
Second-order step-size tuning of SGD for non-convex
optimization

Camille Castera∗

CNRS - IRIT,
Université de Toulouse,

Toulouse, France

Jérôme Bolte†

Toulouse School of Economics
Université de Toulouse

Toulouse, France

Cédric Févotte†

CNRS - IRIT,
Université de Toulouse,

Toulouse, France

Edouard Pauwels†

CNRS - IRIT,
Université de Toulouse,

DEEL, IRT Saint Exupery
Toulouse, France

Abstract

In view of a direct and simple improvement of vanilla SGD, this paper presents a
fine-tuning of its step-sizes in the mini-batch case. For doing so, one estimates curvature,
based on a local quadratic model and using only noisy gradient approximations. One
obtains a new stochastic first-order method (Step-Tuned SGD), enhanced by second-order
information, which can be seen as a stochastic version of the classical Barzilai-Borwein
method. Our theoretical results ensure almost sure convergence to the critical set and
we provide convergence rates. Experiments on deep residual network training illustrate
the favorable properties of our approach. For such networks we observe, during training,
both a sudden drop of the loss and an improvement of test accuracy at medium stages,
yielding better results than SGD, RMSprop, or ADAM.

1 Introduction

In the recent years, machine learning has generated a growing need for methods to solve non-
convex optimization problems. In particular, the training of deep neural networks (DNNs) has
received tremendous attention. Designing methods for this purpose is particularly difficult as
one deals with both expensive function evaluations and limited storage capacities. This explains
why stochastic gradient descent (SGD) remains the central algorithm in deep learning (DL). It
consists in the iterative scheme,

θk+1 = θk − γk∇JBk(θk), (1)

where J is the function to minimize (usually the empirical loss) parameterized by θ ∈ RP (the
weights of the DNN), ∇JBk(θk) is a stochastic estimation of the gradient of J (randomness

∗Corresponding author: camille.castera@protonmail.com
†
Last three authors are listed in alphabetical order.

1

ar
X

iv
:2

10
3.

03
57

0v
2

 [
cs

.L
G

]
 2

1
N

ov
 2

02
1

being related to the sub-sampled mini-batch Bk), and γk > 0 is a step-size whose choice is
critical in terms of empirical performance.

In order to improve the basic SGD method, a common practice is to use adaptive methods
[16, 24, 43]. They act as preconditioners, reducing the importance of the choice of the sequence
of step-sizes (γk)k∈N. This paper focuses instead exclusively on the step-size issue: how can we
take advantage of curvature information of non-convex landscapes in a stochastic context in
order to design step-sizes adapted to each iteration?

Our starting point to answer this question is an infinitesimal second-order variational model
along the gradient direction. The infinitesimal feature is particularly relevant in DL since
small steps constitute standard practice in training due to sub-sampling noise. Second-order
information is approximated with first-order quantities using finite differences. In deterministic
(full-batch) setting, our method corresponds to a non-convex version of the Barzilai-Borwein
(BB) method [6, 8, 14, 46] and is somehow a discrete non-convex adaption of the continuous
gradient system in Alvarez and Cabot [3]. It is also close to earlier work [35], with the major
difference that our algorithm is supported by a variational model. This is essential to generalize
the method to accommodate noisy gradients, providing a convexity test similar to those in
Babaie-Kafaki and Fatemi [4], Curtis and Guo [12].

Our main contribution is a fine step-size tuning method which accelerates stochastic gradient
algorithms, it is built on a strong geometrical principle: step-sizes are deduced from a carefully
derived discrete approximation of a curvature term of the expected loss. We provide general
convergence guarantees to critical points and rates of convergence. Extensive computations on
DL problems show that our method is particularly successful for residual networks [18]. In
that case, we observe a surprising phenomenon: in the early training stage the method shows
similar performances to standard DL algorithms (SGD, ADAM, RMSprop), then at medium
stage, we observe simultaneously a sudden drop of the training loss and a notable increase in
test accuracy.

To summarize, our contributions are as follows:
– Exploit the vanishing step-size nature of DL training to use infinitesimal second-order opti-
mization for fine-tuning the step-size at each iteration.
– Use our geometrical perspective to discretize and adapt the method to noisy gradients despite
strong non-linearities.
– Prove the convergence of the proposed algorithm and provide rates of convergence for twice-
differentiable non-convex functions either under boundedness assumption or under Lipschitz-
continuity assumptions (see Theorem 1 and Corollary 2).
– Show that our method has remarkable practical properties, in particular when training resid-
ual networks in DL, for which one observes an advantageous “drop down” of the loss during
the training phase.

Structure of the paper. A preliminary deterministic (i.e., full-batch) algorithm is derived
in Section 3.1. We then build a stochastic mini-batch variant in Section 3.2, which is our core
contribution. Theoretical results are stated in Section 4 and DL experiments are conducted in
Section 5.

2 Related work

Methods using second-order information for non-convex optimization have been actively studied
in the last years, both for deterministic and stochastic applications, see, e.g., Allen-Zhu [2],

2

Large step

θ0 θ1 θ2 = argmin(q+)

J
q−

q+

Figure 1: Illustration of negative and positive curvature steps. The function q− represents the
variational model at θ0, with negative curvature. Concavity suggests to take a large step to
reach θ1. Then, at θ1, the variational model q+ has positive curvature and can be minimized
to obtain θ2.

Carmon et al. [10], Curtis and Robinson [13], Krishnan et al. [25], Liu and Yang [32], Martens
and Grosse [33], Royer and Wright [40].

BB-like methods are very sensitive to noisy gradient estimates. Most existing stochastic
BB algorithms [30, 38, 42] overcome this issue with stabilization methods in the style of SVRG
[23], which allows to prescribe a new step-size at every epoch only (i.e., after a full pass over
the data). Doing so, one cannot capture variations of curvature within a full epoch, and
one is limited to using absolute values to prevent negative step-sizes caused by non-convexity.
On the contrary, our stochastic approximation method can adapt to local curvature every
two iterations. Regarding the utilization of flatness and concavity of DL loss functions, the
AdaBelief algorithm of Zhuang et al. [47] is worth mentioning. The latter uses the difference
between the current stochastic gradient estimate and an average of past gradients, this difference
being used to prescribe a vector step-size in the style of ADAM. In comparison, our method
uses scalar step-sizes and aims to capture subtle variations as it computes a stabilized difference
between consecutive gradient estimates before averaging.

There are few techniques to analyze stochastic methods in non-convex settings. An impor-
tant category is the ODE machinery used for SGD [9, 15], ADAM [5] and INNA [11]. In this
paper, we use instead direct and more traditional arguments, such as in Li and Orabona [29]
in the context of DL.

3 Design of the algorithm

We first build a preliminary algorithm based upon a simple second-order variational model. We
then adapt this algorithm to address mini-batch stochastic approximations.

3

3.1 Deterministic full-batch algorithm

We start with the following variational considerations.

3.1.1 Second-order infinitesimal step-size tuning.

Given a positive integer P , assume that J is a twice-differentiable function, denote ∇J and
∇2J the gradient and the Hessian matrix of J respectively. Let θ ∈ RP . Given an update
direction d ∈ RP , a natural strategy is to choose γ ∈ R that minimizes J (θ + γd). Let us
approximate γ 7→ J (θ + γd) around 0 with a Taylor expansion,

qd(γ)
def
= J (θ) + γ〈∇J (θ), d〉+

γ2

2
〈∇2J (θ)d, d〉. (2)

If the curvature term 〈∇2J (θ)d, d〉 is positive, then qd has a unique minimizer at,

γ? = − 〈∇J (θ), d〉
〈∇2J (θ)d, d〉 . (3)

On the contrary when 〈∇2J (θ)d, d〉 ≤ 0, the infinitesimal model qd is concave (or equiva-
lently J is locally concave in the direction d) which suggests to take a large step-size. These
considerations are illustrated on Figure 1.

3.1.2 Tuning gradient descent.

In order to tune gradient descent we choose the direction d = −∇J (θ) which gives,

γ(θ)
def
=

‖∇J (θ)‖2

〈∇2J (θ)∇J (θ),∇J (θ)〉 . (4)

According to our previous considerations, an ideal iterative process θk+1 = θk−γk∇J (θk) would
use γk = γ(θk) when γ(θk) > 0. But for computational reasons and discretization purposes,
we shall rather seek a step-size γk such that, γk ' γ(θk−1) (again when γ(θk−1) > 0). Let us
assume that, for k ≥ 1, θk−1, γk−1 are known and let us approximate the quantity,

γ(θk−1) =
‖∇J (θk−1)‖2

〈∇2J (θk−1)∇J (θk−1),∇J (θk−1)〉 , (5)

using only first-order objects. We rely on two identities,

∆θk
def
= θk − θk−1 = −γk−1∇J (θk−1), (6)

∆gk
def
= ∇J (θk)−∇J (θk−1) ' −γk−1CJ (θk−1), (7)

where CJ (θ)
def
= ∇2J (θ)∇J (θ) and (7) is obtained by Taylor’s formula. Combining the above,

we are led to consider the following step-size,

γk =

{
‖∆θk‖2
〈∆θk,∆gk〉

if 〈∆θk,∆gk〉 > 0

ν otherwise
, (8)

where ν > 0 is an hyper-parameter of the algorithm representing the large step-sizes to use in
locally concave regions.

