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Abstract
We present an approach for efficiently training GaussianMixtureModel (GMM) by Stochas-
tic Gradient Descent (SGD) with non-stationary, high-dimensional streaming data. Our
training scheme does not require data-driven parameter initialization (e.g., k-means) and
can thus be trained based on a random initial state. Furthermore, the approach allows mini-
batch sizes as low as 1, which are typical for streaming-data settings. Major problems in
such settings are undesirable local optima during early training phases and numerical insta-
bilities due to high data dimensionalities. We introduce an adaptive annealing procedure to
address the first problem, whereas numerical instabilities are eliminated by an exponential-
free approximation to the standard GMM log-likelihood. Experiments on a variety of visual
and non-visual benchmarks show that our SGD approach can be trained completely without,
for instance, k-means based centroid initialization. It also compares favorably to an online
variant of Expectation-Maximization (EM)—stochastic EM (sEM), which it outperforms by
a large margin for very high-dimensional data.

Keywords Gaussian Mixture Model · Stochastic Gradient Descent · High-Dimensional
Streaming Data

1 Introduction

This contribution focuses on GaussianMixtureModel (GMM), which represent a probabilis-
tic unsupervised model for clustering and density estimation, allowing sampling and outlier
detection. GMMs have been used in a wide range of scenarios, see [18]. Commonly, free
parameters of a GMM are estimated using the Expectation-Maximization (EM) algorithm
[7], which does not require learning rates and automatically enforces all GMM constraints.
A popular online variant is stochastic EM [2], which can be trained mini-batch wise and is
thus more suited for large datasets or streaming data.
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1.1 Motivation

Intrinsically, EM is a batch-type algorithm. Therefore, memory requirements can become
excessive for large datasets. In addition, streaming-data scenarios require data samples to
be processed one by one, which is impossible for a batch-type algorithm. Moreover, data
statistics may be subject to changes over time (concept drift/shift), to which the GMM should
adapt. In such scenarios, an online, mini-batch type of optimization such as SGD is attractive
since it can process samples one by one, has modest, fixed memory requirements, and can
adapt to changing data statistics.

1.2 RelatedWork

Online EM is a technique for performing EM mini-batch wise, allowing to process large
datasets. One branch of previous research [4,16,20] has been devoted to the development
of stochastic Expectation-Maximization (sEM) algorithms that reduce to the original EM
method in the limit of large batch sizes. The variant presented in [2] is widely used due to its
simplicity and efficiency for large datasets. Such approaches come at the price of additional
hyper-parameters (e.g., step size, mini-batch size, step size reduction), thus removing a key
advantage of EM over SGD. Another approach is to modify the EM algorithm itself by, e.g.,
including heuristics for adding, splitting and merging centroids [3,10,15,24,26,29,30]. This
allowsGMM-likemodels to be trained by presenting one sample after another.Models of this
type work well in several application scenarios, but their learning dynamics are impossible to
analyze mathematically. They also introduce a high number of parameters. Apart from these
works, some authors avoid the issue of extensive datasets by determining smaller “core sets”
of representative samples and performing vanilla EM [11].

SGD for Training GMMs has, as far as we know, been recently treated only in [13,14].
In this body of work, GMM constraint enforcement is ensured by using manifold opti-
mization techniques and re-parameterization/regularization, thereby introducing additional
hyper-parameters. The issue of local optima is side-stepped by a k-means type centroid
initialization, and the used datasets are low-dimensional (36 dimensions).

Annealing and Approximation Approaches for GMMs were proposed in [8,22,23,28].
However, the regularizers proposed in [22,28] significantly differ from our scheme. GMM
log-likelihood approximations, similar to the one used here, are discussed in, e.g., [8,23],
but only in combination with EM training. A similar “hard assignment” approximation is
performed in [27].

GMM Training in High-Dimensional Spaces is discussed in several publications: A
conceptually very interesting procedure is proposed in [12]. It exploits the properties of
high-dimensional spaces in order to achieve learning with a number of samples that is poly-
nomial in the number of Gaussian components. This is difficult to apply in streaming settings,
since higher-order moments need to be estimated beforehand, and also because the number of
samples is usually unknown. Training GMM-like lower-dimensional factor analysis models
by SGD on high-dimensional image data is successfully demonstrated in [25]. This approach
avoids numerical issues, but, again, sidesteps the local optima issue by using k-means initial-
ization. Thenumerical issues associatedwith log-likelihood computation in high-dimensional
spaces are generally mitigated by using the “logsumexp” trick [21], which is, however, insuf-
ficient for ensuring numerical stability for particularly high-dimensional data, such as images.
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1.3 Goals and Contributions

The goals of this article are to establish GMM training by SGD as a simple and scalable
alternative to sEM in streaming scenarios with potentially high-dimensional data. The main
novel contributions are:

– a proposal for numerically stable GMM training by SGD that outperforms sEM for high
data dimensionalities,

– an automatic annealing procedure that ensures SGD convergence without prior knowl-
edge of the data (no k-means initialization) which is beneficial for streaming data,

– a computationally efficient method for enforcing all GMM constraints in SGD,
– a convergence proof for the annealing procedure.

