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Abstract

Deep metric learning employs deep neural networks to embed instances into a metric space
such that distances between instances of the same class are small and distances between
instances from different classes are large. In most existing deep metric learning techniques, the
embedding of an instance is given by a feature vector produced by a deep neural network and
Euclidean distance or cosine similarity defines distances between these vectors. This paper
studies deep distributional embeddings of sequences, where the embedding of a sequence
is given by the distribution of learned deep features across the sequence. The motivation
for this is to better capture statistical information about the distribution of patterns within
the sequence in the embedding. When embeddings are distributions rather than vectors,
measuring distances between embeddings involves comparing their respective distributions.
The paper therefore proposes a distance metric based on Wasserstein distances between the
distributions and a corresponding loss function for metric learning, which leads to anovel end-
to-end trainable embedding model. We empirically observe that distributional embeddings
outperform standard vector embeddings and that training with the proposed Wasserstein
metric outperforms training with other distance functions.
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1 Introduction

Metric learning is concerned with learning a representation or embedding in which distances
between instances of the same class are small and distances between instances of different
classes are large. Deep metric learning approaches, in which the learned embedding is given
by a deep neural network, have achieved state-of-the-art results in many tasks, including
face verification and recognition [24], fine-grained image classification [21], zero-shot clas-
sification [5], speech-to-text problems [10], and speaker identification [14]. An advantage
of metric learning is that the resulting representation directly generalizes to unseen classes,
so the model does not need to be retrained every time a new class is introduced. This is,
for example, a typical requirement in biometric applications, where it should be possible
to register new subjects without retraining a model. Biometric systems also have to handle
imposters, that is, subjects who are not registered in the database, which is not straightforward
in standard classification settings.

In this paper, we study deep metric learning for sequence data, with a specific focus on
biometric problems. Building on earlier work on quantile layers [1], the paper specifically
studies how the distribution of learned deep features across a sequence can be represented
in the learned embedding. Quantile layers are statistical aggregation layers that characterize
the distribution of patterns within a sequence by approximating the quantile function of
the activations of the learned filters across the sequence. Characterizing this distribution
has been shown to be advantageous for biometric identification based on eye movement
patterns [1]. The main contribution of this paper is to develop a deep metric learning approach
for distributional embeddings based on quantile layers. Quantile layers return an estimate
of the distribution of values for each learned filter across the sequence. Instead of a fixed-
length vector representation of an instance, in our approach, the embedding of an instance
is given by these sets of distributions. When embeddings are distributions rather than simple
vectors, measuring distances between the embeddings involves comparing their respective
distributions. The paper proposes a distance metric in the embedding space that is based
on Wasserstein distances between the respective distributions. Compared to other distance
functions such as Kulback—Leibler or Jensen—Shannon divergence, the advantage of using
Wasserstein distance is that it takes into account the metric on the space in which the random
variable of interest is defined. In our case, this means that distributions in which similar
magnitudes of filter activations receive similar amounts of probability mass will be considered
close. The paper further shows how such embeddings can be trained end-to-end on labeled
training data using metric learning techniques.

Empirically, the proposed approach is studied in biometric identification problems involv-
ing eye movement, accelerometer, and EEG data. Empirical results show that the proposed
distributional sequence embeddings outperform standard vector embeddings and that training
with the Wasserstein metric outperforms training with other distance functions.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3
reviews quantile layers and develop a distributional embedding architecture based on these
layers. Section 4 introduces a Wasserstein-based distance metric for the proposed embedding
model and from this derives a novel loss function for metric learning. Section 5 empirically
studies the proposed method and baselines.
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2 Related Work

The work in this paper is motivated by the goal of capturing information about the distribution
of patterns within a sequence in its embedding, where the patterns are defined in terms of
learned features of a deep neural network. It is related to other work in deep learning that
aims to capture distributions of learned features using statistical aggregation layers. Wang et
al. [31] proposed end-to-end learnable histogram layers that approximate the distribution of
learned features by a histogram. Their work uses linear apprsedighi2017histogramoximations
to smoothen the sharp edges in a traditional histogram function and enable gradient flow.
Sedighi and Fridrich [25] proposed a similar histogram-based aggregation layer, but use
Gaussian kernels as a soft, differentiable approximation to histogram bins. Abdelwahab and
Landwehr [1] introduced quantile layers to capture the distribution of learned features based
on an approximation of the quantile function, and empirically showed that this outperforms
aggregation using histograms. The contribution of our paper is to exploit quantile layers in
metric learning, by defining distributional embeddings based on approximations of quantile
functions and deriving loss functions for metric learning based on comparing the resulting
distributions.

There is a large body of work on deep metric learning that studies different network
architectures and loss functions. For example, [11] introduced a loss for a siamese network
architecture that is based on all possible pairs of instances in the training data, and its objective
is to minimize distances between positive pairs (same class) while maximizing the distances
between negative pairs (different classes). More recently, [24] introduced the triplet loss, with
links positive and negative pairs by an anchor instance. This idea has later been extended by
[20,27] by providing several negative pairs linked to one positive pair to the loss function. The
loss function introduced by [27] has shown superior performance in several studies [27,32,35].
Our method builds on these established deep metric learning techniques, but extends them by
replacing vector embeddings with distributional embeddings, which requires corresponding
changes in distance calculations and the loss function.

Distributional embeddings have been recently studied in biometric face recognition by
Shi and Jain [26]. In this work, an instance (face image) is mapped to a Gaussian distribution
over possible feature vectors, represented by a mean vector and a diagonal covariance matrix,
where mean and covariance vectors are generated from the input instance by a deep neural
network. The similarity of two inputs in embedding space can then be computed from their
two distribution. The motivation for these distributional embeddings is somewhat different
from our motivation in this paper: while the distribution in our model results from the inner
structure of the instance being mapped (distribution of patterns within a sequence), the
distribution in the model by [26] captures remaining uncertainty and is inferred from pairs
of instances during training. Their work also differs from ours in that they make strong
parametric assumptions about the distribution (Gaussian) and use different loss functions and
different distance function in the embedding space. Similar distributional embeddings based
on Gaussian distributions have also been studied by Yu et al. [34] for person re-identification
and by Wang et al. [30] for implicit semantic data augmentation. We provide an empirical
comparison to the work of Shi and Jain [26], which unlike the other two approaches is also
directly aimed at biometric settings, in Sect. 5.