4

Algorithm 1 Full-batch preliminary algorithm
1: Input: α > 0, ν > 0
2: Initialize θ0 ∈ RP

3: θ1 = θ0 − α∇J (θ0)
4: for k = 1, . . . do
5: ∆gk = ∇J (θk)−∇J (θk−1)
6: ∆θk = θk − θk−1

7: if 〈∆gk,∆θk〉 > 0 then

8: γk = ‖∆θk‖2
〈∆gk,∆θk〉

9: else
10: γk = ν
11: end if
12: θk+1 = θk − αγk∇J (θk)
13: end for

The resulting full-batch non-convex optimization method is Algorithm 1, in which α is a
so-called learning rate or scaling factor. This algorithm is present in the literature under subtle
variants [8, 14, 35, 46]. It may be seen as a non-convex version of the BB method (originally
designed for strongly convex functions) as it coincide with the BB step-size when 〈∆θk,∆gk〉
is positive. In the classical optimization literature the BB step-size and its variants are often
combined with line-search procedures which is impossible in our large-scale DL context. This is
why we replace the line-search by a scaling factor α, present in most DL optimizers and which
generally requires tuning. Our purpose is not however to get rid of hyper-parameters pre-tuning
but rather to combine this α with an automatic fine tuning able to capture the local variations in
J . Although Algorithm 1 is close to existing methods, the interest of our variational viewpoint
is the characterization of the underlying geometrical mechanism supporting the algorithm,
which is key in designing an efficient stochastic version of Algorithm 1 in Section 3.2.

3.1.3 Illustrative experiment.

Before presenting the stochastic version, we illustrate the interest of exploiting negative curva-
ture through the large-step parameter ν with a synthetic experiment inspired from Carmon et al.
[10]. We apply Algorithm 1 to a non-convex regression problem of the form minθ∈RP φ(Aθ− b)
where φ is a non-convex real-valued function (see Section C of the Supplementary). We com-
pare Algorithm 1 with the methods à la BB where absolute values are used when the step-size
is negative1 (see, e.g., Liang et al. [30], Tan et al. [42] in stochastic settings) and with Armijo’s
line-search gradient method. As shown on Figure 2, Algorithm 1 efficiently exploits local cur-
vature and converges much faster than other methods.

3.2 Stochastic mini-batch algorithm

We wish to adapt Algorithm 1 in cases where gradients can only be approximated through
mini-batch sub-sampling. This is necessary in particular for DL applications.

1For a fair comparison we implement this method with the scaling-factor α of Algorithm 1.

5

0 50 100 150 200 250
number of iterations

10−13

10−11

10−9

10−7

10−5

10−3

10−1

J
(θ

)
−
J
?

Algorithm 1
BB with absolute value
GD with Armijo LS

Figure 2: Values of the loss function J (θ) against iterations (each corresponding to a gradient
step) for the synthetic non-convex regression problem detailed in Section C of the Supplemen-
tary. The optimal value J ? is unknown and is estimated by taking the best value obtained
among all algorithms after 105 iterations.

3.2.1 Mini-batch sub-sampling.

We assume the following sum-structure of the loss function, for N ∈ N>0,

J (θ) =
1

N

N∑
n=1

Jn(θ), (9)

where each Jn is a twice continuously-differentiable function. Given any fixed subset B ⊂
{1, . . . , N}, we define the following quantities for any θ ∈ RP ,

JB(θ)
def
=

1

|B|
∑
n∈B

Jn(θ), (10)

∇JB(θ)
def
=

1

|B|
∑
n∈B

∇Jn(θ), (11)

where |B| denotes the number of elements of the set B. Throughout this paper we will consider
independent copies of a random subset S ⊂ {1, . . . , N} referred to as mini-batch. The distri-
bution of this subset is fixed throughout the paper and taken such that the expectation over
the realization of S in (10) corresponds to the empirical expectation in (9). This is valid for
example if S is taken uniformly at random over all possible subsets of fixed size. As a conse-
quence, we have the identity J = E[JS], where E denotes the expectation operator, here taken
over the random draw of S. This allows to interpret mini-batch sub-sampling as a stochastic
approximation process since we also have ∇J = E[∇JS].

Our algorithm is of stochastic gradient type where stochasticity is related to the randomness
of mini-batches. We start with an initialization θ0 ∈ RP , and a sequence of i.i.d. random mini-
batches (Bk)k∈N, whose common distribution is the same as S. The algorithm produces a
random sequence of iterates (θk)k∈N. For k ∈ N, Bk is used to estimate an update direction
−∇JBk(θk) which is used in place of −∇J (θk) in the same way as gradient descent algorithm.

6

Algorithm 2 Step-Tuned SGD
1: Input: α > 0, ν > 0
2: Input: β ∈ [0, 1], m̃ > 0, M̃ > 0, δ ∈ (0, 1/2)
3: Initialize θ0 ∈ RP , G−1 = 0P , γ0 = 1
4: Draw independent random mini-batches (Bk)k∈N.
5: for k = 0, 1, . . . do
6: θk+ 1

2
= θk − α

(k+1)1/2+δ
γk∇JBk(θk)

7: θk+1 = θk+ 1
2
− α

(k+1)1/2+δ
γk∇JBk(θk+ 1

2
)

8: ∆θBk = θk+ 1
2
− θk

9: ∆gBk = ∇JBk(θk+ 1
2
)−∇JBk(θk)

10: Gk = βGk−1 + (1− β)∆gBk
11: Ĝk = Gk/(1− βk+1)
12: if 〈Ĝk,∆θBk〉 > 0 then

13: γk+1 =
‖∆θBk‖

2

〈Ĝk,∆θBk 〉
14: else
15: γk+1 = ν
16: end if
17: γk+1 = min(max(γk+1, m̃), M̃)
18: end for

3.2.2 Second-order tuning of mini-batch SGD: Step-Tuned SGD.

Our goal is to devise a step-size strategy, based on the variational ideas developed earlier and
on the quantity CJ , in the context of mini-batch sub-sampling. First observe that for θ ∈ RP ,

CJ (θ) = ∇2J (θ)∇J (θ) = ∇
(

1

2
‖∇J (θ)‖2

)
. (12)

So rewriting J as an expectation,

CJ (θ) = ∇
(

1

2
‖E [∇JS(θ)] ‖2

)
, (13)

where S denotes like in the previous paragraph a random subset of {1, . . . , N}, or mini-batch.
This suggests the following estimator,

CJB(θ)
def
= ∇

(
1

2
‖∇JB(θ)‖2

)
= ∇2JB(θ)∇JB(θ), (14)

to build an infinitesimal model as in (4), where B ⊂ {1, . . . , N} and θ ∈ RP .
Like in the deterministic case we approximate the new target (14) with a Taylor expansion

of JB between two iterations. We obtain for any B ⊂ {1, . . . , N}, θ ∈ RP , and small γ > 0

− γCJB(θ) ' ∇JB(θ − γ∇JB(θ)︸ ︷︷ ︸
next iterate

)−∇JB(θ). (15)

This suggests to use each mini-batch twice and compute a difference of gradients every two
iterations.2 We adopt the following convention, at iteration k ∈ N, the random mini-batch Bk

2There is also the possibility of computing additional estimates as Schraudolph et al. [41] previously did for
a stochastic BFGS algorithm, but this would double the computational cost.

7

is used to compute a stochastic gradient, ∇JBk(θk) and at iteration k+ 1
2

the same mini-batch
is used to compute another stochastic gradient ∇JBk(θk+ 1

2
), for a given θk+ 1

2
. Let us define,

∆gBk
def
= ∇JBk(θk+ 1

2
)−∇JBk(θk), (16)

thereby ∆gBk forms an approximation of −γkCJBk (θk) that we can use to compute the next
step-size γk+1. We define the difference between two iterates accordingly,

∆θBk
def
= θk+ 1

2
− θk. (17)

Finally, we stabilize the approximation of the target quantity in (14) by using an exponential
moving average of the previously computed (∆gBj)j≤k. More precisely, we recursively compute
Gk defined by,

Gk = βGk−1 + (1− β)∆gBk . (18)

We finally introduce Ĝk = Gk/(1 − βk+1) to debias the estimator Gk such that the sum of
the weights in the average equals 1. This mostly impacts the first iterations as βk+1 vanishes
quickly; a similar process is used in ADAM [24].

