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Abstract

In recent years, deep learning has achieved great success in many natural language processing tasks including named

entity recognition. The shortcoming is that a large amount of manually-annotated data is usually required. Previous

studies have demonstrated that active learning could elaborately reduce the cost of data annotation, but there is still

plenty of room for improvement. In real applications we found existing uncertainty-based active learning strategies

have two shortcomings. Firstly, these strategies prefer to choose long sequence explicitly or implicitly, which increase

the annotation burden of annotators. Secondly, some strategies need to invade the model and modify to generate

some additional information for sample selection, which will increase the workload of the developer and increase the

training/prediction time of the model. In this paper, we first examine traditional active learning strategies in a specific

case of BiLstm-CRF that has widely used in named entity recognition on several typical datasets. Then we propose

an uncertainty-based active learning strategy called Lowest Token Probability (LTP) which combines the input and

output of CRF to select informative instance. LTP is simple and powerful strategy that does not favor long sequences

and does not need to invade the model. We test LTP on multiple datasets, and the experiments show that LTP performs

slightly better than traditional strategies with obviously less annotation tokens on both sentence-level accuracy and

entity-level F1-score.
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1. Introduction

Over the past few years, papers applying deep neural

networks (DNNs) to the task of named entity recogni-

tion (NER) have achieved noteworthy success [1, 2, 3].

However, under typical training procedures, the advan-

tages of deep learning are established mostly relied

on the huge amount of labeled data. When applying

these methods on domain-related tasks, their main prob-

lem lies in their need for considerable human-annotated

training corpus, which requires tedious and expensive

work from domain experts. Thus, to make these meth-

ods more widely applicable and easier to adapt to var-

ious domains, the key is how to reduce the number of

manually annotated training samples.

Active learning are designed to reduce the amount of

data annotation. Unlike the supervised learning setting,

in which samples are selected and annotated at random,

the process of active learning employs one or more hu-

man annotators by asking them to label new samples

that are supposed to be the most informative in the cre-

ation of a new classifier. The greatest challenge in active

learning is to determine which sample is more informa-

tive. The most common approach is uncertainty sam-

pling, in which the model preferentially selects samples

whose current prediction is least confident.

Quite a lot of works have been done to reduce the

amount of data annotation for NER tasks through active

learning. However, these state-of-the-art approaches

mainly face two problems. One of the problems is that

they tend to choose the long sequences explicitly or im-

plicitly, which will be an undesirable behavior when

someone seeks to maximize performance for minimal

cost annotation. Another problem is they may need to

invade and modify the original model, which will in-

crease the workload of the developer and increase the

computing cost. In this work, we try to propose a sim-

ple but effective active learning strategy that does not

prefer long sequence and does not need to invade origi-
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nal model.

When evaluating the effect of NER, most of the works

only use the value of entity-level F1 score. However,

in some cases, this could be misleading, especially for

languages that do not have a natural separator, such as

Chinese. And the NER task is often used to support

downstream tasks (such as QA, task-oriented dialogue),

which prefer that all entities in the sentence are correctly

identified. So in this work, we not only evaluate the

entity-level F1 score but also the sentence-level accu-

racy.

We first experiment with the traditional uncertainty-

based active learning algorithms, and then we proposed

our own active learning strategy based on the lowest to-

ken probability with the best labeling sequence. Exper-

iments show that our selection strategy is superior to

traditional uncertainty-based active selection strategies

in multiple Chinese datasets and English datasets both

in entity-level F1 score and overall sentence-level accu-

racy. Finally, we make empirical analysis with different

active selection strategies.

The remainder of this paper is organized as follows.

In Section 2 we summarize the related works in named

entity recognition and active learning. In section 3 we

brief introduced the data representation and CRF. Sec-

tion 4 describes in details the active learning strategies

we propose. Section 5 describes the experimental set-

ting, the datasets, and discusses the empirical results.

And the last section is the conclusion.

2. Related Work

2.1. Named entity recognition

The framework of NER using deep neural network

can be regarded as a composition of encoder and de-

coder. For encoders, there are many options. Collobert

et al.[4] first used convolutional neural network (CNN)

as the encoder. Traditional CNN cannot solve the prob-

lem of long-distance dependency. In order to solve this

problem, RNN[5], BiLSTM[6] , Dilated CNN[7] and

bidirectional Transformers[8] are proposed to replace

CNN as encoder. For decoders, some works used RNN

for decoding tags [5, 9]. However, most competitive ap-

proaches relied on CRF as decoder[2, 10].