Distributional embeddings have also been studied in natural language processing in the
context of word embeddings. Traditional word embedding models such as word2vec represent
words as vectors in a metric space such that semantically similar words are mapped to similar
vectors [16]. Vilnis and McCallum [28] extend this idea by mapping each word to a Gaussian
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distribution (with diagonal covariance), which naturally characterizes uncertainty about the
embedding. Athiwaratkun and Wilson [3] further extend this model by replacing the Gaussian
distribution with a mixture of Gaussians, where the multimodal mixture can capture multiple
meanings of the same word. Again, the motivation for these distributional embeddings does
not result from the inner structure of the instance being mapped as in our approach, but rather
captures remaining uncertainty. Another difference in the work by [28] is that their model is
trained in an unsupervised fashion, while we study supervised metric learning. An approach
similar to that of [28] has also been taken by [4] in order to map nodes of an attributed graph
onto Gaussian distributions that function as an embedding representation. This is again an
unsupervised approach, and specific to the task of node embedding.

More generally, deep metric learning models have been recently used in different appli-
cation domains featuring sequential data, including natural language processing [18,19],
computer vision [15,33] and speaker identification [7,14], but these approaches are based on
vector embeddings rather than distributional embeddings.

3 Quantile Layers and Distributional Sequence Embeddings

This section reviews quantile layers as introduced by [1] and discusses how they can be used
to define distributional embeddings of variable-length sequences.

In this paper, we focus on variable-length sequences and deep convolutional neural
network architectures that produce embeddings of such sequences. Typically, network archi-
tectures for such sequences would employ stacked convolution layers to extract informative
features from the sequence, and in the last layer use some form of global pooling to trans-
form the remaining variable-length representation into a fixed-length vector representation.
Global pooling achieves this transformation by performing a simple aggregate operation such
as taking the maximum or average over the filter activations across the sequence. This has the
potential disadvantage that most information about the distribution of the filter activations
is lost, which might be informative for the task at hand. In contrast, quantile layers try to
preserve as much information as possible about the distribution of filter activations along the
sequence by approximating the quantile function of this distribution. Earlier work has shown
that this information can be informative for sequence classification, substantially increasing
predictive accuracy [1].

This paper proposes to use quantile layers for defining distributional embeddings of
sequences. It is assumed that instances are given by variable-length sequences of the form
s = (Xq, ..., x7) where x; € RP is a vector of attributes that describes the sequence ele-
ment at position 7. The space of all such sequences with D attributes will be denoted by by
Sp = U7_; RT*P_ When a sequence is processed by a convolutional deep neural network
architecture I, which is taken to be the network without any final global aggregation layers,
the result is a variable-length representation of the instance over K filters. This mapping will
be denoted by I' : Sp — Sk. Details of the deep convolutional architectures employed are
given in Sect. 5. Fors € Sp and k € {1, ..., K}, ['x(s) is used to denote the variable-length
sequence of activations of filter k produced by the network for sequence s.

As in [1], this paper uses quantile functions in order to characterize the distribution of
filter activations across the sequence I'x(s). Let x € R be a real-valued random variable, let
p(x) denote its density and F'(x) its cumulative distribution function. The quantile function
for x is defined by

Q@) =inf{x e R: F(x) > r}
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where inf denotes the infimum. If F is continuous and strictly monotonically increasing, Q
is simply the inverse of F. Let X = {xi, ..., xy} be a sample of the random variable x, that
is, x, ~ p(x) forn € {1, ..., N}. The empirical quantile function QX :(0,1] > Risa
non-parametric estimator of the quantile function Q. It is defined by

Ox(r)=inf{x eR:r < Fx(x)} 1)

where Fy x) = % ZlN: 1 I(x; < x) is the empirical cumulative distribution function and
I(x; <x) € {0, 1} is an indicator. Q x(r) is a piecewise constant function that is essentially
obtained by sorting the samples in X'. More formally, let 7 be a permutation that sorts the
X, that is, Xz ;) < Xr(i4+1) for1 <i < N — 1. Then QX(r) = Xz([rN1)> Where [x] denotes
the smallest integer larger or equal to x. The empirical quantile function Ox faithfully
approximates the quantile function Q in the sense that IQ x(r) — Q(r)| converges almost
surely to zero if N — oo and Q is continuous at r [22].

To enable gradient flow in end-to-end learning, we will work with a piecewise linear

interpolation of the piecewise constant function Qx(r). Fori € {I,...,N}andr € [”;,1 ]
let

~ n—1 n

Qx(r) = Nrm+1) — Xx@)r + nxz@) + (1 — n)xzm+1) (r € [T ﬁ])
define a linear approximation, where x;(y+1) = Xz () is defined to handle the right interval
border. Combining the linear approximations over the different n, for r € [0, 1] the following
piecewise linear approximation is obtained:

N
Ox(r) = Zg(r, n) (N x(nst) — Xam)r + Xz + (1 = 1)Xzg1))

n=1

where §(r, n) is an indicator function that is defined as one if r € [% , %] and zero otherwise.
The piecewise linear approximation Q x (r) of the quantile function depends on the sample
size N, because there are N linear segments. To arrive at an approximation of the quantile
function that is independent of the number of samples, we define a further piecewise linear
approximation of Qx(r) using M sampling points o («y), ..., o (apr), where o (o) = (1 +
e)cp(—ot))_1 is the sigmoid function and ¢; € R are parameters with o; < ;1. Formally,
let

M
Qx(r) =Y 8(r,i)ax.ir +bx.i) @)

i=0

where
_ Ox(o(@it1) — Ox(o(e))
ax,; = 3)
o(aj+1) —o(a)

by = O (o (@) — o) Ox(o(oit1)) — QX(U(OQ)), @)

o(aj+1) —o(o)

8(r, i) is an indicator function that is one if r € [0 (a;), o (aj+1)] and zero otherwise, and
we have introduced ap = —o0 and aps41 = 00 to handle border cases. The function Q x(r)
provides a piecewise linear approximation of the quantile function using M + 1 line segments,
independently of the sample size N. The parameters «; are learnable model parameters in
the deep neural network architectures that we study in Sect. 5.
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We are now ready to define the distributional embedding for an instance, which is obtained
by passing the instance through the neural network I' and for each filter in the output of I'
approximating the quantile function of the filter activations by the piecewise linear function

0.

