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Abstract
In this paper, a new hybrid time series forecasting model based on the complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) and a temporal convolu-
tional network (TCN) (CEEMDAN-TCN) is proposed. TheCEEMDANis used to decompose
the time series data and the TCN is used to obtain a good prediction accuracy. The effec-
tiveness of the model is verified in univariate and multivariate time series forecasting tasks.
The experimental results indicate that compared with the long short-termmemory model and
other hybrid models, the proposed CEEMDAN-TCN model shows a better performance in
both univariate and multivariate prediction tasks.

Keywords Time series forecasting · Temporal convolutional network · Ensemble empirical
mode · Hybrid model

1 Introduction

Time series (or time sequence) is a significant type of data, which is defined as a series of
numerical values of an occurrence in time order. It is widely distributed in many fields, such
as clinical medicine [1], power science [2], meteorology [3], finance [4], etc. Time series
affects every aspect of our life, and its analysis and prediction has become a research hotspot.

Time series prediction is to model the regular pattern between historical data and future
values through the prediction model on the premise of the principle of continuity assumption,
so as to achieve the quantitative estimation of the predicted values. Time series forecasting
is of great importance in industrial application and daily life. For example, the accurate
prediction of power load data can not only facilitate the rational arrangement of energy
production, but also avoid the waste caused by the overproduction of electricity [5]. Short-
term traffic flow prediction can be used to optimize the urban traffic system and reduce the
likelihood of traffic accidents [6]. Therefore, an exact time sequence prediction is of great
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value inmany application scenarios. The current predictionmodels are facing two challenges:
first, there are time correlations and dependencies between variables in the input sequence.
How to fully extract and map such complex sequence dependencies with a high-precision
prediction model needs to be solved. Second, with the development of the era of big data,
the time series is becoming larger in scale and more diverse, and the data presents complex
characteristics such as nonlinear, non-stationary and irregularity. This makes it harder for the
model to extract dependencies between data.

The basic prediction models can be roughly divided into three types: traditional statistical
methods, machine learning methods and deep learning methods. In the statistical methods,
the Autoregressive Integral Moving Average (ARIMA) is one of the most classic models.
Although theARIMA is applicable to the prediction of relatively stable and linear data, it can-
not effectively forecast the actual field data accurately. After that, machine learning methods,
such as Bayesian method, Support Vector Machine (SVM) and Support Vector Regression
(SVR), were used for the prediction.Machine learningmethods can learnmapping rules from
a large amount of historical data to build nonlinear prediction models. Therefore, through
iterative training and learning approximations, the machine learning methods can achieve a
higher prediction accuracy than the statistical methods. However, the prediction performance
of machine learning methods is very dependent on delicate and tedious feature engineering,
which makes it unable to obtain a relatively ideal prediction accuracy in many application
scenarios. In recent years, deep learning has become more and more popular in time series
prediction task because of its powerful feature extraction ability and excellent generalization
performance. As we know, the recurrent neural network (RNN) in deep learning methods is
considered to be one of the most classical sequence processing networks. RNN is a kind of
neural network with feedback structure; it obtains the characteristic information of sequence
data in the time direction by passing down the state information of hidden layer, that is,
the dependence information between data. Because of this special structure, RNN model
has better performance in processing text, speech and other sequence data. However, when
the length of the input sequence increases, RNN needs to add more hidden layers, that is,
increase the number of network layers, whichmakes RNNprone to problems such as gradient
disappearance and affects the prediction accuracy of the model. Aiming at the deficiency of
RNN, an improved model, long short-term memory (LSTM) network, was proposed. LSTM
utilizes three gate structures to process the information and introduces Sigmoid activation
function to limit the range of output values, so as to alleviate the problem of gradient dis-
appearance and improve the prediction accuracy. In general, LSTM is considered to be one
of the state-of-the-art methods for dealing with sequence problems. However, the defects of
LSTM are obvious. Although the gate structure in LSTM can alleviate the gradient vanishing
and explosion problems, these problems still exist when dealing with very long sequences.
What’s more, each cell in LSTM is equivalent to a fully connected (FC) layer, which means
that each LSTM unit needs four FC layers. When the time span is large, the quantity of
computation is enormous, which raises the difficulty of model training. Recently, a special
CNN, temporal convolutional network (TCN), overcomes these shortcomings and performs
better than LSTM in temporal sequence prediction tasks.