Additionally, we provide a TensorFlow implementation.1

2 GaussianMixture Models

GMMs are probabilistic models that try to explain the observed data X ={xn} by
expressing their density as a weighted mixture of K Gaussian component densities
N (x;μk, Pk)≡Nk(x):

p(xn) =
K∑

k=1

πkNk(xn). (1)

Here, we parameterize Gaussian densities by precision matrices Pk =�−1
k instead of covari-

ances �k . The component weights πk represent another set of GMM parameters, which
modulate the overall influence of each Gaussian density. For a derivation of Eq. 1, we must
introduce the probabilistic foundations of GMMs. GMMs assume that each observed data
sample {xn} is drawn from one of the Gaussian component densities Nk . The selection of
this component density is assumed to depend on an unobserved (and unobservable) latent
variable zn ∈ {1, . . . , K } which follows an unknown distribution. This is formalized for a
GMM with K components by formulating the complete-data likelihood for a single data
sample as:

p(xn, zn) = πznNzn (xn), (2)

Since the latent variables are, by construction, unobservable, we must marginalize them
out of Eq. 2 in order to obtain an expression suitable for optimization. This gives us the
incomplete-data likelihood for a single data sample xn :

p(xn) =
K∑

k=1

p(xn, k), (3)

which depends on observable quantities only. Please compare this to Eq. 1. The incomplete-
data likelihood for all samples is thus given by:

p(X) =
∏

n

p(xn) =
∏

n

∑

k

p(xn, k) =
∏

n

∑

k

πkNk(xn), (4)

1 https://gitlab.cs.hs-fulda.de/ML-Projects/sgd-gmm.
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where we have inserted Eq. 2 in the last step. Passing to the log-domain (as it is common
for probabilistic models), we obtain the total incomplete-data log-likelihood for all observed
data samples:

L = log p(X) =
∑

n

log
∑

k

πkNk(xn). (5)

The functionL contains only observable quantities and is a suitable loss function for optimiza-
tion. For convenience and numerical stability, the sum is usually replaced by an expectation,
and we follow this convention:

L = En

[
log

∑

k

πkNk(xn)

]
. (6)

Please note thatL represents the likelihood of the observed data under the GMMwith current
parameters, and must therefore be maximized to obtain a better explanation of the data.

2.1 GMM Constraint Enforcement for SGD

GMMs require the mixture weights to be normalized:
∑

k πk =1 and the precision matrices
to be positive definite: x�Pkx≥0 ∀x. These constraints must be explicitly enforced after
each SGD step:

Weights πk are adapted according to [13], which replaces them by other free parameters
ξk from which the πk are computed so that normalization is ensured:

πk = exp(ξk)∑
j exp(ξ j )

. (7)

Diagonal Precision Matrices are re-parameterized as Pk = D2
k , with diagonal matrices

Dk (Cholesky decomposition). They are, therefore, guaranteed to be positive definite. Hence,

det�k =det P−1
k = (

det(D2
k)

)−1 = (
Tr(Dk)

)−2 can be computed efficiently. Since we are
dealing with high-dimensional data, precision matrices are always taken to be diagonal,
since full matrices would be prohibitive w.r.t. memory consumption and the number of free
parameters.

Full Precision Matrices are treated here for completeness’ sake, since they are infeasible
for high-dimensional data. We represent them as a spectral decomposition into eigenvectors
vi and eigenvalues λ2i : Pk = ∑

i λ
2
i viv

�
i , which ensures positive-definiteness. This can

be seen from det�k =det P−1
k =∏

i λ
−2
i . In order to maintain a correct representation of

eigenvectors, these have to be orthonormalized after each SGD step.

2.2 Max-Component Approximation for GMM

The log-likelihood Eq. 5 is difficult to optimize by SGD due to numerical problems (mainly
underflows and resulting divisions by zero) for high data dimensionalities. This is why we
intend to find a lower bound that we can optimize instead. A simple scheme is given by

L=En

[
log

∑

k

πkNk(xn)

]
≥En

[
logmaxk

(
πkNk(xn)

)]

= L̂=En

[
log

(
πk∗Nk∗(xn)

)]
(8)
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Fig. 1 A
sparse-component-solution with
superimposed component
weights πk , obtained when
performing naive SGD on
MNIST (a dataset consisting of
handwritten digits, see Sect. 3.1)

where k∗ =argmaxk πkNk(xn). This is what we call the max-component approximation of
Eq. 8. In contrast to the lower bound that is constructed for EM-type algorithms, our bound is
usually not tight. Nevertheless, we will demonstrate later that it is a very good approximation
when data are high-dimensional. The advantage of L̂ is the elimination of exponentials
causing numerical instabilities. The “logsumexp” trick is normally employed with GMMs
to rectify this by factoring out the largest component probability Nk∗ . This mitigates but
does not avoid numerical problems when distances are high, a common occurrence for high
data dimensions. To give an example: we normalize the component probability Nk =e−101

(using 32-bit floats) by the highest probability Nk∗ =e3, and we obtain Nk
Nk∗ =e−104, which

produces an underflow respectively NaN values.

