123



pin-TSVM: A Robust Transductive... 3991

Considering the kernel matrix, K such that Ki j = φ(xi )T /φ(x j ) and α̂i = yi (αi − βi ), we
get the final dual problem as

min
α̂

1

2
α̂K α̂ − γ T α̂

subject to 0 ≤ yi α̂i ≤ (1 + τ)C, i = 1, 2, . . . , L

−βi ≤ yi α̂i ≤ (1 + τ)C∗ − βi , i = L + 1, L + 2, . . . L + 2U ,

L+2U∑

i=0

α̂i = 0, (25)

where γ = yi for 1 ≤ i ≤ L +2U and γ0 = 1
L

∑L
i=1 yi . To solve (25), we follow Algorithm

3 to find the optimal weight vector and bias term. We then use the weight vector and the bias
term to find the sign(wT x + b) in case of linear vector. In Algorithm 3, we first train the
SVM using svmtrain() function using LIBSVM whose time complexity is O(n3), where n
represents the number of instances in a data set [12], and then we use mlcv_quadprog() [9]
to implement Step 7 in Algorithm 3, whose time complexity is again O(n3) [48]. Therefore,
the overall time complexity of the Algorithm 3 is O(n3).

Similarly, we can also solve the dual optimization problem given in (25) using the non-
linear kernels. The Algorithm 4 shows the steps to be followed for non-linear kernels.

Algorithm 3 pin-TSVM to get optimal weight vector and bias term (Linear Kernel)

Input: D = {xi , yi }L+U
i=1 ;

T is the maximum number of iterations;
ε1 and ε2 are the tolerance values;
L is the number of labeled instances of data set D;
U is the number of unlabeled instances of data set D;

Output: Optimal weight vector and bias term, wt and bt respectively.
1: Split the data set D into training set and test set .
2: Train SVM on training set and get w0 and b0.
3: Initialize t = 0 and ε1, ε2 > 0.
4: Compute β0

i using (12).

5: Set γi = yi for 1 ≤ i ≤ L + 2U and γ0 = 1
L

∑L
i=1 yi .

6: while t ≤ T do
7: Solve the convex optimization problem given by (25).
8: Compute w using

w =
L+2U∑

i=0

yi (αi − βi )xi .

9: Set wt+1 = w.
10: Compute b using the following constraints;

∀i ∈ {1, . . . , L}, 0 ≤ αi ≤ Cτ 
⇒ yi (w
T xi + b) = 1,

or
∀i ∈ {L + 1, . . . , L + 2U }, 0 ≤ αi ≤ C∗τ 
⇒ yi (w

T xi + b) = 1,

11: Set bt+1 = b.
12: Compute βt+1

i using (12).

13: if
(
(t ≥ 2) & (

∥∥wt+1 − wt
∥∥ ≤ ε1 or

∥∥∥βt+1 − βt
∥∥∥ ≤ ε2)

)
, break

14: Set t = t + 1.
15: end while
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Algorithm 4 pin-TSVM to get Accuracy using Non-linear Kernel

Input: D = {xi , yi }L+U
i=1 ;

T is the maximum number of iterations;
ε1 and ε2 are the tolerance values;
L is the number of labeled instances of data set D;
U is the number of unlabeled instances of data set D;

Output: Accuracy
1: Split the data set D into training set and test set.
2: Choose a non-linear kernel.
3: Compute kernel matrix, K using the training features.
4: Train SVM on training set and get α0, b0 and support vectors, SVinitial.
5: Initialize t = 0.
6: Compute β0

i using (12).

7: Set γi = yi for 1 ≤ i ≤ L + 2U and γ0 = 1
L

∑L
i=1 yi .

8: while t ≤ T do
9: Solve the convex optimization problem (25) using α0, b0 and SVinitial. Find α̂ and support vectors, S.
10: Compute b using the following constraints

∀i ∈ {1, . . . , L}, 0 ≤ α̂i ≤ Cτ 
⇒ yi (K ∗ α̂i + b) = 1,

or
∀i ∈ {L + 1, . . . , L + 2U }, 0 ≤ α̂i ≤ C∗τ 
⇒ yi (K ∗ α̂i + b) = 1,

11: Set bt+1 = b and α̂t+1 = α̂

12: Compute βt+1
i using (12).

13: if
(
(t ≥ 2) &

(∥∥∥α̂t+1 − α̂t
∥∥∥ ≤ ε1 or

∥∥∥βt+1 − βt
∥∥∥ ≤ ε2

))
, break

14: Set t = t + 1.
15: end while
16: Construct kernel matrix, K

′
using test features and support vectors, S.