2.2. Active learning

Active learning strategies have been well studied

[11, 12], [13]. These strategies can be grouped into fol-

lowing categories: Uncertainty sample [14, 15, 16, 17],

query-by-committee[18, 19], information density[20],

fisher information[? ]. There were some works that

compared the performance of different types of se-

lection strategies in NER/sequence labeling tasks with

CRF model [21, 22? , 23]. These results show that,

in most case, uncertainty-based methods perform better

and cost less time.

However, we found that these studies are mainly

based on English datasets, and don’t pay much attention

to Chinese datasets. Additionally, traditional uncertain-

based strategies always choose long sequence explic-

itly or implicitly, which significantly increases the bur-

den on the annotators. And some strategies [24] invade

the model and let the model perform additional tasks

for sample selection. So, in this work we proposed a

new active learning strategy that does not favor long se-

quences and does not need to invade the model.

3. NER Model

3.1. Data Representation

We represent each input sentence following Bert for-

mat; Each token in the sentence is marked with BIO

scheme tags. Special [CLS ] and [S EP] tokens are

added at the beginning and the end of the tag se-

quence, respectively. [PAD] tokens are added at the

end of sequences to make their lengths uniform. The

formatted sentence in length N is denoted as x =<

x1, x2, . . . , xN >, and the corresponding tag sequence is

denoted as y =< y1, y2, . . . , yN >.

3.2. CRF Layer

CRF are statistical graphical models which have

demonstrated state-of-art accuracy on virtually all of the

sequence labeling tasks including NER task. Particu-

larly, we use linear-chain CRF that is a popular choice

for tag decoder, adopted by most DNNs for NER.

A linear-chain CRF model defines the posterior prob-

ability of y given x to be:

P(y|x; A) =
1

Z(x)
exp

















P(y1; x1) +

n−1
∑

k=1

P(yk+1; xk+1) + Ayk ,yk+1

















(1)

where Z(x) is a normalization factor over all possible

tags of x, and P(yk; xk) indicates the probability of tak-

ing the yk tag at position k which is the output of the

previous DNN layer, such as bilstm, softmax. A is a pa-

rameter called a transfer matrix, which can be set manu-

ally or by model learning. In our experiment, we let the

model learn the parameter by itself. Ayk ,yk+1
means the

probability of a transition from tag states yk to yk+1. We

use y∗ to represent the most likely tag sequence of x:

y∗ = arg max
y

P(y|x) (2)
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Table 1: Example of data representation. [PAD] tag are not shown.

Sentence Trump was born in the United States

Tag [CLS] B-PER O O O B-LOC I-LOC I-LOC [SEP]

The parameters A are learnt through the maximum

log-likelihood estimation, that is to maximize the log-

likelihood function ℓ of training set sequences in the la-

beled data set L:

ℓ(L; A) =

L
∑

l=1

log P(y(l)|x(l); A) (3)

where L is the size of the tagged set L.

4. Active Learning Strategies

The biggest challenge in active learning is how to se-

lect instances that need to be manually annotated. A

good selection strategy φ(x), which is a function used to

evaluate each instance x in the unlabeled pool U, will

select the most informative instance x.

Algorithm 1 Pool-based active learning framework

Require: Labeled data set L,

unlabeled data poolU,

selection strategy φ(·),
query batch size B

while not reach stop condition do

// Train the model using labeled set L
train(L);

for b = 1 to B do

//select the most informative instance

x∗ = arg maxx∈U φ(x)

L = L∪ < x∗, label(x∗) >
U =U − x∗

end for

end while

Algorithm 1 illustrate the entire pool-based active

learning process. In the remainder of this section, we

describe various query strategy formulations of φ(·) in

detail.

4.1. Token-based (Local) Strategies

The token-based strategy treats the labeling sequence

as a set of isolated tokens, and evaluates uncertainty by

aggregating the information of these tokens.

Minimum Token Probability (MTP) selects the

most informative tokens, regardless of the assignment

performed by CRF. This strategy greedily samples to-

kens whose highest probability among the labels is low-

est:

φMT P(x) = 1 −min
i

max
j

P(yi = j|xi; A) (4)

where P(yi = j) is the probability that j is the label at

position i in the sequence.