However, the aforementionedmethods only emphasize the predictionmodule of themodel,
thereby ignoring the influence of data and lacking an effective data preprocessing. In order
to alleviate the effect of data fluctuation, an appropriate data preprocessing is necessary.

In view of the above mentioned challenges, we propose a new hybrid model based on
CEEMDAN algorithm and multiple TCNs, called CEEMDAN-TCN model, to complete
the time series prediction task. The CEEMDAN algorithm can process nonlinear and non-
stationary time sequences adaptively. The original time sequence is decomposed into a certain
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number of componentswith various frequencies bymeans ofCEEMDANalgorithm, and then
these components are respectively used as the inputs of the multiple TCNs. Finally, all the
outputs from the multiple TCNs are integrated to form the ultimate forecast outcome. The
simulation results indicate that in contrast with the LSTM model and other hybrid models,
the proposed CEEMDAN-TCN model shows a better performance in both univariate and
multivariate forecasting tasks.

2 RelatedWork

In the field of time sequence forecasting, researchers have done a lot of research work,
proposed many different prediction schemes, and conducted experimental verification on
various time series data such as wind speed data, traffic flow data etc. Finally, with continuous
research and practice, the prediction accuracy has been greatly improved.Generally speaking,
the research can be roughly divided into four aspects: statistical methods, machine learning
methods, deep learning methods and hybrid methods.

In the statistical methods, the ARIMA and its variants are widely studied. For instance,
Haneen et al. [7] proposed a forecasting model based on ARIMA to predict the COVID-19
spread. In this method, the accuracy of ARIMA model was investigated and validated over
a relatively long period of time using Kuwait as a case study and the experimental results
showed that the actual values were within bounds of prediction at 95% confidence interval.
Mao et al. [8] applied a seasonal auto-regressive integratedmoving average (SARIMA)model
to forecast the incidence of tuberculosis in China and the result showed that the SARIMA
is a useful tool for monitoring epidemics. However, the ability of statistical methods to deal
with complex and nonlinear data is limited.

Compared with the statistical methods, the machine learning methods can process and
model more complex data, among which SVR and SVM are commonly used models. For
example, Nieto et al. [9] utilized four different models, including SVM, ARIMA, vector
autoregressive moving-average (VARMA) and multilayer perceptron (MLP), to predict the
value of PM10 in northern Spanish city. The simulations showed that the SVM model per-
forms better than the other models when forecasting one month ahead and also for the
following seven months. Liu et al. [10] proposed the network traffic forecast model of SVR
algorithm optimized by global artificial fish swarm algorithm (GAFSA). In this method, the
optimum training parameters used for SVR could be calculated by GAFSA, which made
the forecast more accurate and the prediction results of the proposed model is more stable
with an improved precision of more than 89%. Although the machine learning method has a
good effect in some prediction tasks and has a solid mathematical theoretical foundation as
support, its effect depends on expert experience and manual feature selection, which affect
its practical values.