Definition 1 (Distributional embedding of sequence) Lets € Sp and let I denote a convo-
lutional neural network structure. The distributional embedding of sequence s is given by the
vector of piecewise linear functions

Wr(s) = (Or () - Org(s)) 5

where Qrk (s) 1 defined by Eq. 2 using X = I'x(s). Here, the notation is slightly generalized
by identifying the sequence of observations I'y (s) with the corresponding set of observations.

It should be noted that due to the piecewise linear approximations, gradients can flow
through the entire embedding architecture, both to parameters «,, and the weights in the
deep neural network structure I'. This includes the sorting operation, where gradients can be
passed through by reordering the gradient backpropagated from the layer above according
to the sorting indices 7.

4 A Wasserstein Loss for Distributional Embeddings

For training the embedding model, a deep metric learning approach will be used which trains
model parameters such that instances of the same class are close and instances of different
classes are far apart in the embedding space. In order to apply such approaches, a distance
metric needs to be defined on the embedding space.

4.1 Distances Between Distributional Embeddings

Asdiscussed in Sect. 3, in the setting discussed in this paper embeddings of instances are given
by distributions. Measuring the distance between two embeddings thus means comparing
their respective distributions. Different approaches to measure distances between probability
distributions have been discussed in the literature. One of the most widely used distance
functions between distributions is the Kullback—Leibler divergence. However, this measure
is asymmetric and can result in infinite distances, and is therefore not a metric. A metric based
on the Kullback—Leibler divergence is the square root of the Jensen—Shannon divergence,
which is symmetric, bounded between zero and +//og(2), and satisfies the triangle inequality.
However, this metric does not yield useful gradients in case the distributions being compared
have disjoint support, which in our case would occur if two sequences with non-overlapping
ranges of filter values are compared. To illustrate, let ¢; and g, denote densities with disjoint
support Aj and A, and let m(x) = M. Then the Jensen—Shannon divergence J of
g1 and g7 is

T(q1. ) = %/ q1(x)log (ql(X))dx + 1/ q2(x)log (qZ—OC))dx
A1UA> m(x) 2 A UAs m(x)

_1 ; (241(x))d 1/ / (26]2(x)>d
Z/Alq‘(x)og o )t ), etz )

=log(2)

independently of the distance between A and A, resulting in a gradient of zero.
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Fig.1 According to the Wasserstein metric, distributions ¢ and g, are closer than ¢ and g3, while distances
would be identical under the Jensen—Shannon measure

A different class of distance functions which are increasingly being studied in machine
learning [2,8,9] are Wasserstein distances. Wasserstein distances are based on the idea of
optimal transport plans. They do not suffer from the zero-gradient problem exhibited by the
Jensen—Shannon divergence, because they take into account the metric of the underlying
space. They also guarantee continuity under mild assumptions, which is not the case for
the Jensen—Shannon divergence as illustrated by [2]. In the general case, the p-Wasserstein
distance (for p € N) between two probability measures p; and py over a space M with
metric d can be defined as

1
Wp<p1,pz)=< int / d(x,y)ﬂdw,y))’ ©)
€T (P1,02) J Mx M

where J(p1, p2) denotes the set of all joint measures on M x M with marginals p; and
p2. For the purpose of this paper, the random variables are assumed to be real-valued. If
g1(x1) and g2 (x») are two densities defining distributions over real-valued random variables,
x; € R, the p-Wasserstein distance between ¢; and g3 is given by

1

Wp(q1, q2) = ( inf // |x1 —lepCI(xl,xz)dxldm) ’ (7

q9€J(q1.92)

where J(q1, q2) defines the set of all joint distributions over x1, xo which have marginals
g1 and g>. A joint distribution ¢ € J(q1, g2) can be seen as a transport plan, that is, a
way of moving probability mass from density ¢g; such that the resulting density is g2, in
the sense that ¢(x1, x) indicates how much mass is moved from ¢;(x;) to g2(x2). The
quantity f f |x1 — x217q(x1, x2)dx1dx> is the cost of the transport plan, which depends on
the amount of probability mass moved, g (x1, x2), and the distance by which the mass has
been moved, |x; — x2|?. The infimum over the set 7 (¢, g2) means that the distance between
the distributions is given by the optimal transport plan, which intuitively characterizes the
minimum changes that need to be made to ¢ in order to transform it into g;. For p = 1 the
distance is therefore also called the Earth Mover Distance. The advantage of this measure is
that it takes into account the metric in the underlying space, as can be seen from Fig. 1. Here,
q1 is closer to g2 than it is to g3 in the sense that the probability mass needs to be moved less
far. Thus, Wy (q1, q2) < Wp(q1, q3), while the Jensen—Shannon distances between the two
pairs of distributions would be identical.
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Because Wasserstein distances are defined in terms of optimal transport plans, computing
them in general requires solving non-trivial optimization problems. However, for the case of
real-valued random variables x; € R, there is a simple closed-form solution to the infimum
in Eq. 7. Let x; ~ ¢1, xo ~ ¢ with x; € R. According to [6], the function K (x{, xp) =
|x;1 — x2|P for p > 1 is quasi-antitone and therefore the infimum of the expectation of
this function over the set of all joint distributions, inf e 7(¢,,4,) E[K (x1, x2)], is given by
/01 K(Q(r), Q2(r))dr, where Q;(r) = inf{r : g¢i(x; < t) > r} is the quantile function to
the density ¢;. Equation 7 can thus be rewritten as

1 7
Wp(ql,qz)=</0 |Q1(r)—Q2(r)|”dr> . ®)

The distance between two embeddings Wr(s) and Wr(s') can now be defined as the
Wasserstein distance between the approximate representation of the quantile functions in the
embedding as defined by Definition 1, summed over the different filters k.