Altogether we obtain our main method: Algorithm 2, which we name Step-Tuned SGD, as
it aims to tune the step-size every two iterations and not at every epoch like most stochastic
BB methods. Note that the main idea behind Step-Tuned SGD remains the same than in
the deterministic setting: we exploit the curvature properties of JBk through the quantities

〈Ĝk,∆θBk〉 to devise our method. Compared to Algorithm 1, the iteration index is shifted by 1
so that the estimated step-size γk+1 only depends on mini-batches B0 up to Bk and is therefore
conditionally independent of Bk+1. This conditional dependency structure is crucial to obtain
the convergence guarantees given in Section 4.

Remark 1. It is worth precising that like most methods, Algorithm 2 does not alleviate the
need of tuning the scaling factor α. The choice of this parameter remains indeed important
in most practical applications. The purpose of Step-Tuned SGD is rather to speed up SGD by
fine-tuning the step-size at each iteration (through the introduction of γk). This is analogous
to the BB methods for deterministic applications which often accelerate algorithms but must
be stabilized with line-search strategies. To the best of our knowledge, in comparison to the
epoch-wise BB methods [30, 42], Algorithm 2 is the first method that manages to mimic the
iteration-wise behavior of deterministic BB methods for mini-batch applications.

3.3 Heuristic construction of Step-Tuned SGD

In this section we present the main elements which led us to the step-tuned method of Al-
gorithm 2 and discuss its hyper-parameters. Throughout this paragraph, the term gradient
variation (GV) denotes the local variations of the gradient; it is simply the difference of consec-
utive gradients along a sequence. Our heuristic discussion blends discretization arguments and
experimental considerations. We use the non-convex regression experiment of Section 3.1 as a
test for our intuition and algorithms. A complete description of the methods below is given in
Section D, we only sketch the main ideas.

3.3.1 First heuristic experiment with exact GVs.

Assume that along any ordered collection θ1, . . . , θk ∈ RP , one is able to evaluate the GVs of
J , that is, terms of the form ∇J (θi)−∇J (θi−1). Recall that we denote ∆θi = θi − θi−1, the

8

0 50 100 150 200 250
number of epochs

10−2

10−1

100

J
(θ

)
−
J
?

Step-Tuned SGD (approx. of Expected-GV)
Expected-GV
Stochastic-GV (approx. of Exact-GV)
Exact-GV
SGD

Figure 3: Values of the loss function against epochs for non-convex regression: heuristic methods
(dashed lines) of Section 3.3 are compared with Step-Tuned SGD (plain blue). SGD serves as a
reference to evidence the fast drop down effect of other methods. The additional computational
cost of Expected-GV and Exact-GV is ignored as these methods are here only for illustration
purposes (see Section 3.3).

difference between two consecutive iterates, for all i ≥ 1. In the deterministic (i.e., noiseless)
setting, Algorithm 1 is based on these GVs, indeed,

θk+1 = θk −
α‖∆θk‖2

〈∇J (θk)−∇J (θk−1),∆θk〉
∇J (θk), (19)

whenever the denominator is positive. Given our sequence of independent random mini-batches
(Bk)k∈N, a heuristic stochastic approximation version of this recursion could be as follows,

θk+1 = θk −
αk‖∆θk‖2

〈∇J (θk)−∇J (θk−1),∆θk〉
∇JBk(θk), (Exact-GV)

where the difference between (19) and Exact-GV lies in the randomness of the search direction
and the dependency of the scaling factor αk which aims to moderate the effect of noise (generally
αk → 0). As shown in Figure 3 the recursion Exact-GV is much faster than SGD especially for
the first ∼ 150 epochs which is often the main concern for DL applications. Indeed, although
SGD achieves a smaller value of J after a larger number of iterations (due to other methods
using larger step-sizes), this happens when the value of J is already low.3 Overall the quantity
Exact-GV seems very promising.

Yet, for large sums, the gradient-variation in Exact-GV is too computationally expensive.
One should therefore adapt (Exact-GV) to the mini-batch context. A direct adaption would
simply consist in the algorithm,

θk+1 = θk −
αk‖∆θk‖2〈

∇JBk(θk)−∇JBk−1
(θk−1),∆θk

〉∇JBk(θk), (Stochastic-GV)

3Step-Tuned SGD achieves the same small level of error as SGD when doing additional epochs thanks to the
decay schedule present in Algorithm 2.

9

where mini-batches are used both to obtain a search direction and to approximate the GV. For
this naive approach, we observe a dramatic loss of performance, as illustrated in Figure 3. This
reveals the necessity to use accurate stochastic approximation of GVs.

3.3.2 Second heuristic experiment using expected gradient variations.

Towards a more stable approximation of the GVs, we consider the following recursion,

θk+1 = θk −
αk‖∆θk‖‖∇JBk−1

(θk−1)‖
〈−E[CJS(θk−1)],∆θk〉

∇JBk(θk), (Expected-GV)

where CJB is defined in (14) for any B ⊂ {1, . . . , N} and the expectation taken is over the
independent draw of S ⊂ {1, . . . , N}, conditioned on the other random variables. The main
difference with Exact-GV is the use of expected GVs instead of exact GVs, the minus sign
ensures a coherent interpretation in term of GVs. The numerator in Expected-GV is also
modified to ensure homogeneity of the steps with the other variations of the algorithm. Indeed
CJB(θk) approximates a difference of gradients modulo a step-size, see (15). As illustrated in
Figure 3, the recursion Expected-GV provides performances comparable (and even superior)
to Exact-GV, and in particular for both algorithms, we also recover the loss drop which was
observed in the deterministic setting.

Algorithm 2 is nothing less than an approximate version of Expected-GV which combines
a double use of mini-batches with a moving average. Indeed, from (15), considering the expec-
tation over the random draw of S, for any θ ∈ RP and small γ > 0, we have,

−γE[CJS(θ)] ' E [∇JS (θ − γ∇JS(θ))−∇JS(θ)] . (20)

The purpose of the term Ĝk in Algorithm 2 is precisely to mimic this last quantity. The
experimental results of Algorithm 2 are very similar to those of Expected-GV, see Figure 3.

Let us conclude by saying that the above considerations on gradient variations (GVs) led us
to propose Algorithm 2 as a possible stochastic version of Algorithm 1. The similarity between
the performances of the two methods and the underlying geometric aspects (see Section 3.2)
were also major motivations.

3.3.3 Parameters of the algorithm.

Algorithm 2 contains more hyper-parameters than in the deterministic case, but we recommend
keeping the default values for most of them.4 Like in most optimizers (SGD, ADAM, RMSprop,
etc.), only the parameter α > 0 has to be carefully tuned to get the most of Algorithm 2. The
value β = 0.9 is a common default choice for exponential moving averages (see e.g., Kingma
and Ba [24]). Note that we enforce γk ∈ [m̃, M̃]. The bounds stabilize the algorithm and also
play an important role for the convergence as we will show in Section 4. While a fine tuning of
these bounds may improve the performances, we chose rather tight default values for the sake
of numerical stability so that practitioners need not tuning them. The same choice was made
for the parameter ν. Note that we also enforce the step-size to decrease using a decay of the
form 1/k1/2+δ where the value of δ > 0 is of little importance as long as it is taken close to 0.
This standard procedure goes back to Robbins and Monro [36] and is again necessary to obtain
the convergence results presented next.

4Default values: (ν, β, m̃, M̃ , δ) = (2, 0.9, 0.5, 2, 0.001)

10

4 Theoretical results

We study the convergence of Step-Tuned SGD for smooth non-convex stochastic optimization
which encompasses in particular smooth DL problems.

4.1 Main result.

We recall that J is a finite sum of twice continuously-differentiable functions (Jn)n=1,...,N .
Hence, the gradient of J and the gradients of each Jn are locally Lipschitz continuous. A
function g is locally Lipschitz continuous on RP if for any θ ∈ RP , there exists a neighborhood
V of θ and a constant L ∈ R+ such that for all ψ1, ψ2 ∈ V,

‖g(ψ1)− g(ψ2)‖≤ L‖ψ1 − ψ2‖. (21)

We assume that J is lower-bounded on RP , which holds for most DL loss functions by con-
struction (they are usually non-negative). We denote by 1

2
N = {0, 1

2
, 1, 3

2
, 2, . . .} the set of half

integers so that the iterations of Step-Tuned SGD are indexed by k ∈ 1
2
N. The main theoretical

result of this paper follows.

Theorem 1. Let θ0 ∈ RP , and let (θk)k∈ 1
2
N be a sequence generated by Step-Tuned SGD initial-

ized at θ0. Assume that there exists a constant C1 > 0 such that almost surely supk∈ 1
2
N‖θk‖< C1.

Then the sequence of values (J (θk))k∈N converges almost surely and (‖∇J (θk)‖2)k∈N converges
to 0 almost surely. In addition, for k ∈ N>0,

min
j∈{0,...,k−1}

E
[
‖∇J (θj)‖2

]
= O

(
1

k1/2−δ

)
.