Entropy is a popular measure of informativeness. The

entropy of a discrete random variable Y can be repre-

sented by H(Y) = −∑i P(yi) log P(yi), and means the

information needed to ”encode” the distribution of out-

comes for Y. Token Entropy (TE) is a way to use the

entropy of model’s posteriors over its labeling:

φT E = − 1

N

N
∑

i=1

M
∑

j=1

P(yi = j|xi; A) log P(yi = j|xi; A)

(5)

where N is the length of x without [PAD], j ranges over

all possible token labels.

Settles [? ] argue that querying long sequences

should not be explicitly discouraged, if in fact they con-

tain more information. They extend TE into Maximum

Token Entropy (MTE):

φMT E(x) = N × φT E(x) (6)

4.2. Sentence-based (Global) Strategies

Different from token-based strategies, sentence-

based strategies treat labeling sequence y as whole.

Most of these strategies have high complexity or require

intrusive models.

Culotta and McCallum [15] employ a simple

uncertainty-based strategy for sequence models called

least confidence (LC), which sort examples in ascend-

ing order according to the probability assigned by the

model to the most likely sequence of tags:

φLC(x) = 1 − P(y∗|x; A) (7)

This confidence can be calculated using the posterior
probability given by Equation 1. Preliminary analysis
revealed that the LC strategy prefer selects longer sen-
tences:

P(y∗|x; A) ∝ exp















P(y∗1; x1) +

n−1
∑

k=1

P(y∗k+1; xk+1) + Ay∗
k
,y∗

k+1















(8)
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Since Equation 8 contains summation over tokens, LC

method naturally favors longer sentences. Although the

LC method is very simple and has some shortcomings,

many works have proved the effectiveness of the method

in sequence labeling tasks.

Scheffer et al. [16] propose a method called Mar-

gin, which queries samples with the smallest margin be-

tween the posteriors for its two most likely annotations:

φM(x) = −(P(y∗1)|x; A) − P(y∗2|x; A)) (9)

where, y∗
1

and y∗
2

are the first and second most likely tag

sequence of x. Margin requires the model to calculate

the unnesseary second most likely tag sequence.

Different from TE and TTE, Sequence Entropy

(SE) considers the entropy of the sequence instead of

the entropy of the token:

φS E(x) = −
∑

ŷ

P(ŷ|x; A) log P(ŷ|x; A) (10)

where ŷ ranges all over possible tag sequences for x.

This calculation cost will increase exponentially with

the length of x and the number of tag categories.

The most recent uncertainty-based selection strategy

is called Bayesian Active Learning by Disagreement

(BALD)[24, 25]. BALD measures the uncertainty of

the sample by observing the changes in the forward

propagation result of the sample through multiple ran-

dom dropouts[26]. Let ỹ1, ỹ2, . . . , ỹT represent the result

from apply T independently sampled dropout masks:

φBALD(x) = 1 −
maxỹ count(ỹ)

T
(11)

where count(ỹ) means the number of occurrences of ỹ in

ỹ1, ỹ2, . . . , ỹT . Normally, the value of T is 100. BALD

will cost a lot of time on repeating forward propagation

when the data pool is large.

4.3. Lowest Token Probability (LTP)

Unlike existing strategies, we believe that local infor-

mation and global information have their own advan-

tages, and the two can complement each other. We look

for the most probable sequence assignment (global), and

hope that each token (local) in the sequence has a high

probability.

φLT P(x) = 1 − min
y∗

i
∈y∗

P(y∗i |xi; A) (12)

We proposed our select strategy called Lowest To-

ken Probability (LTP), which selects the tokens whose

probability under the most likely tag sequence y∗ is low-

est. It is not difficult to infer from the formulation that

LTP utilizes global and local information, and implic-

itly implements Margin but does not require additional

calculations1.

Table 2 compares all the uncertainty-based active

learning strategies mentioned in this section. Strategies

that do not need to invade the model and do not require

additional calculations are selected as the comparison

method of our strategies.

5. Experiments

5.1. Datasets
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Figure 1: Distribution of sample lengths on different datasets

We have experimented and evaluate the active learn-

ing strategies mentioned on Section 4 on four Chinese

datasets and two english datasets. People’s Daily is a

collection of newswire article annotated with 3 balanced

entity types; Boson NER2 is a set of online news anno-

tations published by bosonNLP, which contains 6 en-

tity types; Weibo NER[27, 28] is a collection of short

blogs posted on Chinese social media Weibo with 8

extremely unbalanced entity types; OntoNotes-5.0[29]

Chinese dataset used in this paper is a collection of

broadcast news articles, which contains 18 entity types.