Definition 2 Lets, s’ € Sp, let I denote a convolutional neural network architecture, and let
Wr(s) and Wr(s') denote the distributional embeddings of s, 8" as defined by Definition 1.
Then the distance between the embeddings can be defined as

K 1 ~ _ %
dp(¥r(s), ¥r(s)) = Z </(; [Orys)(r) — Qrk(s')(r)lpdr) ©))
k=1

The next proposition gives a closed-form result for computing d, (Wr(s), ¥r(s')).

Proposition 1 Lers,s’ € Sp, let I' denote a convolutional neural network architecture, let
Wr(s) and Wr(s') denote the distributional embeddings of s, s', and let d,(Wr(s), Wr(s'))
denote their distance as defined by Definition 2. Then

K , M T -
dy(Ur(s), Wi (s))) = Z(Z (@i ko (0tj1) + bi 1) |bi ko (0tjg1) + bi kP

Pl e aix(p+1)
_ = - 1
(@i ko (o) + b p)la; ko (a;) + b; k[P \?
- = (10)
aix(p+1)

with

Qi k = ATy(s),i — ATy(s),i

bik = brys),i — bris).i

where ay ; and by ; for X € {Ty(s), Tx(s')} are defined by Egs. 3 and 4, o is the sigmoid
function, and as above we have introduced oy = —00 and ap41 = 00 to handle border
cases.

Proof (Proposition 1) Starting from Definition 2 and plugging in Qr, (s) as defined by Eq. 2,
it can be seen that

1 —_ —_
/O 1006 (F) — Oryiey(IPdr
M

1
N /0 | >80 ) ((ary sy = arys))r + brei = brysy.i) 1Pdr
i=0
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M

o(ait1) _
= Z/ i + by i Pdr (b
i—o Yo(ai)
_ % @i 7 + b golai g + by gl? |7 (12)
0 &i,k(p + ]) o(a;)
[m}

where in Eq. 12 the notation G(r)|Z = G(b) — G(a) is used. In Eq. 11, the integral is
over subintervals [0 (¢;), o (¢j+1)] of the interval [0, 1], and therefore the indicator function
8(r, i) can be removed. In Eq. 12 the integral is solved, exploiting that according to product
and chain rules

D @ik 4 bio)lai xr + bixl”

or aix(p+1
_ @@ ke + bik|” + @ikr + bi k) plai kr + bix|P” sign(@i kr + bi )ik
aik(p+1)
= |aj xr + bi "
The claim directly follows from Eq. 12. O

An important note with respect to the distance function d,(Wr(s), Ur(s')) is that its
closed-form computation given by Proposition 1 allows gradients to be propagated through
distance computations (as well as through embedding computations as discussed in Sect. 3)
to the parameters of the model I' defining the embedding. Moreover, all computations can
be expressed using standard building blocks available in common deep learning frameworks,
such that all gradients are available through automatic differentiation.

4.2 Loss Function

Deep metric learning trains models with loss functions that drive the model towards min-
imizing distances between pairs of instances from the same class (positive pairs) while
maximizing distances between pairs of instances from different classes (negative pairs).
Existing approaches differ in the way negative and positive pairs are selected and the exact
formulation of the loss. For example, triplet-based losses as introduced by [24] compare
the distance between an anchor instance and another instance from the same class (posi-
tive pair) to the distance between the anchor instance and an instance from a different class
(negative pair). However, comparing a positive pair with only a single negative pair does
not take into account the distance to other classes and can thereby lead to suboptimal gradi-
ents; more recent approaches therefore often consider several negative pairs for each positive
pair [20,27]. Inspired by these approaches, several negative pairs are considered for each
positive pair, leading to a loss function of the form

L= Z Z £(s1,52,53,54)

(51,82)€P (s3,84)eN

s3€{s1,82}
where P C Sp x Sp is a set of positive pairs and N' C Sp x Sp is a set of negative pairs of
instances, and £(sy, Sz, 3, S4) is a loss function that penalizes cases in which a negative pair
(s3, s4) has smaller distance than a positive pair (s, s2). A straightforward linear formulation
of the loss would be £(s1, $2, 83, 84) = d,, (W (s1), Wr(s2)) —d,(¥r(s3), Yr(ss)). However,
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only pairs of pairs that violate the distance criterion should contribute to the loss, leading to
£(s1,82,83,84) = max(0,d,(Wr(s1), Yr(s2)) — d,(¥Yr(s3), ¥r(s4))). This loss is further
replaced by a smooth upper bound using log-sum-exp, leading to the final Wasserstein-based
loss function

L= Z Z log (1_|_expdp(‘l’r(sl),‘Pr(sz))—dp(\llr(53),‘1’1"(54)))_ (13)
(51,2)€P (s3.84) €N
s3€{s1,s2}

Equation 13 is of similar structure as other losses used in the literature, including the angular
triplet loss [29], the lifted structured loss [20], and the N-pair loss [27].

It remains to specify how positive pairs P and negative pairs A are sampled for each
stochastic gradient descent step. In this paper, we use the approach of [27] for generating 7P and
N, which has been shown to give state-of-the-art performance in several studies [27,32,35],
in particular outperforming triplet-based sampling [24] and lifted structure sampling [20].
The approach constructs a batch of size 2N (where N is an adjustable parameter) by sampling
from the training data N pairs of instances P = {(s;, sj‘)}f\’: | from N different classes, such
that each pair (s;, sl.+) is a positive pair from a different class.! From the sampled batch,
a set of N(N — 1) negative pairs is constructed by setting A" = {(s;, sj)}f\” =1 Note that

1
Eq. 13 can be computed by first computing the embeddings of the 2N instancé:;‘sé in the batch,
and then computing the overall loss. Thus, although the computation is quadratic in N, the
number of evaluations of the deep neural network model I' is linear in the batch size.