The results above state in particular that a realization of the algorithm reaches a point
where the gradient is arbitrarily small with probability one. Note that the rate depends on the
parameter δ ∈ (0, 1/2) which can be chosen by the user and corresponds to the decay schedule
1/(k+ 1)1/2+δ. In most cases, one will want to slowly decay the step-size so δ ' 0 and the rate
is close to 1/

√
k + 1.

4.2 An alternative to the boundedness assumption.

In Theorem 1 the assumption that almost surely the iterates (θk)k∈ 1
2
N are uniformly bounded is

made. While this is usual for non-convex problems tackled with stochastic algorithms [11, 15,
17] it may be hard to check in practice. This assumption is however consistent with numerical
experiments since practitioners usually choose the hyper-parameters (in particular the step-size)
so that the weights of the DNN remain “not too large” for the sake of numerical stability.

One can alternatively replace the boundedness assumption by leveraging additional regu-
larity assumptions on the loss function as Li and Orabona [29] did for example for the scalar
variant of ADAGRAD. This is more restrictive than the locally-Lipschitz-continuous property
of the gradient that we used but for completeness we provide below an alternative version of
Theorem 1 where we assume that for each n ∈ {1, . . . , N}, the function Jn and its gradient
∇Jn are Lipschitz continuous.

Corollary 2. Let θ0 ∈ RP , and let (θk)k∈ 1
2
N be a sequence generated by Step-Tuned SGD

initialized at θ0. Assume that each Jn and ∇Jn are Lipschitz continuous on RP and that each
Jn is bounded below, for all n ∈ {1, . . . , N}. Then the same conclusions as in Theorem 1 apply.

11

Note that the assumption that each Jn is Lipschitz continuous is similar to assumptions
(H4) and (H4’) from Li and Orabona [29, Section 3], yet a little less general. This is due
to the fact that using each mini-batch twice brings additional difficulties when studying the
convergence (see the proof of Theorem 1).

4.3 Proof sketch of Theorem 1.

The proof of our main theorem is fully detailed in Section B of the Supplementary. Here we
present the key elements of this proof.

• The proof relies on the descent lemma: for any compact subset C ⊂ RP there exists L > 0
such that for any θ ∈ C and d ∈ RP such that θ + d ∈ C,

J (θ + d) ≤ J (θ) + 〈∇J (θ), d〉+
L

2
‖d‖2. (22)

• Let (θk)k∈ 1
2
N be a realization of the algorithm. Using the boundedness assumption, almost

surely the iterates belong to a compact subset C on which∇J and the gradients estimates
∇JBk are uniformly bounded. So at any iteration k ∈ N, we may use the descent lemma
(22) on the update direction d = −γk∇JBk(θk) to bound the difference J (θk+1)−J (θk).

• As stated in Section 3.2, conditioning on B0, . . . ,Bk−1 the step-size γk is constructed to
be independent of the current mini-batch Bk. Using this and the descent lemma, we show
that there exist M1,M2 > 0 such that, for all k ∈ N>0,

E [J (θk+1) | B0, . . .Bk−1] ≤ J (θk)−
M1

(k + 1)1/2+δ
‖∇J (θk)‖2+

M2

(k + 1)1+2δ
, (23)

where E [J (θk+1) | B0, . . .Bk−1] denotes the conditional expectation of the random value
J (θk+1) conditionally on the mini-batches B0, . . .Bk−1.

• Applying Robbins-Siegmund convergence theorem [37] for martingales to (23), using the
fact that

∑+∞
k=0

1
(k+1)1+2δ < ∞, we obtain almost surely that the sequence (J (θk))k∈N

converges and
+∞∑
k=0

1

(k + 1)1/2+δ
‖∇J (θk)‖2< +∞, (24)

Since
∑+∞

k=0
1

(k+1)1/2+δ
= +∞, we deduce that ∇J (θk) converges to zero almost surely,

using the local Lipschitz continuity of the gradient (from twice differentiability) and an
argument of Alber et al. [1]. The rate follows from considering expectations on both sides
of (23).

5 Application to Deep Learning

We finally evaluate the performance of Step-Tuned SGD by training DNNs. We consider six
different problems presented next and fully-specified in Section A of the Supplementary. The
results with Problems (a) to (d) are first presented here while the results with Problems (e)
and (f) are discussed at the end of this section. We compare Step-Tuned SGD with two of
the most popular non-momentum methods, SGD and RMSprop [43], and we also consider the
momentum method ADAM [24] which is a very popular DL optimizer. Our method is detailed
below.

12

5.1 Setting of the experiments

• We consider image classification problems with color images CIFAR-10 and CIFAR-100
[26] and the training of an auto-encoder on MNIST [28].

• The networks are slightly modified versions of Lenet [27], ResNet-20 [18], Network-in-
Network (NiN) [31] and the auto-encoder of Hinton and Salakhutdinov [19].

• As specified in Table 1 of the Supplementary, we used either smooth (ELU, SiLU) or
nonsmooth (ReLU) activations. Though our theoretical analysis only applies to smooth
activations, we did not in practice observe a significant qualitative difference between
ReLU or its smooth versions.

• For image classification tasks, the dissimilarity measure is the cross-entropy, and for the
auto-encoder, it is the mean-squared error. In each problem we also add a `2-regularization
parameter (a.k.a. weight decay) of the form λ

2
‖θ‖2

2.

• For each algorithm, we selected the learning rate parameter α from the set {10−4, . . . , 100}.
The value is selected as the one yielding minimum training loss after 10% of the total
number of epochs. For example, if we intend to train the network during 100 epochs,
the grid-search is carried on the first 10 epochs. For Step-Tuned SGD, the parameter ν
was selected with the same criterion from the set {1, 2, 5} and for ADAM the momentum
parameter was chosen in {0.1, 0.5, 0.9, 0.99}. All other parameters of the algorithms are
left to their default values.

• Decay-schedule: To meet the conditions of Theorem 1 the step-size decay schedule of
SGD and Step-Tuned SGD takes the form 1/q1/2+δ where q is the current epoch index
and δ = 0.001. It slightly differs from what is given in Algorithm 2 as we apply the decay
at each epoch instead of each iteration. This slower schedule still satisfies the conditions
for the convergence of Theorem 1. 5 RMSprop and ADAM rely on their own adaptive
procedure and are usually used without step-size decay schedule.

• The experiments were run on a Nvidia GTX 1080 TI GPU, with an Intel Xeon 2640 V4
CPU. The code was written in Python 3.6.9 and PyTorch 1.4 [34].

Second experiment: mini-batch sub-sampling. Step-Tuned SGD departs from the stan-
dard process of drawing a new mini-batch after each gradient update. Indeed, we use each
mini-batch twice in order to properly approximate the curvature of the sliding loss, but also
to maintain a computing time similar to standard algorithms. We performed additional exper-
iments to understand the consequences of using the same mini-batch twice, and in particular
make sure that this is not the source of the observed advantage of Step-Tuned SGD. In these
experiments all methods are used with the mini-batch drawing procedure of Step-Tuned SGD
detailed in Algorithm 2 (each mini-batch being used to perform two consecutive gradient steps).

5.2 Results

We describe the results for the two types of experiments, the comparative one to assess the
quality of Step-Tuned SGD against concurrent optimization algorithms, and the other one to

5An alternative common practice consists in manually decaying the step-size at pre-defined epochs. This
technique although efficient in practice to achieve state-of-the-art results makes the comparison of algorithms
harder, hence we stick to a usual Robbins-Monro type of decay.

13

Problem (a): training error

0 2 5 8 10 12 15 18 20
number of backpropagations ×104

10−2

10−1

100

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam

Problem (b): training error

0 2 5 8 10 12 15 18 20
number of backpropagations ×104

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

2× 100

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam

Problem (c): training error

0 2 4 6 8 10
number of backpropagations ×104

10−1

100

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam

Problem (d): training error

0 5 10 15 20
number of backpropagations ×104

10−1

6× 10−2

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam

Problem (a): test accuracy

0 2 5 8 10 12 15 18 20
number of backpropagations ×104

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

Step-Tuned SGD
RMSprop
SGD
Adam

Problem (b): test accuracy

0 2 5 8 10 12 15 18 20
number of backpropagations ×104

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

ac
cu

ra
cy

Step-Tuned SGD
RMSprop
SGD
Adam

Problem (c): test accuracy

0 2 4 6 8 10
number of backpropagations ×104

0.60

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

Step-Tuned SGD
RMSprop
SGD
Adam

Problem (d): test error

0 5 10 15 20
number of backpropagations ×104

10−1

6× 10−2

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam

Figure 4: Classification of CIFAR-10 and CIFAR-100 with ResNet-20 (left and middle-left
respectively), CIFAR-10 with NiN (middle-right) and training of an auto-encoder on MNIST
(right). This corresponds to Problems (a) to (d) specified in Table 1. Continuous lines: average
values from 3 random initializations. Limits of shadow area: best and worst runs (in training
loss). For fair comparison values are plotted against the number of gradient estimates computed
(using back-propagation).

study the effect of changing the way mini-batches are used.