2.3 Undesirable Local Optima in SGDTraining

A crucial issue when optimizing L̂ (and indeed L as well) by SGD without k-means initial-
ization concerns undesirable local optima. Most notable are the single/sparse-component
solutions, see Fig. 1. They are characterized by one or several components {ki } having large
weights, with centroid and precision matrices given by the mean and covariance of a sig-
nificant subset Xki ⊂ X of the data X : πki 	0, μki =E[Xki ], �ki =Cov(Xki ), whereas the
remaining components k are characterized by πk ≈0, μk =μ(t =0), Pk = P(t = 0). Thus,
these unconverged components are almost never the best-matching units (BMUs) k∗. The
max-operation in L̂ causes gradients like ∂L̂

∂μk
to contain δkk∗ :

∂L̂
∂μk

= En
[
Pk

(
xn − μk

)
δkk∗

]

∂L̂
∂ Pk

= En

[(
(Pk)

−1 − (xn − μk)(xn − μk)
�)

δkk∗
]

∂L̂
∂πk

= π−1
k En [δkk∗ ] .

(9)

This implies that the gradients are non-zeroonly for theBMU k∗. Thus, the gradients of uncon-
verged components vanish, meaning that component parameters remain in their unconverged
state.
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Fig. 2 Visualization of Gaussian smoothing filters gk used in annealing, of width σ , for three different values
of σ . The gk are placed on a 2D grid, darker pixels indicate larger values. Over time, σ(t) is reduced (middle
and right pictures) and the Gaussians approach a delta peak, thus recovering the original, non-annealed loss
function. Note that the grid is considered periodic in order to avoid boundary effects, so the gk are themselves
periodic

2.4 Annealing Procedure for Avoiding Local Optima

Our approach for avoiding sparse-component solutions is to punish their characteristic
response patterns by replacing L̂ by the smoothed max-component log-likelihood L̂σ :

L̂σ = Enmaxk

[∑

j

gk j (σ ) log
(
π jN j (xn)

)]

= En

∑

j

gk∗ j (σ ) log
(
π jN j (xn)

)
.

(10)

Regarding its interpretation, we are assuming that the K GMM components are arranged
in a quadratic 2D grid of size

√
K ×√

K . Equally, each gk is interpreted as 2D grid of
size

√
K ×√

K , (see Fig. 2), with values given by a periodically continued 2D Gaussian
centered on component k. With this interpretation, Eq. 10 represents a 2D convolution with
periodic boundary conditions (in the sense used in image processing) of the log (πkNk(x))

by a smoothing filter whose width is controlled by σ .
Thus, Eq. 10 is maximized if the log-probabilities follow a uni-modal Gaussian profile of

spatial variance ∼σ 2, which heavily punishes single/sparse-component solutions that have
a locally delta-like response. A 1D grid for annealing, together with 1D smoothing filters,
was verified to fulfill this purpose as well. We chose 2D because it allows for an easier
visualization while incurring an identical computational cost.

Annealing starts with a large value of σ(t)=σ0 and reduces it over time to an asymptotic
small value of σ =σ∞, thus, smoothly transitioning from L̂σ in Eq. 10 into L̂ in Eq. 8.

Annealing Control regulates the decrease of σ . This quantity defines an effective upper
bound on L̂σ (see Sect. 2.6 for a proof). An implication is that the loss will be stationary once
this bound is reached,whichwe consider a suitable indicator for reducingσ .We implement an
annealing control that sets σ ←0.9σ whenever the loss is considered sufficiently stationary.
Stationarity is detected by maintaining an exponentially smoothed average log-likelihood
�(t)= (1−α)�(t−1)+αL̂σ (t) on time scale α. Every 1

α
iterations, we compute the fractional

increase of L̂σ as


 = �(t) − �(t − α−1)

�(t − α−1) − L̂σ (t = 0)
(11)
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and consider the loss stationary iff 
<δ (the latter being a free parameter). The choice of
the time constant for smoothing L̂σ is outlined in the following section.

2.5 Training Procedure for SGD

Training GMMs by SGD is performed by maximizing the smoothed max-component log-
likelihood L̂σ from Eq. 10. At the same time, we enforce the constraints on the component
weights and covariances as described in Sect. 2.1 and transition from L̂σ into L̂ by annealing
(see Sect. 2.4). SGD requires a learning rate ε to be set, which in turn determines the parameter
α (see Sect. 2.4) as α =ε since stationarity detection should operate on a timescale similar
to that of SGD. The diagonal matrices Dk are initialized to Dmax I and are clipped after
each iteration, so that diagonal entries remain in the range [0, D2

max]. This is necessary to
avoid excessive growth of precisions for data entries with vanishing variance, e.g., pixels
that are always black. Weights are uniformly initialized to π i = 1

K , centroids in the range
[−μi ,+μi ] (see algorithm 1 for a summary). Please note that our SGD approach requires no
centroid initialization by k-means, as it is recommended when training GMMs with (s)EM.
We discuss and summarize good practices for choosing hyper-parameters in Sect. 5.