5 Empirical Study

The proposed method is empirically studied in three biometric identification domains involv-
ing human eye movements, accelerometer-based observation of human gait, and EEG
recordings. As an ablation study, this section specifically evaluates which impact the different
components of the proposed method—the metric learning approach, the use of quantile layers
to fit the distribution of activations of filters across a sequence, and the Wasserstein-based
distance function—have on overall performance.

The methods are also compared against state of the art methods in the domain of biometric
identification from eye movements [1,23].

5.1 Data Sets

The empirical evaluation studies biometric identification based on eye movements, the gait,
or the EEG signal of a subject. In all domains, the data consist of sequential observations of
the corresponding low-level sensor signal—gaze position from an eye tracker, accelerometer
measurements, or EEG measurements—for different subjects. The task is to identify the
subject based on the observed sensor measurements.

The Dynamic Images and Eye Movements (DIEM) dataset [17] contains eye movement
data of 210 subjects each viewing a subset of 84 video clips. The video clips are of varying
length with an average of 95 seconds and contain different visual content, such as excerpts
from sport matches, documentary videos, movie trailers, or recordings of street scenes. The
data contain the gaze position on the screen for the left and the right eye, as well as a

I Source code can be found at https://github.com/abdelwahab/Quantile Aggregation.
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measurement of the pupil dilation, at a temporal resolution of 30 Hz. The eye movement
data of a particular individual on a particular video clip is thus given by a sequence of six-
dimensional vectors (horizontal and vertical gaze coordinate for left and right eye plus left
and right pupil dilation), that is, D = 6 in the notation of Sect. 3. The average sequence
length is 2850 and there are 5381 sequences overall.

The gait data comes from a study by [12] who collected the daily movement activity of 71
subjects for a period of 3 consecutive days. The recorded data consists of time series of 3D
accelerometer measurements recorded at a sampling rate of 100 Hz. For each point in time,
the measurement is a D = 6 dimensional vector consisting of the acceleration and velocity in
X, y, and z direction. In the original data set, a continuous measurement for 3 days has been
carried out for each individual. These long measurements contain different activities, but
also long idle periods (for example, during sleep). We concentrate on subsequences showing
high activity, by dividing the entire recording for each subject into intervals of length one
minute, and then selecting for each subject the 30 subsequences that had the largest standard
deviation in the 6-dimensional observations. This resulted in 2130 sequences overall (30 for
each of the 71 subjects), with a length of 7 = 6000 per sequence.

The EEG data comes from a study by [36] who conducted EEG recording sessions with
121 subjects, measuring the signal from 64 electrodes placed on the scalp at a temporal
resolution of 256 Hz of the subjects while viewing an image stimulus. The original aim of
the study was to find a correlation between EEG observations and genetic predisposition
to alcoholism, but as subject identifiers are available for all recordings the data can also be
used in a biometric setting. Each subject completed between 40 and 120 trials with 1 second
of recorded data per trial. The resulting data therefore consist of sequences of D = 64
dimensional vectors with a sequence length of 256 (one trial for one subject).

5.2 Problem Setting

As usual in metric learning, a setting is studied in which there are distinct sets of subjects
at training and test time. The embedding model is first trained on a set of training subjects.
On a separate and disjoint set of test subjects, we then evaluate to what degree the learned
embedding assigns small distances to pairs of test sequences from the same subject, and large
distances to pairs of sequences from different subjects. This reflects an application setting
in which new subjects are registered in a database without retraining the embedding model.
It also naturally allows the identification of imposters, that is, subjects who have never been
observed (neither during training nor in the database of registered subjects) and try to gain
access to the system.

In all three domains, we therefore first split the data into training and test data, such that
there is no overlap in subjects between the two. For training the embedding model, we use
data of 105 of the 210 subjects (eye movements), 36 of 71 subjects (gait data), or 61 of 121
subjects (EEG data). For the eye movement domain, we additionally ensure that there is no
overlap in visual stimulus (video clips) between training and test data by splitting the set
of all videos into training and test videos and only keeping the respective sequences in the
training and test data. During training, each sequence constitutes an instance and the subject
its class, and we train either embedding models using metric learning as discussed in Sect. 4
or, as a baseline, multiclass classification models (see Sect. 5.3 for details). We also set apart
the data of 20% of the training individuals as validation data to tune model hyperparameters.

At test time, a biometric application setting is simulated by first sampling, for each test
subject, a random subset of the sequences available for that subject as instances that are put
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in an enrollment database. We then simulate that we observe additional sequences from a
subject which are compared to the sequences of all subjects in the enrollment database. An
embedding is good if the distance between these additional sequences and the enrollment
sequences of the same subject is low, compared to the distance to the enrollment sequences
of other subjects. More precisely, for each subject we use all except five of the sequences
available for that subject as enrollment sequences. We then study how well the subject can
be identified based on observing n of the remaining sequences, for n € {1, .., 5}. Given
observed sequences sy, ..., S, (representing a subject thatis unknown at test time), we compute
distances to all subjects j as d; = % >0, d(si, sij) where s;; is the sequence of subject j
in the enrollment database with minimal distance to s;. Here, the definition of the distance
function d is method-specific (see below for details).

Firstaverification scenario is studied. This is the binary problem of deciding if the observed
sequences S, ..., S, match a particular subject j, by comparing the computed distance d;
to a threshold value. Varying the threshold trades of false-positive versus false-negative
classifications, yielding a ROC curve and AUC score. The ROC curve plots the true positive
rate (fraction of cases in which a matching sequence was recognized as such) as a function of
the false-positive rate (fraction of cases in which the sequence did not match the individual
but was classified as matching) when varying the threshold value. AUC denotes the area under
this curve. Note that an AUC of one would correspond to perfect predictions (all matching
sequences classified as such and no false-positives), while an AUC of 0.5 corresponds to
random prediction performance. Note that this verification scenario also covers the setting
in which in imposter is trying to get access to a system as a particular user; the false-positive
rate is the rate at which such imposters would be accepted.

Then a multiclass identification scenario is studied, where the model is used to assign
the observed sequences si, ..., s, to a subject enrolled in the database (the subject j* =
arg min; d;). This constitutes a multiclass classification problem for which (multiclass) accu-
racy is measured. In this experiment, number of subjects under study is also varied, by
randomly sampling a subset of subjects which are enrolled in the database; the same subset
of subjects is observed at test time. The identification problem becomes more difficult as the
number of subjects increases.