5.2.1 Comparison with standard methods.

The results for problems (a) to (d) are displayed on Figure 4. For each problem we display the
evolution of the values of the loss function and of the test accuracy during the training phase.
We observe a recurrent behavior: during early training Step-Tuned SGD behaves similarly
than other methods, then there is a sudden drop of the loss (combined with an improvement in
terms of test accuracy which we discuss below). As a result, Step-Tuned SGD achieves the best
training performance among all algorithms on problems (a) and (b) and at least outperforms
SGD in five of the six problems considered (result for Problems (e) and (f) are on Figure 6).
The sudden drop observed is in accordance with our preliminary observations in Figure 3. We
note that a similar drop and improved results are reported for SGD and ADAM when used with
a manually enforced reduction of the learning rate see, e.g. He et al. [18]. Our experiments
show however that Step-Tuned SGD behaves similarly but in an automatic way: the drop
down is caused by the automatic fine-tuning the algorithm is designed to achieve and not by
user-defined reduction of the step-size.

We remark that in problem (d) ADAM and RMSprop are notably better than SGD and
Step-Tuned SGD. This may be explained by their vector step-sizes (a scalar step-size for each
coordinate of θ) as auto-encoders are often ill-conditioned, making methods with scalar step-
sizes less efficient. To conclude on these comparative experiments, in most cases Step-Tuned
SGD represents a significant improvement compared to SGD. It also seems to be a good alter-
native to adaptive methods like RMSprop or ADAM especially on residual networks. Note also
that while stochastic second-order methods usually perform well mostly when combined with

14

Problem (a): training error

0 2 5 8 10 12 15 18 20
number of backpropagations ×104

10−2

10−1

100

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam

Problem (b): training error

0 2 5 8 10 12 15 18 20
number of backpropagations ×104

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

2× 100

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam

Problem (c): training error

0 2 4 6 8 10 12
number of backpropagations ×104

10−1

100

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam

Problem (d): training error

0 5 10 15 20
number of backpropagations ×104

10−1

6× 10−2

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam

Figure 5: Experiment where each algorithms receives the same mini-batch for two consecutive
iterations as in Algorithm 2. This allows to compare algorithms with respect to the number of
data processed. The problems and the framework are the same as in Figure 4.

large mini-batches (hence with less-noisy gradients), we obtain satisfactory performances with
mini-batches of standard sizes.

In addition to efficient training performances (in terms of loss function values), Step-Tuned
SGD generalizes well (as measured by test accuracy). For example Figure 4 shows a correlation
between test accuracy and training loss. Conditions or explanations for when this happens are
not fully understood to this day. Yet, SGD is often said to behave well with respect to this
matter [45] and hence it is satisfactory to observe that Step-Tuned SGD seems to inherit this
property.

5.2.2 Effect of the mini-batch sub-sampling of Step-Tuned SGD.

The results are presented on Figure 5. We observe that using each mini-batch twice usually
reduces the performance of SGD, ADAM and RMSprop, except on problem (c) where it benefits
the latter two in term of training error. Thus, on these problems, changing the way of using
mini-batches is not the reason for the success of our method. On the contrary, it seems that
our goal which was to obtain a fine-tuned step-size specifically for each iteration is clearly
achieved, but processing data more slowly, like Step-Tuned SGD does, can sometimes impact
the performances of the algorithm.

Arguably these results show that the need for using each mini-batch twice appears to be
the main downside of Step-Tuned SGD. Thus in problems where mini-batches may be very
different we should expect other methods to be more efficient as they process data twice faster.
We actually remark that our method achieves its best results on networks where batch normal-
ization (BatchNorm) is used, a technique that aims to normalize the inputs of neural networks
[22]. Figure 6 corroborates these observations: BatchNorm has a positive effect on Step-Tuned
SGD.

6 Conclusion

We presented a new method to tune SGD’s step-sizes for stochastic non-convex optimiza-
tion within a first-order computational framework. In addition to the new algorithm, we also
presented a generic strategy (Section 3.1 and 3.3) on how to use empirical and geometric
considerations to address the major difficulty of preserving favorable behaviors of deterministic
algorithms while dealing with mini-batches. In particular, we tackled the problem of adapting
the step-sizes to the local landscape of non-convex loss functions with noisy estimations. For a

15

Without BatchNorm (Problem (e)):

training error

0 2 4 6 8 10 12
number of backpropagations ×104

7× 10−1

8× 10−1

9× 10−1

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam

With BatchNorm (Problem (f)):

training error

0 2 4 6 8 10 12
number of backpropagations ×104

7× 10−1

8× 10−1

9× 10−1

J
(θ

)

Step-Tuned SGD
RMSprop
SGD
Adam

Figure 6: Classification of CIFAR-10 with LeNet with and without batch normalization, cor-
responding to Problems (e) and (f) specified in Section A of the Supplementary. These exper-
iments illustrate how batch normalization has a positive effect on Step-Tuned SGD.

computational cost similar to SGD, our method uses a step-size schedule changing every two
iterations unlike other stochastic methods à la Barzilai-Borwein. Our algorithm comes with
asymptotic convergence results and convergence rates.

While our method does not alleviate hyper-parameter pre-tuning, it shows how an efficient
automatic fine-tuning of a simple scalar step-size can improve the training of DNNs. Step-Tuned
SGD processes data more slowly than other methods but by doing so manages to fine-tune step-
sizes, leading to faster training in some DL problems with a typical sudden drop of the error
rate at medium stages, especially on ResNets.

Acknowledgements

The authors acknowledge the support of the European Research Council (ERC FACTORY-
CoG-6681839), the Agence Nationale de la Recherche (ANR 3IA-ANITI, ANR-17-EURE-
0010 CHESS, ANR-19-CE23-0017 MASDOL) and the Air Force Office of Scientific Research
(FA9550-18-1-0226).

Part of the numerical experiments were done using the OSIRIM platform of IRIT, sup-
ported by the CNRS, the FEDER, Région Occitanie and the French government (http:
//osirim.irit.fr/site/en). We thank the development teams of the following libraries that
were used in the experiments: Python [39], Numpy [44], Matplotlib [20], PyTorch [34], and the
PyTorch implementation of ResNets from Idelbayev [21].

We thank Emmanuel Soubies and Sixin Zhang for useful discussions and Sébastien Gadat
for pointing out flaws in the original proof.

References

[1] Alber, Y. I., Iusem, A. N., and Solodov, M. V. (1998). On the projected subgradient
method for nonsmooth convex optimization in a hilbert space. Mathematical Programming,
81(1):23–35.

[2] Allen-Zhu, Z. (2018). Natasha 2: Faster non-convex optimization than SGD. In Advances
in Neural Information Processing Systems (NIPS), pages 2675–2686.

16

http://osirim.irit.fr/site/en
http://osirim.irit.fr/site/en

[3] Alvarez, F. and Cabot, A. (2004). Steepest descent with curvature dynamical system.
Journal of Optimization Theory and Applications, 120(2):247–273.

[4] Babaie-Kafaki, S. and Fatemi, M. (2013). A modified two-point stepsize gradient algorithm
for unconstrained minimization. Optimization Methods and Software, 28(5):1040–1050.

[5] Barakat, A. and Bianchi, P. (2018). Convergence of the ADAM algorithm from a dynamical
system viewpoint. arXiv preprint:1810.02263.

[6] Barzilai, J. and Borwein, J. M. (1988). Two-point step size gradient methods. IMA journal
of Numerical Analysis, 8(1):141–148.

[7] Bertsekas, D. P., Hager, W., and Mangasarian, O. (1998). Nonlinear programming. Athena
Scientific Belmont, MA.

[8] Biglari, F. and Solimanpur, M. (2013). Scaling on the spectral gradient method. Journal
of Optimization Theory and Applications, 158:626–635.

[9] Bolte, J. and Pauwels, E. (2020). A mathematical model for automatic differentiation in
machine learning. In Advances in Neural Information Processing Systems (NIPS).

[10] Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. (2017). Convex until proven guilty:
Dimension-free acceleration of gradient descent on non-convex functions. In Proceedings of
the International Conference on Machine Learning (ICML), pages 654–663.

[11] Castera, C., Bolte, J., Févotte, C., and Pauwels, E. (2021). An inertial Newton algorithm
for deep learning. Journal of Machine Learning Research, 22(134):1–31.

[12] Curtis, F. E. and Guo, W. (2016). Handling nonpositive curvature in a limited memory
steepest descent method. IMA Journal of Numerical Analysis, 36(2):717–742.

[13] Curtis, F. E. and Robinson, D. P. (2019). Exploiting negative curvature in deterministic
and stochastic optimization. Mathematical Programming, 176(1-2):69–94.

[14] Dai, Y., Yuan, J., and Yuan, Y.-X. (2002). Modified two-point stepsize gradient methods
for unconstrained optimization. Computational Optimization and Applications, 22(1).