17: Evaluate ypred = sign(α̂K
′ + b).

18: Compute Accuracy by length(find(ypred == test label))/length(test label)

It is noteworthy that the time complexity of both the algorithms, Algorithm 3 and Algo-
rithm 4 is same as we use mlcv_quadprog() [9] to implement both the algorithms.

3 Numerical Experiments

In this section, we report the results obtained by pin-TSVM on various data sets. We also
compare our model with the standard SVM, TSVM and TSVM with ramp loss function
(Ramp-TSVM). Firstly, we evaluate the model performance on synthetic data sets. We gen-
erate the two-dimensional synthetic data set of 100 samples with 50 samples for both positive
and negative classes.We add a different amount of label noise in this data set to test the perfor-
mance of the proposed method against the existing TSVM methods. To add k% noise to the
data set, we switch the k% labels of the labeled training data from −1 to +1 and vice-versa.
We consider k = 10, 15, 20 and 25 to add label noise in the synthetic data set. These results
are reported in Table 2.

In Table 2, the best accuracies are marked in bold. Note that we use the labeled set to
train SVM since it is a supervised learning model. For the rest of the techniques, unlabeled
test data is also used for training. It is noteworthy that for all the experiments, we use the
weight adjusting parametersC andC∗ from the set {1, 2, 3, 4, 5} and {0.1, 0.2, 0.3, 0.4, 0.5},
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Table 2 Comparison of various techniques on synthetic data set using linear kernel

Methods Noise-free Data 10% Noise 15% Noise 20% Noise 25% Noise

SVM 94 88 83 85 49

TSVM 93 86 85 88 44

Ramp-TSVM 93 93 90 91 67

pin-TSVM-SG 93 93 91 92 67

pin-TSVM-dual 94 87 84 88 45

Bold marked entries in Table 2 represent the best accuracy in a row

Table 3 Small data sets used for experimentation purposes

S. No. Data sets Instances Features No. of classes Class ratio

1 Sonar 208 61 2 3.00:1

2 Cleveland heart 303 14 2 0.83:1

3 Haberman 306 4 2 0.36:1

4 WDBC 568 32 2 0.59:1

5 Australian 690 15 2 0.80:1

6 Pima indians 738 9 2 0.74:1

7 CMC 1443 10 3 1.34:1

8 Spambase 4601 58 2 0.65:1

respectively. We perform cross-validation on 10% of the training data to optimally select the
value of C and C∗. We observe that the proposed method, pin-TSVM-SG, shows better
accuracy for most cases; however, the dual form of the proposed method lacks in terms of
accuracy on this small synthetic data set. These experiments are performed on linear kernel.
However, we provide the algorithms for both linear and non-linear kernels (see Algorithm 2,
3 and 4). Similar trends were observed with other kernels as well.

3.1 Experiments on Real-world Data Sets

In this subsection, we compare the performance of the existing TSVM techniques with the
proposed technique on real-world data sets. We first report experiments on small real-world
data sets and then we evaluate the techniques on large real-world data sets. Small real-world
data sets are listed in Table 3.

• Description of the Data Sets

In Table 3, we arrange the data sets in the increasing order of instances. A short description
of each data set is given as follows:

– Sonar [4]: To classify two types of sonar signals: one bounced off a roughly cylindrical
rock and those sonar signals which bounced off a metal cylinder.

– Cleveland Heart [4]: To classify patients based on presence or absence of heart disease.
– Haberman [31]: Classification based on the survival status of patients (who died within

5 years or patients who survived 5 years or longer) who had undergone surgery for breast
cancer.
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– WDBC [4]: Features describe the characteristics of the nuclei of the cell present in the
images. It classifies if the case is benign or malignant.

– Australian [4]: The task is to classify the applications approved for credit card.
– Pima Indians: Based on the women living in Arizona and the task is to classify them as

diabetic or non-diabetic.
– CMC [4]: The task is to predict the contraceptive method choice of a woman based on

her socio-economic and demographic characteristics.
– Spambase [4]: To classify an email as spam or non-spam.

To perform the experiments over these data sets, we divide the data sets into the ratio
of 55:45, where 55% of data is used for training while the rest 45% of data is used for
testing purposes. We only use 55% labeled data to train the model. In this way, we test the
performance of all the methods with greater complexity. Therefore, we have 45% unlabeled
data for training.