Algorithm 1: Steps of SGD-GMM training.

Data: initializer values: μi , K , ε0/ε∞, σ0/σ∞, δ and data X
Result: trained GMM model
1 μ ← U(−μi , +μi ), π ← 1/K , P ← I Dmax, σ ← σ0, ε ← ε0
2 forall the t < T do // training loop
3 g(t) ← create_annealing_mask(σ ,t) // see Sect. 2.4

4 μ(t) ← ε ∂L̂σ

∂μ
+μ(t-1), // SGD updates

5 P(t) ← ε ∂L̂σ

∂ P +P(t-1),

6 π(t) ← ε ∂L̂σ

∂π
+π(t-1)

7 P(t) ← precisions_clipping(P , Dmax) //see Sect. 2.5
8 π(t) ← normalization(π(t)) //see Eq. 7

9 �(t) ← (1−α)�(t−1)+αL̂σ (x(t)) // sliding likelihood
10 if annealing update iteration then // see Sect. 2.4
11 if 
 < δ then // 
 see Eq. 11
12 σ(t) ← 0.9σ(t−1),ε(t) ← 0.9ε(t−1)

2.6 Proof that Annealing is Convergent

We assume that, for a fixed value of σ , SGD optimization has reached a stationary point
where the derivative w.r.t. all GMM parameters is 0 on average. In this situation, we claim
that decreasing σ will always increase the loss except when σ →0. If true, this would show
that σ defines an effective upper bound for the loss. For this to be consistent, we have to show
that the loss gradient w.r.t. σ vanishes as σ →0: as the annealed loss approaches the original
one, decreases of σ have less and less effects.
Proposition The gradient ∂L̂σ

∂σ
is strictly positive for σ >0
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Proof For each sample, the 2D profile of log(πkNk)≡ fk is assumed to be centered on
the BMU k∗ and depending on the distance from it as a function of ||k − k∗||. We thus
have fk = fk(r) with r ≡||k − k∗||. Passing to the continuous domain, the indices in
the Gaussian “smoothing filter” gk∗k become continuous variables, and we have gk∗k →
g(||k − k∗||, σ ) ≡ g(r , σ ). Similarly, fk(r) → f (r). Using 2D polar coordinates, the
smoothed max-component likelihood L̂σ becomes a polar integral around the position of
the BMU: L̂σ ∼∫

R2 g(r , σ ) f (r)drdφ. It is trivial to show that for the special case of a con-
stant log-probability profile, i.e., f (r)= L , Lσ , does not depend on σ because Gaussians are
normalized, and that the derivative w.r.t. σ vanishes:

dL̂σ

dσ
∼

∫ ∞

0
dr

( r2

σ 2 −1
)
exp

(
− r2

2σ 2

)
L

= L
∫ σ

0
dr

( r2

σ 2 −1
)
exp

(
− r2

2σ 2

)
−L

∫ ∞

σ

( r2

σ 2 −1
)
exp

(
− r2

2σ 2

)

≡ LN−LP

(12)

where we have split the integral into parts where the derivative w.r.t. σ is negative (N ) and
positive (P). We know that N = P since the derivative must be zero for a constant function
f (r) = L due to the fact that Gaussians are normalized to the same value regardless of σ .
For a function f (r) that satisfies f (r)> L∀r ∈ [0, σ [ and f (r)< L∀r ∈]σ,∞[, the inner

and outer parts of the integral behave as follows:

Ñ =
∫ σ

0
g(r)

( r2

σ 2 −1
)
f (r)<

∫ σ

0
g(r)

( r2

σ 2 −1
)
L= LN

P̃=
∫ ∞

σ

g(r)
( r2

σ 2 −1
)
f (r)<

∫ ∞

σ

g(r)
( r2

σ 2 −1
)
L= LP

(13)

since f (r) isminorized/majorized by L by assumption, and the contributions in both integrals
have the same sign for the whole domain of integration. Thus, it is shown that

dL̂σ

dσ
= Ñ − P̃ < LN − LP = 0 (14)

for σ >0 and, furthermore, that this derivative is zero for σ =0 because L̂σ no longer depends
on σ for this case.

Taking everything into consideration, in a situation where the log-likelihood L̂σ has
reached a stationary point for a given value of σ , we have shown that:

– the value of L̂σ depends on σ ,
– without changing the log-probabilities, we can increase L̂σ by reducing σ , assuming that

the log-probabilities are mildly decreasing around the BMU,
– increasing L̂σ works as long as σ >0. At σ =0 the derivative becomes 0.

Thus, σ indeed defines an upper bound to L̂σ which can be increased by decreasing σ . The
assumption of log-probabilities that decrease, on average, around the BMU is reasonable,
since such a profile maximizes L̂σ . All functions f (r) that, e.g., decrease monotonically
around the BMU, fulfill this criterion, whereas the form of the decrease is irrelevant.