In recent years, models on the basis of deep learning are gaining popularity. Among them,
long short-term memory (LSTM) and its related models are of prominent importance. Sun
et al. [11] adopted an LSTM model to predict the ionospheric vertical total electron content
(TEC) sequence over Beijing and the obtained root mean square error (RMSE) between
the predicted values and the ground-truths was 30% lower than a multi-layer perceptron
(MLP) network. Hu et al. [12] proposed a model based on a variant of LSTM, in which
the forget and input gates were combined into an update gate, and a Sigmoid layer was
utilized to control the information update. In this way, the parameters of the model were
reduced and the memory module was simpler. Li et al. [13] applied a model which utilizes an
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evolutionary attention-based LSTM (EA-LSTM) training with competitive random search in
multivariate prediction task. This model introduces an evolutionary attention mechanism to
transfer the shared parameters, which can confirm the pattern for importance-based attention
sampling during temporal relationship mining. The experimental results have illustrated that
the proposed model can achieve competitive prediction performance compared with other
baseline methods. Lin et al. [14] proposed a novel end-to-end hybrid neural network, called
TreNet, to learn local and global contextual features for predicting the trend of time series.
TreNet consists of a convolutional neural network (CNN) and an LSTM network. This model
exploited the CNN to obtain local information and the LSTM to get the long-term dependence
of data. In [15], Ding et al. focused on the need of flood prediction and utilized an interpretable
Spatio-Temporal Attention LSTM (STA-LSTM) model. This model was able to enhance the
ability of LSTM to capture data features. After the LSTMmodel, Bai et al. [16] proposed the
TCN model has received an extensive attention due to its excellent performance. Yin et al.
[17] proposed amulti-temporal-spatial-scale convolutional network in power load forecasting
tasks. The experimental results proved that the model was able to obtain a higher accuracy
than other short-term power load prediction models. Zhu et al. [18] explored the TCN model
to predict the wind power data sequences. The designed method solved the problems of long-
term dependencies and reduced the performance degradation of deep convolutional model in
sequence prediction by dilated causal convolutions and residual connections. Lin et al. [19]
investigated the application of TCN for solar power forecasting and the simulation results
showed that the performance of the proposed model is enhanced in contrast with the LSTM
and gated recurrent unit (GRU) models. Wang et al. [20] applied a TCN model for short-
term load forecasting. The experimental results showed that the TCNmodel achieved a higher
forecast precision with less training time and computational memory. Themodel’s evaluation
index, RMSE, decreased by 51 and 28% compared with SVM and LSTM, respectively.

The study found that using the primary time series data directly to establish prediction
model is subject to substantial errors and the characteristics of original data must be fully
analyzed and preprocessed. Therefore, the ensemble empiricalmode decomposition (EEMD)
and its advancedversion, the complete ensemble empiricalmodedecompositionwith adaptive
noise (CEEMDAN) [21, 22], were successively proposed, and further, these algorithms were
combined with the deep learning methods to form a hybrid model. Chen et al. [23] applied a
combination model to enhance the forecast accuracy of financial time sequences. This model
consisted of an empirical mode decomposition (EMD) and an attention-based LSTMmodel,
obtaining an RMSE decrease of 36% compared with the original LSTM. Xuan et al. [24]
established a novel prediction model based on EMD, LSTM and Cubic Spline Interpolation
(CSI) to improve the accuracy and efficiency of the short-term stock price trend prediction.
Cao et al. [25] utilized the CEEMDAN algorithm and LSTM to forecast the stock market
prices. Compared with support vector machine (SVM) [26–28] and MLP network [29, 30],
the experimental results indicated that Cao’s algorithm obtained a better prediction in one-
step-ahead forecasting tasks.

3 Methodology

3.1 CEEMDAN Algorithm

The fluctuation and complexity of the original time sequence will affect the function-fitting
and subsequent convergence of the TCN model, thus limiting the prediction accuracy of the
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TCN model. In response to this difficulty, the original nonlinear and non-stationary time
sequence is preprocessed by the CEEMDAN algorithm.