Finally, the robustness of the model to imposters in the multiclass identification scenario is
studied, an experiment we denote as multiclass imposters. This reflects applications in which
access to a system does not require a user name, because the system tries to automatically
identify who is trying to gain access. In this experiment, half of the test subjects play the
role of imposters who are not registered in the enrollment database. As in the multiclass
identification setting, observed sequences are matched to the enrolled subject with minimum
distance. This minimum distance is then compared to a threshold value; if the threshold is
exceeded, the match is rejected and the observed sequences are classified as belonging to
an imposter. Varying the threshold trades off false-positives (match of imposter accepted)
versus false-negatives (match of a subject enrolled in the database rejected), yielding a ROC
curve and AUC. Correctly rejecting imposters is harder in this setting because it suffices for
an imposter to successfully impersonate any enrolled subject. In this experiment we also vary
the number of subjects enrolled in the database.

In all three scenarios, the split of sequences into enrollment and observed sequences is
repeated 10 times to obtain standard deviations of results. Moreover, accuracies and AUCs
will increase with increasing n, as identification becomes easier the more data of an unknown
subject is available.
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Fig. 2 The architecture used in the empirical study with an input sequence and an output as an embedding
describing the input sequence. Each Convolution layer is a 1D convolution with a PReLU activation. The
sequential architecture endings with a feature aggregation layer

5.3 Methods Under Study

Generally, the deep convolutional architecture proposed by [1] for biometric identification
is studied as in Fig. 2, which consists of 16 stacked 1D-convolution layers with PReLU
activation functions. In the experiments, the aggregation operation, loss function, and train-
ing algorithm are varied in order to evaluate the impact of these components on overall
performance.

OP-WL: The method proposed in this paper, combining the quantile embeddings of Sect. 3
with the Wasserstein-based loss function and metric learning algorithm of Sect. 4. In all
experiments, we set the parameter p of the distance function (see Definition 2) to one, that is,
we use the Earth Mover Distance variant of the Wasserstein distance. The convolutional neural
network architecture I" of Sect. 3 is given by 16 stacked convolution layers with parametric
RELU activations as defined by [1]. The number of sampling points for the quantile function
is M = 16. At test time, distance between instances is given by the distance function from
Definition 2.

QP-NPL: This method uses the same network architecture and quantile embedding as QP-
WL. However, the resulting quantile embedding is then flattened into an K - M vector
embedding, with entries Qrk(s)(a(am)) for k € {1,..., K} and m € {1, ..., M}. Then the
standard N-pair loss, which is based on cosine similarities between embedding vectors [27],
is used for training. At test time, the distance between instances is given by negative cosine
similarity. This method utilizes quantile-based aggregation and metric learning, but does not
employ our Wasserstein-based loss function.

MP-NPL: This method uses the same basic network architecture as QP-NPL, but uses
standard max-pooling instead of a quantile layer for global aggregation. This results in a
K -dimensional embedding vector. As for QP-NPL, the model is trained using metric learn-
ing with the N-pair loss. At test time, distance is given by negative cosine similarity. This

baseline uses metric learning, but neither quantile layers nor the Wasserstein-based loss
function.

QP-CLS: This baseline uses the same network architecture and flattened quantile embedding
as QP-NPL, but feeds the flattened embedding vector into a dense classification layer with
softmax activation. The models is trained in a classification setting using multiclass crossen-
tropy. Distance at test time is given by negative cosine similarity. This model is identical to
the model presented in [1], except that we remove the final classification layer at test time to
generate embeddings for novel subjects.
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Table 1 Area under the ROC curve with standard error for all methods and domains in the verification setting
for varying number n € {1, 2, 3, 4, 5} of observed sequences

Eye data 1 Video 2 Videos 3 Videos 4 Videos 5 Videos
QP-WL 0.9466 +0.0032 0.9716+£0.0020 0.9799+0.0013 0.9837 £0.0008 0.9860 +0.0005
QP-NPL 0.9345+£0.0033 0.9584+0.0027 0.9667£+0.0020 0.9705+0.0014 0.9738+0.0010
MP-NPL 0.8890£0.0035 0.9232+0.0028 0.9334+0.0017 0.9392+0.0014 0.943740.0016
QP-CLS 0.9007 £0.0053 0.9318+£0.0029 0.9424 +0.0025 0.9503£0.0025 0.9538 +0.0026
Rigas et al. (2016) 0.787240.0046 0.8649£0.0054 0.8997+0.0030 0.9190£0.0031 0.9319+0.0029
Eye data 2 features 27 Seconds 54 Seconds 81 Seconds 108 Seconds 135 Seconds
QP-WL 0.8971+£0.0072 0.8988 +£0.0056 0.9206+0.0010 0.9548+0.0010 0.9667 +0.0009
Jageretal. (2019) 0.7627+£0.0083 0.8326+0.0057 0.8629 +0.0032 0.8833£0.0026 0.8988+0.0030
Shi and Jain (2019) 0.767040.0062 0.8042+0.0039 0.8272+£0.0022 0.8425+0.0017 0.85124+0.0019
Gait data 1 Minute 2 Minutes 3 Minutes 4 Minutes 5 Minutes
QP-WL 0.9923 £0.0008 0.9963+0.0003 0.9971+0.0003 0.9974£0.0002 0.9978 +0.0001
QP-NPL 0.9889£0.0009 0.9932+0.0004 0.9943 4+0.0003 0.9947 £0.0002 0.9951 +£0.0002
MP-NPL 0.9459 £0.0027 0.9624£0.0027 0.9690+0.0021 0.9735+£0.0016 0.9757+0.0012
QP-CLS 0.9579£0.0040 0.9756+£0.0018 0.9812+0.0016 0.9856+0.0011 0.9878+0.0008
Shi and Jain (2019) 0.961140.0026 0.971040.0027 0.9756£0.0014 0.9769+0.0010 0.9786+0.0010
EEG data 1 Second 2 Seconds 3 Seconds 4 Seconds 5 Seconds
QP-WL 0.9968 £0.0006 0.9985+0.0001 0.9988 +0.0001 0.9991=+0.0000 0.9992 +0.0000
QP-NPL 0.9927£0.0005 0.994140.0005 0.9953 +0.0003 0.9955=£0.0002 0.9959=+0.0001
MP-NPL 0.9611£0.0012 0.9687+0.0005 0.9713 £0.0005 0.9722£0.0005 0.9732+0.0005
QP-CLS 0.9796 £0.0017 0.9868 £0.0009 0.9901£0.0010 0.9920+0.0006 0.9923 +0.0007
Shi and Jain (2019) 0.894040.0019 0.91844+0.0021 0.927240.0017 0.9314£0.0011 0.9368 +0.0008