[15] Davis, D., Drusvyatskiy, D., Kakade, S., and Lee, J. D. (2020). Stochastic subgradient
method converges on tame functions. Foundations of Computational mathematics, 20(1):119–
154.

[16] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7).

[17] Duchi, J. C. and Ruan, F. (2018). Stochastic methods for composite and weakly convex
optimization problems. SIAM Journal on Optimization, 28(4):3229–3259.

[18] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.

[19] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507.

17

[20] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in science &
engineering, 9(3):90–95.

[21] Idelbayev, Y. (2018). Proper ResNet implementation for CIFAR10/CIFAR100 in PyTorch.
https://github.com/akamaster/pytorchresnetcifar10.

[22] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In Proceedings of the International Conference on
Machine Learning (ICML), pages 448–456.

[23] Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using pre-
dictive variance reduction. In Advances in Neural Information Processing Systems (NIPS),
pages 315–323.

[24] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In
Proceedings of the International Conference on Learning Representations (ICLR).

[25] Krishnan, S., Xiao, Y., and Saurous, R. A. (2018). Neumann optimizer: A practical opti-
mization algorithm for deep neural networks. In Proceedings of the International Conference
on Learning Representations (ICLR).

[26] Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical
report, Canadian Institute for Advanced Research.

[27] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[28] LeCun, Y., Cortes, C., and Burges, C. (2010). MNIST handwritten digit database. ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist.

[29] Li, X. and Orabona, F. (2019). On the convergence of stochastic gradient descent with
adaptive stepsizes. In Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 983–992.

[30] Liang, J., Xu, Y., Bao, C., Quan, Y., and Ji, H. (2019). Barzilai–Borwein-based adaptive
learning rate for deep learning. Pattern Recognition Letters, 128:197 – 203.

[31] Lin, M., Chen, Q., and Yan, S. (2013). Network in network. arXiv preprint:1312.4400.

[32] Liu, M. and Yang, T. (2017). On noisy negative curvature descent: Competing with
gradient descent for faster non-convex optimization. arXiv preprint:1709.08571.

[33] Martens, J. and Grosse, R. (2015). Optimizing neural networks with kronecker-factored
approximate curvature. In Proceedings of the International Conference on Machine Learning
(ICML), pages 2408–2417.

[34] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems (NIPS), pages
8026–8037.

[35] Raydan, M. (1997). The Barzilai and Borwein gradient method for the large scale uncon-
strained minimization problem. SIAM Journal on Optimization, 7(1):26–33.

18

https://github.com/akamaster/pytorch_resnet_cifar10

[36] Robbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals of
Mathematical Statistics, 22(1):400–407.

[37] Robbins, H. and Siegmund, D. (1971). A convergence theorem for non negative almost
supermartingales and some applications. In Optimizing methods in statistics, pages 233–257.
Elsevier.

[38] Robles-Kelly, A. and Nazari, A. (2019). Incorporating the Barzilai-Borwein adaptive step
size into subgradient methods for deep network training. In 2019 Digital Image Computing:
Techniques and Applications (DICTA), pages 1–6.

[39] Rossum, G. (1995). Python reference manual. CWI (Centre for Mathematics and Computer
Science).

[40] Royer, C. W. and Wright, S. J. (2018). Complexity analysis of second-order line-search
algorithms for smooth nonconvex optimization. SIAM Journal on Optimization, 28(2):1448–
1477.

[41] Schraudolph, N. N., Yu, J., and Günter, S. (2007). A stochastic Quasi-Newton method
for online convex optimization. In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS).

[42] Tan, C., Ma, S., Dai, Y.-H., and Qian, Y. (2016). Barzilai-Borwein step size for stochastic
gradient descent. In Advances in Neural Information Processing Systems (NIPS), pages
685–693.

[43] Tieleman, T. and Hinton, G. (2012). Lecture 6.5-RMSprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine learning,
4(2):26–31.

[44] Walt, S. v. d., Colbert, S. C., and Varoquaux, G. (2011). The numpy array: a structure
for efficient numerical computation. Computing in science & engineering, 13(2):22–30.

[45] Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht, B. (2017). The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems (NIPS), pages 4148–4158.

[46] Xiao, Y., Wang, Q., and Wang, D. (2010). Notes on the Dai–Yuan–Yuan modified spectral
gradient method. Journal of Computational and Applied Mathematics, 234(10):2986 – 2992.

[47] Zhuang, J., Tang, T., Ding, Y., Tatikonda, S. C., Dvornek, N., Papademetris, X., and Dun-
can, J. (2020). Adabelief optimizer: Adapting stepsizes by the belief in observed gradients.
Advances in Neural Information Processing Systems (NIPS), 33.

A Details about deep learning experiments

In addition to the method described in Section 5.1, we provide in Table 1 a summary of each
problem considered.

In the DL experiments of Section 5, we display the training error and the test accuracy of
each algorithm as a function of the number of stochastic gradient estimates computed. Due to

19

their adaptive procedures, ADAM, RMSprop and Step-Tuned SGD have additional sub-routines
in comparison to SGD. Thus, in Table 2 we additionally provide the wall-clock time per epoch of
these methods relatively to SGD. Unlike the number of back-propagations performed, wall-clock
time depends on many factors: the network and datasets considered, the computer used, and
most importantly, the implementation. Regarding implementation, we would like to emphasize
the fact that we used the versions of SGD, ADAM and RMSprop provided in PyTorch, which
are fully optimized (and in particular parallelized). Table 2 indicates that Step-Tuned SGD
is slower than other adaptive methods for large networks but this is due to our non-parallel
implementation. Actually on small networks (where the benefits of parallel computing is small),
we observe that running Step-Tuned SGD for one epoch is actually faster than for SGD. As
a conclusion, the number of back-propagations is a more suitable metric for comparing the
algorithms, and all methods considered require a single back-propagation per iteration.

20

Table 1: Setting of the four different deep learning experiments.

Problem (a) Problem (b) Problem (c)

Type Classification Classification Classification

Dataset CIFAR-10 CIFAR-100 CIFAR-10

Network
ResNet-20
(Residual)

ResNet-20
(Residual)

Network-in-Network
(Nested)

BatchNorm Yes Yes Yes

Batch-size 128 128 128

Activation functions ReLU ReLU ELU

Dissimilarity measure Cross-entropy Cross-entropy Cross-entropy

Regularization λ = 10−4 λ = 10−4 λ = 10−4

Grid-search 50 epochs 50 epochs 30 epochs

Stop-criterion 500 epochs 500 epochs 300 epochs

Problem (d) Problem (e) Problem (f)

Type Auto-encoder Classification Classification

Dataset MNIST CIFAR-10 CIFAR-10

Network
Auto-Encoder

(Dense)
LeNet

(Convolutional)
LeNet

(Convolutional)

BatchNorm No No Yes

Batch-size 128 128 128

Activation functions SiLU ELU ELU

Dissimilarity measure Mean square Cross-entropy Cross-entropy

Regularization λ = 10−4 λ = 10−4 λ = 10−4

Grid-search 50 epochs 30 epochs 30 epochs

Stop-criterion 500 epochs 300 epochs 300 epochs

Table 2: Relative wall-clock time per epoch compared to SGD.

Prob.(a) Prob.(b) Prob.(c) Prob.(d) Prob.(e) Prob.(f)

ADAM 1.13 1.13 1.03 1.18 1.04 1.00

RMSprop 1.06 1.08 1.02 1.13 1.00 1.01

Step-Tuned SGD 1.67 1.71 1.20 1.47 0.71 0.88

21

B Proof of the theoretical results

We state a lemma that we will use to prove Theorem 1.

B.1 Preliminary lemma

The result is the following.

Lemma 3 (Alber et al. [1, Proposition 2]). Let (uk)k∈N and (vk)k∈N two non-negative real
sequences. Assume that

∑+∞
k=0 ukvk < +∞, and

∑+∞
k=0 vk = +∞. If there exists a constant

C > 0 such that ∀k ∈ N, |uk+1 − uk|≤ Cvk, then uk −−−−→
k→+∞

0.

B.2 Proof of the main theorem

We can now prove Theorem 1.

Proof of Theorem 1. We first clarify the random process induced by the draw of the mini-
batches. Algorithm 2 takes a sequence of mini-batches as input. This sequence is represented
by the random variables (Bk)k∈N as described in Section 3.2. Each of these random variables is
independent of the others. In particular, for k ∈ N>0, Bk is independent of the previous mini-
batches B0, . . . ,Bk−1. For convenience, we will denote Bk = {B0, . . . ,Bk}, the mini-batches up
to iteration k. Due to the randomness of the mini-batches, the algorithm is a random process
as well. As such, θk is a random variable with a deterministic dependence on Bk−1 and is
independent of Bk. However, θk+ 1

2
and Bk are not independent. Similarly, we constructed γk

such that it is a random variable with a deterministic dependence on Bk−1, which is independent
of Bk. This dependency structure will be crucial to derive and bound conditional expectations.
Finally, we highlight the following important identity, for any k ∈ N>0,

E
[
∇JBk(θk)

∣∣Bk−1

]
= ∇J (θk). (25)

Indeed, the iterate θk is a deterministic function of Bk−1, so taking the expectation over Bk,
which is independent of Bk−1, we recover the full gradient of J as the distribution of Bk is the
same as that of S in Section 3.2. Notice in addition that a similar identity does not hold for
θk+ 1

2
(as it depends on Bk).