Early in 1998, Huang et al. [31] proposed an adaptive signal time–frequency processing
method, called EMD algorithm, to decompose a time sequence according to the time scale
information without pre-setting of any basis function. In EMD, the original time series can
be broken up into a certain amount of intrinsic mode functions (IMFs) and a residual (Res).
Different IMF components represent different features of the original data at different time
scales [32]. The IMF is regarded as a specific factor that affects the time series, while the Res
determines the overall trend of the signal. Although EMD algorithm has an edge over dealing
with time series, the “mode mixing” is its defect [33]. Mode mixing refers to the existence of
very analogous oscillations in different IMF components or very different amplitudes in an
IMF. It can cause the adjacent IMFwaveforms to be aliasing and not able to represent the real
physical process. By adding a white Gaussian noise to the signal, the EEMD algorithm is able
to eliminate the mode mixing in EMD [34]. However, eliminating the noise needs a repeated
calculation of average, which spends a considerable amount of computation time. Moreover,
the reconstructed signal including the residual noise will cause reconstruction errors and the
noisy signal may produce a number of additional IMF components.

To solve the aforementioned problems, P. Flandrin et al. put forward the CEEMDAN algo-
rithm [35]. The CEEMDAN algorithm is a modified form of EEMDwith several advantages.
It can eliminate mode mixing more efficiently, with a reconstruction error being almost zero
and a considerable reduction of computing time [36]. The flowchart of CEEMDAN is shown
in Fig. 1 and the decomposition procedure can be given as follows:

Fig. 1 Flow chat of the CEEMDAN algorithm
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(1) Suppose one has a signal x(t), t � 0, 1, . . . , T − 1, into which a white Gaussian noise
with zero mean and unit variance,N (0, 1), is added:

yi (t) � x(t) + ε0δi (t), i � 1, 2, . . . , K (1)

where K is the number of white Gaussian noises, ε0 is a coefficient of intensity, δi (t)
represents the i th realization of a random Gaussian process. From (1), K noisy versions
of signals are obtained.

(2) Thefirst IMF, Im f 1(t), is calculated by averaging all the first decomposition components
of EMD:

Im f1(t) � 1

K

K∑

i�1

EMD1(yi (t)) (2)

r1(t) � x(t) − Im f1(t) (3)

where EMD1(·) represents the first IMF component generated by EMDalgorithm, r1(t)
is the residual for the first stage.

(3) The signal r1(t) + ε1EMD1(δi (t)) can be further decomposed by EMD and combined
to obtain the second IMF component:

⎧
⎪⎪⎨

⎪⎪⎩

Im f2(t) � 1

K

K∑

i�1

EMD1(r1(t) + ε1EMD1(δi (t)))

r2(t) � r1(t) − Im f2(t)

(4)

where r2(t) is the residual of the second stage.

The j th IMF component and j th residual can be computed as:

⎧
⎪⎪⎨

⎪⎪⎩

Im f j (t) � 1

K

K∑

i�1

EMD1
(
r j−1(t) + ε j−1EMDj−1(δi (t))

)

r j (t) � r j−1(t) − Im f j (t)

(5)

where EMDj−1(·) means the ( j − 1)th IMF component obtained by EMD algorithm, r j (t)
is the residual after the j th decomposition.

(5) j → j + 1, Eq. (5) is repeated until the residual r j (t) satisfies a preset end standard:

T−1∑

t�0

∣∣r j−1(t) − r j (t)
∣∣2

r2j−1(t)
≤ Ds (6)

where Ds is an empirical threshold value [37]. Suppose j � N when the decomposition
procedure stops.

Finally, the time sequence x(t) can be expressed as:

x(t) �
N∑

n�1

Im fn(t) + rN (t) (7)
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3.2 Temporal Convolutional Network

In time sequence prediction, the objective of a mapping function,F , is to learn a mapping
from input series x1, x2, . . . , xt to output valuesyt . Formally, in univariate prediction task,
there is:

ŷt � F(x1, x2, . . . , xt ) (8)

where xt , yt ∈ R, and ŷt is an estimate of the real target value yt .
Similarly, in multivariate prediction task, there is:

ŷt � F(x1, x2, . . . , xt ) (9)

where xt , yt ∈ R
n , and ŷt is an estimate of the real target value yt .