2.7 Training Procedure for sEM

We use sEM proposed by [2] as a reference point to which we compare our SGD approach.
We choose the step size of the form ρt =ρ0(t + 1)−0.5+α , with α ∈[0, 0.5], ρ0 <1 and
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enforce ρ(t)≥ρ∞. Values for these parameters are determined via a grid search in the ranges
ρ0 ∈{0.01, 0.05, 0.1}, α ∈{0.01, 0.25, 0.5} and ρ∞ ∈{0.01, 0.001, 0.0001}. Each sEM iter-
ation uses a batch size B. Initial accumulation of sufficient statics is conducted for 10% of
an epoch. Parameter initialization and clipping of precisions is performed just as for SGD,
see Sect. 2.5.

2.8 Comparing SGD and sEM

Since sEM optimizes the log-likelihood L, whereas SGD optimizes the annealed approx-
imation L̂σ , the comparison of these measures should be considered carefully. We claim
that the comparison is fair assuming that (i) SGD annealing has converged and (ii) GMM
responsibilities are sharply peaked so that a single component has a responsibility of ≈1. It
follows from (i) that L̂σ ≈ L̂ and (ii) implies that L̂≈L. Condition (ii) is usually satisfied to
high precision especially for high-dimensional inputs: if it is not, the comparison is biased
in favor of sEM, since L> L̂ by definition.

3 Experiments

Unless stated otherwise, the experiments in this section will be conducted with the following
parameter values for sEM and SGD (where applicable): mini-batch size B=1, K =8×8,
μi =0.1, σ0 =2, σ∞ =0.01, ε =0.001, Dmax =20. Each experiment is repeated 10 times
with identical parameters but different random seeds for parameter initialization. See Sect. 5
for a justification of these choices. Due to high input dimensionalities, all precision matrices
are assumed to be diagonal. The training/test data comes from the datasets shown below (see
Sect. 3.1).

3.1 Datasets

We use a variety of different image-based datasets, as well as a non-image dataset for evalu-
ation purposes. All datasets are normalized to the [0, 1] range.
MNIST [17] contains gray-scale images, which depict handwritten digits from 0 to 9 in
a resolution of 28×28 pixels—the common benchmark for computer vision systems and
classification problems.
SVHN [31] contains color images of house numbers (0–9, resolution 32×32).
FashionMNIST [32] contains grayscale images of 10 clothing categories and is considered
as a more challenging classification task compared to MNIST.
Fruits 360 [19] consists of color pictures (100×100×3 pixels) showing different types of
fruits. The ten best-represented classes are selected.
Devanagari [1] includes grayscale images of handwrittenDevanagari letterswith a resolution
of 32×32 pixels—the first 10 classes are selected.
NotMNIST [33] is a grayscale image dataset (resolution 28×28 pixels) of letters from A to
J extracted from different publicly available fonts.
ISOLET [5] is a non-image dataset containing 7 797 samples of spoken letters recorded from
150 subjects. Each sample is encoded and is represented by 617 float values.

123



4340 A. Gepperth, B. Pfülb

3.2 Robustness of SGD to Initial Conditions

Here, we train GMMs for three epochs on classes 1 to 9 for each dataset. We use different
random and non-random initializations of the centroids and compare the final log-likelihood
values. Random centroid initializations are parameterized by μi ∈{0.1, 0.3, 0.5}, whereas
non-random initializations are defined by centroids from a previous training run on class
0 (one epoch). The latter is done to have a non-random centroid initialization that is as
dissimilar as possible from the training data. The initialization of the precisions cannot be
varied, because empirical data shows that training converges to undesirable solutions if the
precisions are not initialized to large values.While this will have to be investigated further, we
nevertheless observe convergence to near-identical levels, regardless of centroid initialization,
for all datasets (see Table 1 for more details).

3.3 AddedValue of Annealing

To demonstrate the beneficial effects of annealing, we perform experiments on all datasets
with annealing turned off. This is achieved by setting σ0 = σ∞. This invariably produces
sparse-component solutions with strongly inferior log-likelihoods after training, please refer
to Table 1.

3.4 Clustering Performance Evaluation

To compare the clustering performance of sEM and GMM the Davies-Bouldin score [6]
and the Dunn index [9] are determined. We evaluate the grid-search results to find the best
parameter setup for each metric for comparison. Only sEM is initialized by k-means to show
that our approach does not depend on parameter initialization. Table 2 indicates that SGD
can egalize sEM performance.

3.5 Streaming Experiments with Constant Statistics

We train GMMs for three epochs (enough for convergence in all cases) using SGD and sEM
on all datasets as described in Sects. 2.5 and 2.7. The resulting centroids of our SGD-based
approach are shown in Fig. 3, whereas the final loss values for SGD and sEM are compared
in Table 3. The centroids for both approaches are visually similar, except for the topological
organization due to annealing for SGD, and the fact that in most sEM experiments, some
components do not converge, while the others do. Table 3 indicates that SGD achieves per-
formances superior to sEM in the majority of cases, in particular for the highest-dimensional
datasets (SVHN: 3072 and Fruits 360: 30,000 dimensions).