The bold values in the table indicate the highest recorded AUC value for each data set and observation setting

Shi and Jain (2019): The distributional embedding method studied by Shi and Jain [26]. This
method represents the distribution over learned features by Gaussian distributions represented
by means and variances, and uses a loss function that aims to maximize the mutual likelihood
score for genuine pairs (see [26] for details). As embedding network, we use the same
architecture as for the other four methods, see Fig. 2.

For all methods, training is carried out using the Adam optimizer with learning rate
0.0001 for 50,000 iterations, and the regularizer of the PReLU activation function is tuned
as a hyperparameter on the validation set as in [1].

5.4 Results
The empirical results for the different domains are presented and discussed in turn.
5.4.1 Eye Movements

Table 1, upper third, shows area under the ROC curve for all methods and varying number n
of observed sequences in the eye movement domain. As expected, AUC increases with the
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Fig. 3 Left: ROC curves in the eye movement domain for all methods using n = 5 observed sequences.
Shaded region in ROC curves indicates standard error. Right: Training (dashed lines) and test (solid lines) loss
during training as a function of the number of training iterations

number n of sequences observed at test time. Comparing QP-WL and QP-NPL, we observe
that the Wasserstein-based loss introduced in Sect. 4, which works on the distributional
embedding given by the piecewise linear approximations of the quantile functions, clearly
outperforms flattening the distributional embedding and using N-pair loss. Comparing MP-
NPL with QP-NPL and QP-WL shows that using quantile layers improves accuracy compared
to max-pooling even if the quantile embedding is flattened (and more so if Wasserstein-based
loss is used). Classification training (QP-CLS) reduces accuracy compared to metric learning
(QP-NPL). The difference between the simplest method QP-CLS and the proposed model
QP-WL is substantial: at n = 1 AUC increases from 0.9007 to 0.9466, an almost two-fold
reduction in AUC error. Figure 3 (left) shows ROC curves in the verification setting for
n = 5, again showing significant improvement for using the Wasserstein-based loss, metric
learning, and quantile representation. Figure 3 (right) shows training (dashed lines) and test
(solid lines) loss during training as a function of the number of training iterations.

Figure 4 (left) shows multiclass identification accuracy for n = 5 observed sequences
as a function of the fraction of the 105 subjects who are enrolled. Relative results for the
different methods are similar as in the verification setting. Accuracy decreases slightly when
more subjects are enrolled, as the multiclass problem becomes more difficult. Figure 4 (right)
shows the robustness of the model to multiclass imposters as a function of the fraction of the
105 subjects who are enrolled (up to 50%, as half of the subjects are imposters). We observe
that QP-WL is much more robust to imposters than the baseline methods.

In the eye movement domain, we also compare against the state-of-the-art model by [13],
denoted Jiger et al. (2019). Jiger et al. (2019) uses angular gaze velocities averaged over
left and right eye as input, which we compute from our raw data. The setting of [13] is
replicated by training the model using multiclass classification and using the last layer before
the classification layer as the embedding at test time. The Jiger et al. (2019) architecture
cannot deal with variable-length sequences, we therefore split the variable-length sequences
in our data into shorter sequences of fixed length, namely the length of the shortest sequence
(27 s). For a fair comparison, we also reduce the information given to our model in this
experiment: using only the average gaze point rather than left and right gaze point separately,
removing pupil dilation, and using the same fixed-length sequences.

Table 1, in section "Eye data 2 features", shows area under the ROC curve for our method
QP-WL and Jéger et al. (2019) for varying number n of observed sequences on the simplified

@ Springer



3764 A. Abdelwahab, N. Landwehr

Eye Movements Multiclass Identification Eye Movements Multiclass Imposters
1F 1F
0.95|
509 I\ 0.9
b .
_
308 \\{ e
O 3
© 0.8
c
oo7 S 075
s —— QP-WL
K] —— QP-NPL 0.7p
o6 ——— MP-NPL
o.
n QP-CLS J———yY
8 Rigas el at. 2016 06ll —— ap-NPL
0.5 ——— MP-NPL
0.55| QP-CLS
Rigas el at. 2016
04 . . . . o. .
05

0.2 1 0.1

0.4 0.6 0.8 0.2 013 0‘.4
Fraction of enrolled subjects Fraction of enrolled subjects
Fig.4 Left: Identification accuracy in the multiclass identification scenario for the eye movement domain and
n = 5 observed test instances as a function of the fraction of subjects that are enrolled. Right: area under the
ROC curve for multiclass imposters as a function of the fraction of subjects enrolled. In the imposter scenario,
50% of subjects are imposters and therefore never enrolled. Error bars indicate the standard error

Eye Movements Verification ,___Multiclass Identification . Multiclass Imposters
1.0. I ——QP-WL 0.95| — QP-WL
) / z 0.9 —— Jager et al. (2019) A —— Jager et al. (2019)
gos Cos 09
by 3 0.85,
206 807 o %8
% c 06 So075
Q.4 o <
o ai 05 0.7]
) & 04 065
2 0.2 G 0.6
P-WL 03
0.0 = ?ager et al.(2019) g 055
5
00 02 04 06 08 1.0 0257 04 0.6 08 1 0557 02 0.3 04 05
False positive rate Fraction of enrolled subjects Fraction of enrolled subjects