We now provide estimates that will be used extensively in the rest of the proof. The
gradient of the loss function ∇J is locally Lipschitz continuous as J is twice continuously
differentiable. By assumption, there exists a compact convex set C ⊂ RP , such that with
probability 1, the sequence of iterates (θk)k∈ 1

2
N belongs to C. Therefore, by local Lipschitz

continuity, the restriction of ∇J to C is Lipschitz continuous on C. Similarly, each ∇Jn is also
Lipschitz continuous on C. We denote by L > 0 a Lipschitz constant common to each ∇Jn,
n = 1, . . . , N . Notice that the Lipschitz continuity is preserved by averaging, in other words,

∀B ⊆ {1, . . . , N} ,∀ψ1, ψ2 ∈ C, ‖∇JB(ψ1)−∇JB(ψ2)‖≤ L‖ψ1 − ψ2‖. (26)

In addition, using the continuity of the ∇Jn’s, there exists a constant C2 > 0, such that,

∀B ⊆ {1, . . . , N} ,∀ψ ∈ C, ‖∇JB(ψ)‖≤ C2. (27)

Finally, for a function g : RP → R with L-Lipschitz continuous gradient, we recall the following
inequality called descent lemma (see for example Bertsekas et al. [7, Proposition A.24]). For
any θ ∈ RP and any d ∈ RP ,

g(θ + d) ≤ g(θ) + 〈∇g(θ), d〉+
L

2
‖d‖2. (28)

22

In our case since we only have the L-Lipschitz continuity of ∇J on C which is convex, we have
a similar bound for ∇J on C: for any θ ∈ C and any d ∈ RP such that θ + d ∈ C,

J (θ + d) ≤ J (θ) + 〈∇J (θ), d〉+
L

2
‖d‖2. (29)

Let θ0 ∈ RP and let (θk)k∈ 1
2
N a sequence generated by Algorithm 2 initialized at θ0. By

assumption this sequence belongs to C almost surely. To simplify, for k ∈ N, we denote ηk =
αγk(k + 1)−(1/2+δ). Fix an iteration k ∈ N, we can use (29) with θ = θk and d = −ηk∇JBk(θk),
almost surely (with respect to the boundedness assumption),

J (θk+ 1
2
) ≤ J (θk)− ηk〈∇J (θk),∇JBk(θk)〉+

η2
k

2
L‖∇JBk(θk)‖2. (30)

Similarly with θ = θk+ 1
2

and d = −ηk∇JBk(θk+ 1
2
), almost surely,

J (θk+1) ≤ J (θk+ 1
2
)− ηk〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉+

η2
k

2
L‖∇JBk(θk+ 1

2
)‖2. (31)

We combine (30) and (31), almost surely,

J (θk+1) ≤ J (θk)− ηk
(
〈∇J (θk),∇JBk(θk)〉+ 〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
)

+
η2
k

2
L
(
‖∇JBk(θk)‖2+‖∇JBk(θk+ 1

2
)‖2
)
.

(32)

Using the boundedness assumption and (27), almost surely,

‖∇JBk(θk)‖2≤ C2 and ‖∇JBk(θk+ 1
2
)‖2≤ C2. (33)

So almost surely,

J (θk+1) ≤ J (θk)− ηk
(
〈∇J (θk),∇JBk(θk)〉+ 〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
)

+ η2
kLC2. (34)

Then, we take the conditional expectation of (34) over Bk conditionally on Bk−1 (the mini-
batches used up to iteration k − 1), we have,

E
[
J (θk+1)

∣∣Bk−1

]
≤ E

[
J (θk)

∣∣Bk−1

]
+ E

[
η2
kLC2

∣∣Bk−1

]
− E

[
ηk

(
〈∇J (θk),∇JBk(θk)〉+ 〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
)∣∣∣Bk−1

]
.

(35)

As explained at the beginning of the proof, θk is a deterministic function of Bk−1, thus,
E
[
J (θk)

∣∣Bk−1

]
= J (θk). Similarly, by construction ηk is independent of the current mini-

batch Bk, it is a deterministic function of Bk−1. Hence, (35) reads,

E
[
J (θk+1)

∣∣Bk−1

]
≤J (θk) + η2

kLC2 − ηk〈∇J (θk),E
[
∇JBk(θk)

∣∣Bk−1

]
〉

− ηkE
[
〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
∣∣∣Bk−1

]
.

(36)

Then, we use the fact that E
[
∇JBk(θk)

∣∣Bk−1

]
= ∇J (θk). Overall, we obtain,

E
[
J (θk+1)

∣∣Bk−1

]
≤J (θk) + η2

kLC2 − ηk‖∇J (θk)‖2

− ηkE
[
〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
∣∣∣Bk−1

]
.

(37)

23

We will now bound the last term of (37). First we write,

− 〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)〉

= −〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)−∇JBk(θk)〉 − 〈∇J (θk+ 1

2
),∇JBk(θk)〉.

(38)

Using the Cauchy-Schwarz inequality, as well as (26) and (27), almost surely,

|〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)−∇JBk(θk)〉| ≤ ‖∇J (θk+ 1

2
)‖‖∇JBk(θk+ 1

2
)−∇JBk(θk)‖

≤ ‖∇J (θk+ 1
2
)‖L‖θk+ 1

2
− θk‖

≤ ‖∇J (θk+ 1
2
)‖L‖−ηk∇JBk(θk)‖

≤ LC2
2ηk.

(39)

Hence,

− 〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)〉 ≤ LC2

2ηk − 〈∇J (θk+ 1
2
),∇JBk(θk)〉. (40)

We perform similar computations on the last term of (40), almost surely

− 〈∇J (θk+ 1
2
),∇JBk(θk)〉

= −〈∇J (θk+ 1
2
)−∇J (θk),∇JBk(θk)〉 − 〈∇J (θk),∇JBk(θk)〉

≤ ‖∇J (θk+ 1
2
)−∇J (θk)‖‖∇JBk(θk)‖−〈∇J (θk),∇JBk(θk)〉

≤ LC2‖θk+ 1
2
− θk‖−〈∇J (θk),∇JBk(θk)〉

≤ LC2
2ηk − 〈∇J (θk),∇JBk(θk)〉.

(41)

Finally we obtain by combining (38), (40) and (41), almost surely,

− 〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)〉 ≤ 2LC2

2ηk − 〈∇J (θk),∇JBk(θk)〉. (42)

Going back to the last term of (37), we have, taking the conditional expectation of (42), almost
surely

−ηkE
[
〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
∣∣∣Bk−1

]
≤ 2LC2

2η
2
k − ηkE

[
〈∇J (θk),∇JBk(θk)〉

∣∣Bk−1

]
≤ 2LC2

2η
2
k − ηk〈∇J (θk),E

[
∇JBk(θk)

∣∣Bk−1

]
〉

= 2LC2
2η

2
k − ηk‖∇J (θk)‖2.

(43)

In the end we obtain, for an arbitrary iteration k ∈ N, almost surely

E
[
J (θk+1)

∣∣Bk−1

]
≤J (θk)− 2ηk‖∇J (θk)‖2+η2

kL(C2 + 2C2
2). (44)

To simplify we assume that M̃ ≥ ν (otherwise set M̃ = max(M̃, ν)). We use the fact that,

ηk ∈ [αm̃
(k+1)1/2+δ

, αM̃
(k+1)1/2+δ

], to obtain almost surely,

E
[
J (θk+1)

∣∣Bk−1

]
≤J (θk)− 2

αm̃

(k + 1)1/2+δ
‖∇J (θk)‖2+

α2M̃2

(k + 1)1+2δ
L(C2 + 2C2

2). (45)

24

Since by assumption, the last term is summable, we can now invoke Robbins-Siegmund con-
vergence theorem [37] to obtain that, almost surely, (J (θk))k∈N converges and,

+∞∑
k=0

1

(k + 1)1/2+δ
‖∇J (θk)‖2< +∞. (46)

Since
∑+∞

k=0
1

(k+1)1/2+δ
= +∞, this implies at least that almost surely,

lim inf
k→∞

‖∇J (θk)‖2= 0. (47)

To prove that in addition lim
k→∞
‖∇J (θk)‖2= 0, we will use Lemma 3 with uk = ‖∇J (θk)‖2

and vk = 1
(k+1)1/2+δ

, for all k ∈ N. So we need to prove that there exists C3 > 0 such that

|uk+1 − uk|≤ C3vk. To do so, we use the L-Lipschitz continuity of the gradients on C, triangle
inequalities and (27). It holds, almost surely, for all k ∈ N∣∣‖∇J (θk+1)‖2−‖∇J (θk)‖2

∣∣
= (‖∇J (θk+1)‖+‖∇J (θk)‖) × | ‖ ∇J (θk+1)‖−‖∇J (θk) ‖ |
≤2C2 |‖∇J (θk+1)‖−‖∇J (θk)‖|
≤2C2‖∇J (θk+1)−∇J (θk)‖
≤2C2L‖θk+1 − θk‖
≤2C2L

∥∥∥−ηk∇JBk(θk)− ηk∇JBk(θk+ 1
2
)
∥∥∥

≤2C2L
αM̃

(k + 1)1/2+δ
‖∇JBk(θk) +∇JBk(θk+ 1

2
)‖

≤4C2
2L

αM̃

(k + 1)1/2+δ
.