3.6 Visualization of High-Dimensional sEM Outcomes

Figure 4 was obtained after training GMMs by sEM on both the Fruits 360 and the SVHN
dataset. It should be compared to Fig. 3, where an identical procedure was used to visualize
centroids of SGD-trained GMMs. It is notable that the effect of unconverged components
does not occur at all for our SGD approach, which is due to the annealing mechanism that
“drags” unconverged components along.
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Table 2 Clustering performance comparison of SGD and sEM training using Davies–Bouldin score (less is
better) and Dunn index (more is better)

Metric algo. Davies–Bouldin score Dunn index

SGD sEM SGD sEM

Dataset Mean Std Mean Std Mean Std Mean Std

MNIST 2.50 0.04 2.47 0.04 0.18 0.02 0.16 0.02

FashionMNIST 2.06 0.05 2.20 0.04 0.20 0.03 0.19 0.02

NotMNIST 2.30 0.03 2.12 0.03 0.15 0.03 0.14 0.04

Devanagari 2.60 0.04 2.64 0.02 0.33 0.01 0.27 0.04

SVHN 2.34 0.04 2.41 0.03 0.15 0.02 0.15 0.02

Each time, meanmetric value (of 10 experiment repetitions) at the end of training, and their standard deviations
are presented. Results are in bold face whenever they surpass all other results by more than half a standard
deviation

(a) (b) (c)

(f)(e)(d)

Fig. 3 Exemplary results for centroids learned by SGD for different datasets

4 Assumptions Made by EM and SGD

The EM algorithm assumes that the observed data samples {xn} depend on unobserved latent
variables zn in a non-trivial manner, see Sect. 2. The derivation of the EM algorithm starts
out with the total incomplete-data log-likelihood
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Table 3 Comparison of SGD and sEM training on all datasets in a streaming-data scenario

Algo. SGD sEM

Dataset ∅max pk∗ Mean Std Mean Std

MNIST 0.992674 216.6 0.31 216.8 1.38

FashionMNIST 0.997609 234.5 2.28 222.9 6.03

NotMNIST 0.998713 −34.7 1.16 −40.0 8.90

Devanagari 0.999253 −14.6 1.09 −13.4 6.16

Fruits 360 0.999746 11,754.3 75.63 5483.0 1201.60

SVHN 0.998148 1329.8 0.80 1176.0 16.91

ISOLET 0.994069 354.2 0.01 354.5 0.37

Shown are log-likelihoods at the end of training, averaged over 10 repetitions, along with their standard devi-
ations. Results are in bold face whenever they are higher by more than half a standard deviation. Additionally,
the averaged maximum responsibilities (pk∗ ) for test data are given, as a justification of the max-component
approximation

Fig. 4 Visualization of centroids after training runs (3 epochs) on high-dimensional datasets for sEM: Fruits
360 (left, 30,000 dimensions) and SVHN (right, 3000 dimensions). Component entries are displayed “as is”,
meaning that low brightness means low RGB values. Many GMM components remain unconverged, which
is analogous to a sparse-component solution (compare Fig. 1) and explains the low log-likelihood values for
these high-dimensional datasets

L = log p(X) = log
∏

n

p(xn) =
∑

n

log p(xn)

=
∑

n

log
∑

k

p(xn, zn = k)

=
∑

n

log
∑

k

p(zn = k)
p(xn, zn = k)

p(zn = k)
.

(15)

Due to the assumption thatL is obtained by marginalizing out the latent variables, an explicit
dependency on zn can be re-introduced. For the last expression, Jensen’ inequality can be
used to construct a lower bound:

L ∼
∑

n

log
∑

k

p(zn = k)
p(xn, zn = k)

p(zn = k)

≥
∑

n

∑

k

p(zn = k) log
p(xn, zn = k)

p(zn = k)
.

(16)
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Since the realizations of the latent variables are unknown, we can assume any form for their
distribution. In particular, for the choice p(zn) ∼ p(xn, zn), the lower bound becomes tight.
Simple algebra and the fact that the distribution p(zn) must be normalized gives us:

p(zn = k) = p(zn = k, xn)
p(xn)

= p(zn = k|xn)
= p(zn = k, xn)∑

l p(zn = l, xn)

= πkNk(xn)∑
l πlNl(xn)

(17)

wherewe have usedEq. 2 in the last step. p(zn =k|xn) is a quantity that can be computed from
data with no reference to the latent variables. For GMM it is usually termed responsibility
and we write it as p(zn =k|xn)≡γnk .