The mapping function F is obtained by a supervised learning. Additionally, the mapping
function must conform to the causal constraint that ŷt relies only on x1, x2, . . . , xt rather
than any “future” inputs xt+1, xt+2, . . . , xT .

Traditional convolutional neural network does not conform to the causal constraints.More-
over, it is not suitable for time series modeling because the receptive field of the network is
very small, which is not conducive to capturing long-term dependent information. In order
to solve these two problems, a special convolutional neural network, namely TCN, was pro-
posed. A TCN model consists of three parts: causal convolution, dilated convolution and
residual connection.

3.2.1 Causal Convolution

When handling with the sequential difficulty, the temporal order of data that is the causality
between the data needs to be considered. Therefore, an improvement is made on the ordinary
CNN, and the causal convolution is explored. Causal convolution indicates that the present
output of the upper network layer only relies on the historical and present input of the lower
network layer. The visualization of causal convolution is described in Fig. 2. The causal
convolution also uses padding to ensure the shape of the output to be the same as that of
the input. But compared with the traditional convolution network, causal convolution uses
one-sided padding because of the causal constraints [38]. Although causal convolution meets

Time

Output

Hidden_layer

Hidden_layer

Input

ty

tx

Casual convolution

Zero padding

Fig. 2 Visualization of causal convolution with filter size k � 2
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the condition of causal limitation, it has a serious problem, that is, the receptive field is greatly
limited. In Fig. 2, when the convolution filter size is 2 and the number of network layers is
4, the receptive field of causal convolution is only 4. If we want to have a larger receptive
field, we need to increase the convolution filter size or add more layers, which results in a
huge computation load. The dilated convolution can effectively overcome the difficulty of
insufficient receptive field of causal convolution.

3.2.2 Dilated Convolution

The solution to the problem of causal convolution is to utilize dilated convolution. Oord et al.
[39] proposed the dilated convolution, which increases the receptive field of the network
by introducing the dilation factor as a hyperparameter. More formally, for a time sequence
x ∈ R

n and a filter f : {0, . . . , k − 1}, the operation F on element s of the sequence is
formulated as follows:

F(s) � (x∗ f )(s) �
k−1∑

i�0

f (i) · xs−d·i (10)

where ∗ is the convolutional operation, d is the dilation factor, k is the filter size and s − d · i
is the direction of the past.

In the dilated convolution, the dilation means to use a specific step size between each two
adjacent filters, which is controlled by the dilation factor d . The receptive field of each layer
can be calculated by the following formula:

(k − 1) · b
n − 1

b − 1
+ 1 (11)

where b is the base dilation factor, n is the number of layers, and b � d
1
n .

In conclusion, there are two ways in which we can enlarge the receptive field: increasing
the dilation factor d and using a larger filter size k. Moreover, d increases exponentially with
the increasing depth of the network, which ensures that some filters can hit each input within
the effective history. The construction of dilated causal convolution is shown in Fig. 3.

3.3 ProposedModel

The proposed model consists of two parts: decomposition algorithm CEEMDAN and TCN
residual block. The original time sequence can be decomposed into several IMF components
and a residual byCEEMDAN.With the increase of the order of the components, the frequency
of IMF decreases gradually, resulting in the component flattening. This makes the impact
of sequence fluctuations be effectively suppressed, so as to further reduce the complexity
of temporal data. A reduction of data complexity is conducive to the training of prediction
model. On the basis of dilated causal convolution, the method of dropout is used. Moreover,
the layer normalization and skip connection are added into the block which are recognized
as effective methods for training deep networks. The TCN residual block applied in the
proposed model is illustrated in Fig. 4.