Fig. 5 Comparison between QP-WL and Jdger et al. (2019) in the eye movement domain: area under ROC
curve in verification scenario (left), identification accuracy in multiclass identification scenario (center), and
robustness of model to multiclass imposters (right). In this experiment, the data is simplified for both methods
to match the requirements of Jager et al. (2019), see text for details. Results of QP-WL therefore differ from
results presented in Figs. 3 and 4. Error bars indicate the standard error

data. It can be observed that QP-WL achieves much higher AUC values. Comparing to the
results on the full eye movement data, it can be observed that accuracies are reduced for our
model, but the model outperforms Jéger et al. (2019) by a wide margin. Figure 5 shows ROC
curves for the verification scenario (left) and identification accuracy (center) as well as AUC
in the imposter scenario for QP-WL and Jager et al. (2019). Again, comparing to Figs. 3 and
4 we observe a reduction in accuracy, but QP-WL strongly outperforms Jager et al. (2019).
We note that the model of [13] is focused on microsaccades, which are likely not detectable
in our data due to the low temporal resolution (30 Hz compared to 1000 Hz in the study by
[13]), which might explain the relatively poor performance of the model on our data.

We finally compare against the model of Shi and Jain (2019) in the eye movement domain.
Because this model is also formulated for fixed-length vectors rather than variable-length
sequences, we again carry out the comparison on the simplified eye movement data. Table 1,
in section "Eye data 2 features", shows area under the ROC curve for Shi and Jain (2019) in
comparison to QP-WL and Jéger et al. (2019). QP-WL yields higher AUC for all numbers n
of observed sequences.
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Fig.6 Left: ROC curves in the gait domain for all methods using n = 5 observed sequences. Shaded region in
ROC curves indicates standard error. Right: Training (dashed lines) and test (solid lines) loss during training
as a function of the number of training iterations

5.4.2 Gait

Table 1, center third, shows area under the ROC curve for all methods and varying number
n of observed sequences in the gait domain. Generally, it can be observed that individuals
can be identified very accurately based on the accelerometer observations, with the area
under the ROC curve close to the optimal value of one. As expected, predictive performance
increases with increasing amounts of sensor data available to make a decision (going from
one minute to five minutes of data). In terms of relative performance between the different
methods, clear benefits can be observed when using the proposed loss function based on
Wasserstein distance (QP-WL vs. QP-NPL), when using quantile layers instead of max-
pooling aggregation (QP-WL and QP-NPL vs. MP-NPL), and when using metric learning
rather than classification-based training (QP-NPL vs. QP-CLS). Compared to the simplest
model QP-CLS, the proposed method increases the AUC from 0.9579 to 0.9923, a reduction
in AUC error of more than a factor of five. Figure 6 (left) shows ROC curves for verification
atn = 51in the gait domain. Again, ROC curves show clear benefits for the Wasserstein-based
loss function, metric learning approach, and quantile-based representation. Figure 6 (right)
shows training (dashed lines) and test (solid lines) loss during training as a function of the
number of training iterations in the gait domain.

Figure 7 (left) shows identification accuracy as a function of the fraction of subjects
enrolled in the gait domain; in this setup the ordering of methods in terms of performance is
the same but the difference between QP-WL and QP-NPL less pronounced. Figure 7 (right)
shows robustness to multiclass imposters, with again a clear advantage of QP-WL over the
baselines.

Table 1, center third, also shows results for the model of Shi and Jain (2019) in the Gait
domain. In this domain, the Shi and Jain model is competitive with MP-NPL and QP-CLS,
but does not reach the AUC of QP-WL and QP-NPL, showing that the combination of
quantile embeddings and Wasserstein-based loss function is again superior to distributional
embeddings based on Gaussian distributions.
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5.4.3 EEG

Table 1, bottom third, shows area under the ROC curve for all methods and varying number n
of observed test sequences in the EEG domain. Relative performance of methods is generally
similar as in the other two domains. QP-WL clearly outperforms the closest baseline, reducing
1-AUC by between 56% (n = 1) and 80% (n = 5). Figure 8 (left) shows ROC curves in the
verification setting. Figure 8 (right) shows training (dashed lines) and test (solid lines) loss
during training as a function of the number of training iterations in the EEG domain.

Figure 9 (left) and 9 (right) show identification accuracy as a function of the fraction of
subjects enrolled and robustness of the models to multiclass imposters. As in the gait domain,
differences are more pronounced in the latter setting.

Table 1, bottom third, also shows results for the model of Shi and Jain (2019) in the EEG
domain. In this domain, the Shi and Jain model does not yield competitive results.
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6 Conclusions and Discussion

We developed a model for distributional embeddings of variable-length sequences using
deep neural networks. Building on existing work on quantile layers, the model represents an
instance by the distribution of the learned deep features across the sequence. We developed
a distance function for these distributional embeddings based on the Wasserstein distance
between the corresponding distributions, and from this distance function a loss function for
performing metric learning with the proposed model. A key point about the model is end-
to-end learnability: by using piecewise linear approximations of the quantile functions, and
based on those providing a closed-form solution for the Wasserstein distance, gradients can
be traced through the embedding and loss calculations.

In our empirical study, distributional embeddings outperformed standard vector embed-
dings by alarge margin on three data sets for biometric identification based on eye movements,
gait, and EEG measurements. Key empirical results that show this advantage are presented
in Table 1 and the ROC curves shown in Fig. 3 for eye movement data, Fig. 6 for gait data,
and Fig. 8 for EEG data, each time comparing QP-WL and QP-NPL. From a theoretical
perspective, these gains can be explained by the intuition that distributional embeddings are
better able to capture the distribution of local, short-term pattern in the sequences, which are
a key signal for distinguishing subjects in the domains we study.

In principle, the method is generally applicable to any sequence classification problem
were the goal is to obtain embeddings of sequences, as for example in most biometric settings.
The particular strength of the probabilistic embedding and loss function proposed in this paper
lies in being able to capture well the distribution of local patterns appearing in the sequences,
which is particularly relevant for the biometric identification problems we have studied. It
will likely also work well on other biometric problems where similar low-level sensor data is
used for identification. However, the model will be likely less useful for sequence data were
more large-scale or long-range patterns are important.
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