However, the construction of a tight lower bound, which is actually different from L, only
works when p(xn, zn) depends non-trivially on the latent variable zn . If this is not the case,
we have p(xn, zn)=K−1 p(xn) and the derivation of Eq. 16 goes down very differently:

L ∼
∑

n

log p(xn) ≥
∑

n

∑

k

p(zn = k) log
p(xn, zn = k)

p(zn = k)

=
∑

n

∑

k

p(zn = k) log
K−1 p(xn)
p(zn = k)

=
∑

n

log
(
K−1 p(xn)

)
−

∑

k

p(zn = k) log p(zn = k)

≡
∑

n

(
log p(xn) − (

log K − H[zn]
))

(18)

where H represents the Shannon entropy of p(z). The highest value this can have is log K
for an uniform distribution of the zn , finally leading to a lower bound for L of

L ≥
∑

n

(
log p(xn)

)
(19)

which is trivial by Jensen’s inequality, but not tight. In particular, no closed-form solutions
to the associated extremal value problem can be computed.

This shows that optimizing GMM by EM assumes that each sample has been drawn from
a single component in a set of K uni-modal Gaussian distributions. Which distribution is
selected for sampling depends on a latent randomvariable. On the other hand, optimization by
SGD uses the incomplete-data log-likelihood L as basis for optimization, without assuming
the existence of hidden variables at all. This may be advantageous for problems where
the assumption of Gaussianity is badly violated, although empirical studies indicate that
optimization by EM works very well in a very wide range of scenarios.

5 Discussion and Conclusion

The Relevance of this Article is outlined by the fact that training GMMs by SGDwas recently
investigated in the community by [13,14]. We go beyond, since our approach does not rely
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on off-line data-driven model initialization, and works for high-dimensional streaming data.
The presented SGD scheme is simple and very robust to initial conditions due to the proposed
annealing procedure, see Sects. 3.2 and 3.3. In addition, our SGD approach compares favor-
ably to the reference model for online EM [2] in terms of achieved log-likelihoods, which
was verified on multiple real-world datasets. Superior SGD performance is observed for the
high-dimensional datasets.

The Analysis of the Results suggests that SGD performs better than sEM on average,
see Sect. 3.5, although the differences are modest. It is neither expected, nor is it the goal
to show here, that sEM is outperformed by SGD. Instead, we aim at achieving a similar
performance. However, if sEM is used without an initialization, e.g., k-means, components
may not converge (see Fig. 4) for high-dimensional data like Fruits 360 and SVHN datasets.
In such cases, SGD does outperform sEM. Another important advantage of SGD over sEM
is the fact that the only parameter that needs to be tuned is the learning rate ε. In contrast to
that, sEM has a complex and non-intuitive dependency on ρ0, ρ∞ and α0.

Small Batch Sizes and Streaming Data are possible with the SGD-based approach.
Throughout the experiments, we used a batch size of 1, which allows streaming-data process-
ing without the need to store any samples at all. Larger batch sizes are possible and strongly
increase execution speed. In the conducted experiments, SGD (and sEM) usually converged
within the first two epochs, which is a substantial advantage whenever huge sets of data have
to be processed.

Low-Dimensional Data can be processed as well using our SGD-based approach, which
makes numerical issues and undesirable local minima less relevant. Thus, we recommend
optimizing the full incomplete-data log-likelihood in this case. Although there is no real
need to use the max-component approximation and annealing for low-dimensional data,
it is nevertheless possible. To this effect, we performed experiments with synthetic data
drawn from various 2D Gaussian mixture distributions, using the same parameters as in the
experiments of Sect. 3. We always observed rapid convergence if the initialization range of
the centroids, μi , fits the ranges of the individual data components. This ensures that initial
centroids cover the data space sufficiently so that each cluster in the data has at least one
centroid close to it.

No Assumptions About Data Generation are made by SGD in contrast to the EM and
sEM algorithms. The latter guarantees that the loss will not decrease due to an M-step. This,
however, assumes a non-trivial dependency of the data on an unobservable latent variable
(shown in Sect. 4). In contrast, SGD makes no hard-to-verify assumptions, which is a rather
philosophical point, but may be an advantage in certain situations where data are strongly
non-Gaussian.

Numerical Stability is assured by our SGD training approach. It does not optimize the
log-likelihood but its max-component approximation. This approximation contains no expo-
nentials at all, and is well justified by the results of Table 3 which shows that component
probabilities are strongly peaked. In fact, it is the gradient computations where numerical
problems occurred, e.g., NaN values. The “logsumexp” trick mitigates the problem, but does
not eliminate it (see Sect. 2.2). It cannot be used when gradients are computed automatically,
which is what most machine learning frameworks do.