We train the SVM model over the labeled training set (similar to the synthetic data set)
using svmtrain() from LIBSVM [12]. We use the weight vector and the bias term obtained
from training the SVM to train other models. To check the robustness of the proposed model,
we add noise to the labeled training data. In this part of the work, we evaluate model’s
performance by adding 0%, 15%, and 30% noise in the data sets. To add k% noise to the data
set, we change the k% labels of the labeled training data from −1 to +1 and vice-versa. For
experimentation, we consider k = 0, 15 and 30 for real-world small and large data sets. We
compare the performance of all these models based on accuracy, precision [3] and recall [3].
We also mention the computational time (in seconds) of all the methods.

It is noteworthy that these experiments on small data sets are performed on a Lenovo
laptop with Windows 10 operating system having 4GB RAM and RADEON graphics. All
the codes are written in MATLAB and are available at https://github.com/manisha1427/
TruncpinTSVM.

First, we report the results over data sets with 0% noise in Table 4. The boldfaced accura-
cies, precision and recall values represent the best values corresponding to the data sets. We
observe that the dual form of pin-TSVM perform better than rest of the techniques on most
data sets. Note that for SVM and TSVM, we implement the dual forms of these techniques
for small data sets only as the computational time depends on the number of examples [48],
so we cannot use it for large-scale data sets. We implement the primal form using SGD
(Algorithm 1) for large real-world data sets.

Next, we add 15% label noise to the data sets and report the results in Table 5. The pin-
TSVM-dual outperforms the other techniques inmost cases.We also observe that the decrease
in the accuracy after adding 15% noise in the data sets is also less for pin-TSVM-dual than
the other techniques.

We further increase the training data sets’ label noise to 30% and report the results in Table
6. In Table 6, we observe that the pin-TSVM-dual still outperforms the rest of the methods in
terms of accuracy, precision and recall. The method is also in close comparison to the TSVM
in terms of computational time.

In all the above tables, Tables 4, 5 and 6, the computational time for SVM is significantly
less since we use only the labeled training set to train the model while in the rest of the
techniques, we use labeled as well as the unlabeled set for training.

We next perform experiments on large real-world data sets to compare the results of the
proposed technique with the existing models. The data sets that are used here are listed in
Table 7. We implement the CCCP form of TSVM, Ramp-TSVM, and the proposed approach
to perform these experiments. pin-TSVM is implemented using Algorithm 2.
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Table 7 Used large data sets for experimentation purposes

S. No. Data sets Instances Features No. of classes

1 Banana 5300 3 2

2 Page Blocks 5473 11 5

3 Musk(version 2) 6568 168 2

4 Cats vs Dogs 25000 1001 2

5 CIFAR-10 60000 16384 10

6 MNIST 70000 1570 10

7 Forest 581012 54 7

Please note that we run the models on the master node of the IIT (BHU), Varanasi server
with 96GB RAM to perform these experiments. We report these results in Table 8. For image
data sets like CIFAR-10, we follow similar steps as in [9]. We obtain the feature set from
these images. The number of instances and the number of attributes of this feature set are
listed in Table 7.

• Description of the Data Sets listed in Table 7

– Banana [28]: This data set is based on the two types of banana classification based on
its shape.

– Page Blocks [4]: The task is to classify those page blocks of a document that has been
detected by a segmentation process.

– Musk (version2) [4]: To classify whether the new molecules are musk or not.
– Cats vs Dogs [18]: To classify the new image as cat image or dog image.
– CIFAR-10 [21]: CIFAR-10 data set has 60,000 color images of size 32×32 pixels. These

images belong to ten classes. To use this data set, we extract features from the image data
set.

– MNIST [4]: MNIST database comprise of images of handwritten digits. The task is to
identify the new digit based on the image.

– Cover Type [4]: The task is to predict the forest cover type based on the cartographic
variables [4]. It includes a total of seven classes marked as integer 1 to 7 in the data set.

Similar to the experiments performed on small data sets, we add different levels of noise in
these experiments also. For multi-class classification, we follow the one versus rest approach.
From Table 8, we observe that the proposed approach is close to the rest of the approaches
for the noise-free data set. However, when we add noise to the data, the proposed approach
outperforms significantly. Please note that the methods with empty values in Table 8 indicate
that these methods have not produced any results in one month. We also compare the above-
discussed techniques with convolutional neural network (CNN) on image data sets.