CONLL2003[30] is a well known english dataset con-

sists of Reuters news stories between August 1996 and

August 1997, which contains 4 different entity types;

Ritter[31] is a english dataset consist of tweets anno-

tated with 10 different entity types. All datasets are for-

matted in the ”BIO” sequence representation. In order

to be able to perform batch training, the length of all

1If there is a small probability token in the best sequence, then

there is a high probability that the margin between 1st best sequence

and 2nd best sequence is small
2https://bosonnlp.com/resources/BosonNLP NER 6C.zip
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Table 2: Qualitative comparison of uncertainty-based active learning strategies

MTP LC TE TTE LTP Margin SE BALD

Local(Token) Information
√ √ √ √

Global(Sentence) Information
√ √ √ √ √

Favor long sequence

explicitly

√ √

Invade model
√ √

Additional compute
√ √ √

samples is limited to 64. Those samples that were orig-

inally longer than 64 will be split according to commas

or directly truncated to meet the length requirement.
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Figure 2: Distribution of entity types on different datasets

Table 3 shows some statistics of the datasets in terms

of dimensions, number of entity types, distribution of

the labels, etc. Figure 1 gives the distribution of sam-

ple lengths on different datasets. Figure 2 presents the

distribution of entity types on different datasets. Ac-

cording to the description and statistical information of

these datasets, we can conclude that these datasets are 6

datasets with obvious differences in language, text style,

entity distribution, length distribution, data magnitude,

etc.

5.2. Experimental Setting

For each dataset, we random choose 1% warmstart

samples as initial training set L1. We train initial model

on this data, then we apply active learning strategy to

choose additional 2% samples based on model’s un-

certainty estimates and train a new model based on

this data. In each iteration, we train from scratch to

avoid negative effects accumulated from previous train-

ing. We train each model to convergence in each iter-

ation. We fix the number of active learning iterations

at 25 because of each algorithm does not improve obvi-

ously after 25 iteration.

In the NER model, we use a 300d word embedding

pre-trained on the Chinese Wikipedia corpus[32] for the

Chinese datasets, and a 100d glove word embedding

pre-trained on the English Wikipedia corpus[33] for the

English datasets. We uniformly set the learning rate as

0.001 and the training batch size as 64. The transition

matrix A in CRF is left to let the model learn by itself. It

must be noted that the goal of this article is not to obtain

SOTA of NER, but to compare the performance of dif-

ferent active learning strategies under same conditions.

So, the NER model itself and its parameters may not be

the best but fair.

We empirically compare the selection strategy pro-

posed in Section 4, as well as the uniformly random

baseline (RAND) and long baseline (LONG). We eval-

uate each selection strategy by constructing learning

curves that plot the overall F1-score (for entities) and

accuracy (for sentences). In order to prevent the con-

tingency of experiments, we have done 5 independent

experiments for each selection strategy on each dataset

using different random initial training setL1. All results

reported in this paper are averaged across these experi-

ments.

5.3. Results

Entity-level F1-scores are shown in Figure 4, it is

clear that all active learning strategies (except TE) per-

form better than the random baseline on 4 Chinese

datasets. Our strategy is not weaker than other strate-

gies on all datasets, slightly better than other strategies

on Boson NER, Weibo NER, and CONLL2003, and sig-

nificantly surpasses other strategies on Ritter.

Figure 5 shows the results of sentence-level accu-

racy on six datasets. The results exceeded our expec-

tations and are very interesting. Firstly, the results con-

firm that entity-level F1-score is sometimes misleading

(two social media datasets, Weibo NER and Ritter) as

what we mention in Section 1. Secondly, our strategy

LTP is better than the rest of methods, while it not ob-

vious on the large data set of canonical text, which is

similar to text for pre-trained word embedding.
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Table 3: Training(Testing) Data Statistics. #S is the number of total sentences in the dataset, #T is the number of tokens in the dataset, #E is the

number of entity types, ASL is the average length of a sentence, ASE is the average number of entities in a sentence, AEL is the average length

of a entity, %PT is the percentage of tokens with positive label,%AC is the percentage of a sentences with more than one entity, %DAC is the

percentage of sentences that have two or more entities. English datasets are marked in bold.

corpus #S #T #E ASL ASE AEL %PT %AC %DAC

Boson NER
27350

(6825)

409830

(99616)

6

(6)

14.98

(14.59)

0.67

(0.67)

3.93

(3.87)

17.7%

(17.8%)