Hyper-Parameter Selection Guidelines are as follows: the learning rate ε must be set by
cross-validation (a good value is 0.001). We empirically found that initializing precisions to
the cut-off value Dmax and an uniform initialization of the πi are beneficial, and that centroids
are best initialized to small random values. A value of Dmax = 20 always worked in our
experiments. Generally, the cut-off must be much larger than the inverse of the data variance.
In many cases, it should be possible to estimate this roughly, even in streaming settings,
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especially when samples are normalized. For density estimation, choosing higher values for
K leads to higher final log-likelihoods. For clustering, K should be selected using standard
techniques for GMMs. The parameter δ controls loss stationarity detection for the annealing
procedure and was shown to perform well for δ =0.05. Larger values will lead to a faster
decrease of σ(t), which may impair convergence. Smaller values are always admissible but
lead to longer convergence times. The annealing time constant α should be set to the GMM
learning rate ε or lower. Smaller values of α lead to longer convergence times since σ(t) will
be updated less often. The initial value σ0 needs to be large in order to enforce convergence
for all components. A typical value is

√
K . The lower bound on σ∞ should be as small as

possible in order to achieve high log-likelihoods (e.g., 0.01, see Sect. 2.6 for a proof).

6 FutureWork

The presented work can be extended in several ways: First of all, annealing control could
be simplified further by inferring good δ values from α. Likewise, increases of σ might be
performed automatically when the loss rises sharply, indicating a task boundary. As we found
thatGMMconvergence times grow linearwith the number of components, wewill investigate
hierarchicalGMMmodels that operate like aConvolutionalNeuralNetwork (CNN), inwhich
individual GMM only see a local patch of the input and can therefore have low K .

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Acharya S, Pant AK, Gyawali PK (2016) Deep learning based large scale handwritten Devanagari char-
acter recognition. In: SKIMA 2015: 9th international conference on software, knowledge, information
management and applications. https://doi.org/10.1109/SKIMA.2015.7400041

2. Cappé O, Moulines E (2009) On-line expectation-maximization algorithm for latent data models. J R Stat
Soc Ser B Stat Methodol 71(3):593–613. https://doi.org/10.1111/j.1467-9868.2009.00698.x

3. Cederborg T, Li M, Baranes A, Oudeyer PY (2010) Incremental local online Gaussian mixture regres-
sion for imitation learning of multiple tasks. In: IEEE/RSJ 2010 international conference on intelligent
robots and systems, IROS 2010: conference proceedings, pp 267–274. https://doi.org/10.1109/IROS.
2010.5652040

4. Chen J, Zhu J, Teh YW, Zhang T (2018) Stochastic expectation maximization with variance reduction.
In: Advances in neural information processing systems (NeurIPS), pp 7967–7977

5. Cole R, Fanty M (1990) Spoken letter recognition, pp 385–390. https://doi.org/10.3115/116580.116725
6. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell

2:224–227. https://doi.org/10.1109/TPAMI.1979.4766909

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SKIMA.2015.7400041
https://doi.org/10.1111/j.1467-9868.2009.00698.x
https://doi.org/10.1109/IROS.2010.5652040
https://doi.org/10.1109/IROS.2010.5652040
https://doi.org/10.3115/116580.116725
https://doi.org/10.1109/TPAMI.1979.4766909


Gradient-Based Training of Gaussian Mixture Models for High… 4347

7. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM
algorithm. J R Stat Soc Ser B (Methodol) 39(1):1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.
x

8. Dognin PL, Goel V, Hershey JR, Olsen PA (2009) A fast, accurate approximation to log likelihood of
Gaussian mixture models. Proc ICASSP IEEE Int Conf Acoust Speech Signal Process 3:3817–3820.
https://doi.org/10.1109/ICASSP.2009.4960459

9. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated
clusters. J Cybern 3(3):32–57. https://doi.org/10.1080/01969727308546046

10. Engel PM, Heinen MR (2010) Incremental learning of multivariate Gaussian mixture models. In: Lecture
notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in
bioinformatics), vol 6404, LNAI, pp 82–91. https://doi.org/10.1007/978-3-642-16138-4_9

11. Feldman D, Faulkner M, Krause A (2011) Scalable training of mixture models via coresets. In: 25th
Annual conference on advances in neural information processing systems, NIPS 2011, pp 1–9

12. Ge R, Huang Q, Kakade SM (2015) Learning mixtures of gaussians in high dimensions. In: Proceedings
of the annual ACM symposium on theory of computing, 14–17 June, pp 761–770. https://doi.org/10.
1145/2746539.2746616

13. Hosseini R, Sra S (2015) Matrix manifold optimization for Gaussian mixtures. In: Advances in neural
information processing systems, 2015 January, pp 910–918

14. Hosseini R, Sra S (2019) An alternative to em for gaussian mixture models: batch and stochastic rieman-
nian optimization. In: Mathematical programming, pp 1–37

15. Kristan M, Skocaj D, Leonardis A (2008) Incremental learning with gaussian mixture models. In: Com-
puter vision winter workshop, pp 25–32

16. LangeK (1995)Agradient algorithm locally equivalent to theEMalgorithm. JRStat SocSerB (Methodol)
57(2):425–437. https://doi.org/10.1111/j.2517-6161.1995.tb02037.x

17. LeCunY, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition.
Proc IEEE 86(11):2278–2323. https://doi.org/10.1109/5.726791

18. MelnykovV,MaitraR (2010) Finitemixturemodels andmodel-based clustering. Stat Surv 4(October):80–
116. https://doi.org/10.1214/09-SS053
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