To compare the above-discussed techniques over the computational time, we choose a
data set with the maximum number of instances, Forest cover type. The computational time
of SVM is 6.67 × 103 minutes, TSVM is 6.81 × 105, Ramp-TSVM is 2.82 × 104 and
the proposed method is 4.51 × 103 minutes. In the training time of the proposed method,
pin-TSVM is less than the others.

As the proposed approach performs well on real-world data sets, we also apply this
approach to detecting disease due to the presence of novel coronavirus in the human body.
Based on chest X-ray images, we find whether a person is infected or not. Since assigning
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(a) Patient having Bacterial
             Infection

(b) Patient having
      Coronavirus

(c) Normal X-ray

Fig. 3 Chest X-ray Images of Humans with a Bacterial Infection b Coronavirus c Normal X-ray

Fig. 4 Steps to extract features from the COVID-19 data set and training pin-TSVM

these labels manually is time-consuming and difficult, especially during this pandemic, we
can predict the labels using our proposed robust semi-supervised learning framework, pin-
TSVM.
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4 Application to the Detection of Novel Coronavirus (COVID-19)
Infected Patients using Chest X-ray Images

In this section, we discuss the use of the pin-TSVM model to predict if a person is infected
by COVID-19. To do this, we train the model using the chest X-ray images of humans.

It has been observed that the early detection of the disease with mild symptoms can help
the patient in recovering from the disease. Therefore, it is required to detect the disease in
its early stage. In this work, we use a semi-supervised machine learning model, TSVM, to
detect the disease in humans using their chest X-ray images. Since labels come from human
experts, and they do make mistakes, particularly in a pandemic like the situation where they
are under considerable stress due to a large number of severe cases.We use the robust TSVM,
pin-TSVM, to detect the presence of COVID-19 in a human body. We first create a data set
using chest X-ray images of COVID patients, normal humans, and patients with bacterial
infection. These images are shown in Fig. 3.

We use pre-trained VGG19 model to extract features from the images [29]. In VGG19,
the feature extraction part is from the first input layer to the max-pooling layer. The rest
of the part of VGG19 is used for classification purposes. VGG19 uses multi-channel array
signals to generate images and hence, it is superior than other machine learning models in
terms of classification [50]. Therefore, we use VGG19 for feature extraction. To perform the
experiments on the COVID-19 data set, we follow the steps shown in Fig. 4.

In these experiments, we also switch some of the labels of the training data (as described
earlier in Sect. 3) to test the robustness of pin-TSVM on the COVID-19 data set. Therefore,
when a few labels in the training set are wrong, the task is to formulate a model that is robust
enough such that it maintains its accuracy to some extent, i.e., degrades gracefully rather than
catastrophically. pin-TSVM has proved its robustness through its performance on real-world
data sets as discussed in the previous Sect. 3. We use this model on the COVID-19 data set
(having chest X-ray images of humans). We compute the results in two ways: directly using
the features obtained by applying theVGG19model and extracting the essential features from
this step using principal component analysis (PCA) [1]. The results are reported inTable 9.We
mention the accuracies and the computational time (in parenthesis) of the various techniques.
The last column of Table 9 represents the value of C used in these experiments. Note that we
use the same value of C and C∗ in these experiments.

From Table 9, we observe that the proposed model outperforms the existing techniques
even after increasing noise in the data set. We can also use this method to assign labels to the
unlabeled samples efficiently.

5 Conclusions and Future Scope

In this paper, we proposed an improved and robust TSVM towards label noise in the data set.
We used the truncated pinball loss function instead of the conventional hinge loss function to
introduce robustness in this framework (Sect. 2). We implemented both the primal form and
the dual form of the proposed technique.We used CCCP on the primal form and implemented
it using SGD (see Algorithm 2). The dual form is implemented using themlcv_quadprog()
function [9] in MATLAB (see Algorithms 3 and 4). In this work, we provided algorithms for
both linear and kernelized pin-TSVM. We compared our technique with the existing tech-
niques on both the synthetic and real-world data sets. The proposed technique outperformed
other techniques on the majority of the data sets.
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We also extended the use of pin-TSVM in the detection of coronavirus infected patients
using their chest X-ray images. The proposed technique resulted in better accuracy, precision
and recall even under the noisy environment. It is found that the method can be efficiently
used to detect the coronavirus infected patients using their chest X-ray images.

In continuation of this study, we will attempt to implement the proposed method on other
real-world applications to find the missing labels.
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