(48)

So taking C3 = 4C2
2LαM̃ , by Lemma 3, almost surely, limk→+∞‖∇J (θk)‖2= 0. This concludes

the almost sure convergence proof.
As for the rate, consider the expectation of (45) (with respect to the random variables

(Bk)k∈N). The tower property of the conditional expectation gives,

E[E[J (θk+1)|Bk−1]] = E [J (θk+1)] ,

so we obtain, for all k ∈ N,

2
αm̃

(k + 1)1/2+δ
E
[
‖∇J (θk)‖2

]
≤E [J (θk)]− E [J (θk+1)] +

α2M̃2

(k + 1)1+2δ
L(C2 + 2C2

2). (49)

Then for K ≥ 1, we sum from 0 to K − 1,

K−1∑
k=0

2
αm̃

(k + 1)1/2+δ
E
[
‖∇J (θk)‖2

]
≤

K−1∑
k=0

E [J (θk)]−
K−1∑
k=0

E [J (θk+1)] +
K−1∑
k=0

α2M̃2

(k + 1)1+2δ
L(C2 + 2C2

2)

= J (θ0)− E [J (θK)] +
K−1∑
k=0

α2M̃2

(k + 1)1+2δ
L(C2 + 2C2

2)

≤ J (θ0)− inf
ψ∈RP

J (ψ) +
K−1∑
k=0

α2M̃2

(k + 1)1+2δ
L(C2 + 2C2

2),

(50)

25

The right-hand side is finite, so there is a constant C4 > 0 such that for any K ∈ N, it holds,

C4 ≥
K∑
k=0

1

(k + 1)1/2+δ
E
[
‖∇J (θk)‖2

]
≥ min

k∈{1,...,K}
E
[
‖∇J (θk)‖2

] K∑
k=0

1

(k + 1)1/2+δ

≥ (K + 1)1/2−δ min
k∈{1,...,K}

E
[
‖∇J (θk)‖2

]
, (51)

and we obtain the rate.

B.3 Proof of the corollary

Before proving the corollary we recall the following result.

Lemma 4. Let g : RP → R a L-Lipschitz continuous and differentiable function. Then ∇g is
uniformly bounded on RP .

We can now prove the corollary.

Proof of Corollary 2. The proof is very similar to the one of Theorem 1. Denote L the Lipschitz
constant of ∇J . Then, the descent lemma (30) holds surely. Furthermore, since for all n ∈
{1, . . . , N}, each Jn is Lipschitz, so is J , and globally Lipschitz functions have uniformly
bounded gradients so ∇J has bounded gradient. This is enough to obtain (45). Similarly, at
iteration k ∈ N, E [‖∇JBk(θk)‖] is also uniformly bounded. Overall these arguments allows to
follow the lines of the proof of Theorem 1 and the same conclusions follow by repeating the
same arguments.

C Details on the synthetic experiments

We detail the non-convex regression problem that we presented in Figure 2 and 3. Given a
matrix A ∈ RN×P and a vector b ∈ RN , denote An the n-th line of A. The problem consists in
minimizing a loss function of the form,

θ ∈ RP 7→ J (θ) =
1

N

N∑
n

φ(ATnθ − bn), (52)

where the non-convexity comes from the function t ∈ R 7→ φ(t) = t2/(1 + t2). For more details
on the initialization of A and b we refer to Carmon et al. [10] where this problem is initially
proposed. In the experiments of Figure 3, the mini-batch approximation was made by selecting
a subset of the lines of A, which amounts to computing only a few terms of the full sum in
(52). We used N = 500, P = 30 and mini-batches of size 50.

In the deterministic setting we ran each algorithm during 250 iterations and selected the
hyper-parameters of each algorithm such that they achieved |J (θ) − J ?|< 10−1 as fast as
possible. In the mini-batch experiments we ran each algorithm during 250 epochs and selected
the hyper-parameters that yielded the smallest value of J (θ) after 50 epochs.

26

D Description of auxiliary algorithms

We precise the heuristic algorithms used in Figure 3 and discussed in Section 3.3. Note that
the step-size in Algorithm 5 is equivalent to Expected-GV but is written differently to avoid
storing an additional gradient estimate.

Algorithm 3 Stochastic-GV SGD
1: Input: α > 0, ν > 0
2: Input: m̃ > 0, M̃ > 0, δ ∈ (0, 1/2)
3: Initialize θ0 ∈ RP , γ0 = 1
4: Draw mini-batches (Bk)k∈N independently and uniformly at random with replacement.
5: θ1 = θ0 − αγ0∇JB0(θ0)
6: for k = 1, . . . do
7: ∆θk = θk − θk−1

8: ∆gnaive
k = ∇JBk(θk)−∇JBk−1

(θk−1)
9: if 〈∆gnaive

k ,∆θBk〉 > 0 then

10: γk = ‖∆θk‖2
〈∆gnaivek ,∆θk〉

11: else
12: γk = ν
13: end if
14: γk = min(max(γk, m̃), M̃)
15: θk+1 = θk − α

(k+1)1/2+δ
γk∇JBk(θk)

16: end for

Algorithm 4 Exact-GV SGD
1: Input: α > 0, ν > 0
2: Input: m̃ > 0, M̃ > 0, δ ∈ (0, 1/2)
3: Initialize θ0 ∈ RP , γ0 = 1
4: Draw mini-batches (Bk)k∈N independently and uniformly at random with replacement.
5: θ1 = θ0 − αγ0∇JB0(θ0)
6: for k = 1, . . . do
7: ∆θk = θk − θk−1

8: Gk = ∇J (θk)−∇J (θk−1)
9: if 〈Gk,∆θBk〉 > 0 then

10: γk = ‖∆θk‖2
〈Gk,∆θk〉

11: else
12: γk = ν
13: end if
14: γk = min(max(γk, m̃), M̃)
15: θk+1 = θk − α

(k+1)1/2+δ
γk∇JBk(θk)

16: end for

27

Algorithm 5 Expected-GV SGD
1: Input: α > 0, ν > 0
2: Input: m̃ > 0, M̃ > 0, δ ∈ (0, 1/2)
3: Initialize θ0 ∈ RP , γ0 = 1
4: Draw mini-batches (Bk)k∈N independently and uniformly at random with replacement.
5: θ1 = θ0 − αγ0∇JB0(θ0)
6: for k = 1, . . . do
7: ∆θk = θk − θk−1

8: Gk = − α
(k−1)1/2+δ

γk−1E
[
CJBk−1

(θk−1)
]

9: if 〈Gk,∆θBk〉 > 0 then

10: γk = ‖∆θk‖2
〈Gk,∆θk〉

11: else
12: γk = ν
13: end if
14: γk = min(max(γk, m̃), M̃)
15: θk+1 = θk − α

(k+1)1/2+δ
γk∇JBk(θk)

16: end for

28

	1 Introduction
	2 Related work
	3 Design of the algorithm
	3.1 Deterministic full-batch algorithm
	3.1.1 Second-order infinitesimal step-size tuning.
	3.1.2 Tuning gradient descent.
	3.1.3 Illustrative experiment.

	3.2 Stochastic mini-batch algorithm
	3.2.1 Mini-batch sub-sampling.
	3.2.2 Second-order tuning of mini-batch SGD: Step-Tuned SGD.

	3.3 Heuristic construction of Step-Tuned SGD
	3.3.1 First heuristic experiment with exact GVs.
	3.3.2 Second heuristic experiment using expected gradient variations.
	3.3.3 Parameters of the algorithm.

	4 Theoretical results
	4.1 Main result.
	4.2 An alternative to the boundedness assumption.
	4.3 Proof sketch of Theorem 1.

	5 Application to Deep Learning
	5.1 Setting of the experiments
	5.2 Results
	5.2.1 Comparison with standard methods.
	5.2.2 Effect of the mini-batch sub-sampling of Step-Tuned SGD.

	6 Conclusion
	A Details about deep learning experiments
	B Proof of the theoretical results
	B.1 Preliminary lemma
	B.2 Proof of the main theorem
	B.3 Proof of the corollary

	C Details on the synthetic experiments
	D Description of auxiliary algorithms