41.8%

(41.8%)

14.7%

(14.8%)

Weibo NER
3664

(591)

85571

(13810)

8

(8)

23.35

(23.36)

0.62

(0.66)

2.60

(2.60)

6.9%

(7.3%)

33.6%

(36.3%)

14.8%

(17.7%)

OntoNotes5.0

(bn-zh)

13798

(1710)

362508

(44790)

18

(18)

26.27

(26.19)

1.91

(1.99)

3.14

(3.07)

22.8%

(23.4%)

72.5%

(75.4%)

48.0%

(51.5%)

People’s Daily
50658

(4620)

2169879

(172590)

3

(3)

42.83

(37.35)

1.47

(1.33)

3.23

(3.25)

11.1%

(11.6%)

58.3%

(54.4%)

35.8%

(29.1%)

CONLL2003
13862

(3235)

203442

(51347)

4

(4)

14.67

(15.87)

1.69

(1.83)

1.44

(1.44)

16.7%

(16.7%)

79.9%

(80.4%)

44.2%

(48.8%)

Ritter
1955

(438)

37735

(8733)

10

(10)

19.30

(19.93)

0.62

(0.60)

1.65

(1.62)

5.3%

(4.9%)

38.1%

(39.2%)

15.3%

(15.5%)
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Figure 3: Sentence-level accuracy score results on CONLL2003 with

1% samples selected each iteration.

We known that the most obvious effect of active

learning is to select one sample at a time, although

this is not realistic due to the cost of retraining. The

more samples selected each time, the worse the active

learning effect. Therefore, in the case of a large data

pool, selecting 2% of the samples in each round cannot

clearly reflect the differences between different strate-

gies. In order to clearly reflect the differences between

strategies, we constructed an additional experiment on

CONLL2003 with 1% samples selected each iteration.

Results are given in Figure 3.

Figure 6 shows average length of the samples se-

lected by different active learning strategies. Unlike

other active learning strategies, LTP does not have a ob-

vious bias towards sample length. From another aspect,

LTP use less annotation cost to achieve better perfor-

mance than other strategies.

5.4. Discussion

In this section, we will briefly discuss possible rea-

sons for the gap between different selection strategies.

The core of active learning is to select ”informative”

samples, but there is no unified standard to measure ”in-

formative”. One thing is certain, the samples that are

not correctly labeled by the model are informative sam-

ples for the model. Therefore, we use the proportion of

samples in each iteration of selection the model is not

correctly labeled as the effectiveness of each iteration

of selection. Figure 7 shows the results. We can find

that LTP can more effectively select samples that are

incorrectly predicted by the model.

6. Conclusion

We proposed a new active learning strategy for

CRF-based named entity recognition. The experiment

shows that compared with the traditional active selec-

tion strategies, our strategy has better performance, but

lower annotation cost.
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Figure 4: Entity-level F1-score results on different datasets
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Figure 5: Sentence-level accuracy score results on different datasets
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Figure 6: Average length of the samples selected by active learning strategies.

0 5 10 15 20 25
Number of iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fe
ct
iv
e 
Se

le
ct
ed

 S
am

pl
e 
Pe

rc
en

ta
ge

lc
long
ltp
mte
mtp
random
te

(a) Boson NER

0 5 10 15 20 25
Number of iteration

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e 
Se

le
ct

ed
 S

am
pl

e 
Pe

rc
en

ta
ge

lc
long
ltp
mte
mtp
random
te

(b) Weibo NER

0 5 10 15 20 25
Number of iteration

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e 
Se

le
ct

ed
 S

am
pl

e 
Pe

rc
en

ta
ge

lc
long
ltp
mte
mtp
random
te

(c) OntoNotes5.0

0 5 10 15 20 25
Number of iteration

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e 
Se

le
ct

ed
 S

am
pl

e 
Pe

rc
en

ta
ge

lc
long
ltp
mte
mtp
random
te

(d) People’s Daily

0 5 10 15 20 25
Number of iteration

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e 
Se

le
ct

ed
 S

am
pl

e 
Pe

rc
en

ta
ge

lc
long
ltp
mte
mtp
random
te

(e) CONLL2003

0 5 10 15 20 25
Number of iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ef
fe

ct
iv

e 
Se

le
ct

ed
 S

am
pl

e 
Pe

rc
en

ta
ge

lc
long
ltp
mte
mtp
random
te

(f) Ritter

Figure 7: The results of effective selected sample percentage on different datasets
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