In order to be suitable for supervised learning, the input time sequence is divided into sev-
eral overlapped samples and marked with corresponding labels, as shown in Fig. 5. When the
length of time series isL , the size of time window isW , the length of output is O(O ≥ 1), the
input of the t th sample is xt , xt+1, . . . , xt+W−1 and its label is xt+W , xt+W+1, . . . , xt+W+O−1.
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Fig. 3 Dilated causal convolution with a dilation factor of d � 1, 2, 4 and a filter size of k � 2
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Fig. 4 TCN residual block

After the TCN block, an FC layer is added, with its number of neurons identical to
the length of the output, and a linear function is used as the activation function. Mean
absolute error (MAE) is chosen as the loss function and the Adam optimizer is used in back
propagation. The specific process of the proposed model is shown in Fig. 6.

4 Experimental Results and Analysis

4.1 Datasets

The performance of the model was tested in two prediction tasks on three datasets. One
prediction task is the univariate sequence prediction and the other is themultivariate sequence
prediction. Among the three datasets, one is the ionospheric TECs over Nanchang in Jiangxi
Province, P. R. China, the other is the air quality (AQ) data of Nanchang city. The third
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Fig. 5 Supervised learning in time series prediction

CEEMDAN algorithm

TCN_block TCN_block TCN_block TCN_block

FC FC FCFC

...

...

IMF1 IMF2 IMFn Residual

SUM

Output Output Output Output

Original data

Final output

Fig. 6 Flow chat of proposed model

is of an artificial data. The type of TEC data is univariate sequence, and the type of AQ
data is multivariate sequences, corresponding to our two tasks of univariate prediction and
multivariate prediction, respectively, as shown in Figs. 7 and 8. The global TEC grid data was
downloaded from the International GNSS Services (IGS) center and the data duration spans
from January 2003 to August 2017, with a time resolution of 2 h and a spatial resolution
of 5° (latitude) × 2.5° (longitude). The air AQ data of Nanchang was downloaded from the
Air Quality Historical Data Platform [40] and the time coverage is from January 2015 to
March 2021, with a time resolution of 1 day and a total of 6 interdependent variables: PM2.5,
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Fig. 7 Samples of TEC data of Nanchang

Fig. 8 Samples of air quality data of Nanchang

PM10, CO, NO2, O3 and SO2. A short-term prediction of the ionospheric TEC data can, to
a certain extent, improve the navigation and positioning accuracy based on electromagnetic
wave propagation and theworking performance of the radio communication system.Research
of air quality is of great significance to local and global public health security. In addition,
both the datasets are historical data, with which the future sequential data is to be predicted.
Therefore, the choice of the datasets is appropriate to test the proposed CEEMDAN-TCN
model.

In addition, a dataset of artificial data was chosen. The artificial data is deterministic and
facilitates an exact evaluation of the model. Specifically, four sine signals, respectively at
frequencies of 25, 30, 40, 50 Hz, initial phases of 0, π

8 ,
π
5 ,

π
3 and the same sampling rate of

2000 Hz, were generated, superimposed, and mixed with a Gaussian noise sequence N (n)
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Fig. 9 Samples of the artificial data

of zero mean and unit variance:

y1(t) � 6sin(50π t) (12)

y2(t) � 4sin
(
60π t +

π

8

)
(13)

y3(t) � 2sin
(
80π t +

π

5

)
(14)

y4(t) � sin
(
100π t +

π

3

)
(15)

resulting in an artificial sequence of y(n) � y1(n) + y2(n) + y3(n) + y4(n) + N (n), as shown
in Fig. 9.

4.2 Data Preprocessing

Before the original time sequence is decomposed by the CEEMDAN algorithm, a sequential
preprocessing was conducted, including data sorting, data cleaning (removing the duplicate
data), data normalization (alleviating the impact of different data scales) and data partitioning.
In data partitioning, the dataset is divided into three parts: the training dataset (for model
learning), the validation dataset (for model tuning) and the test dataset (for model evaluation),
as shown in Table 1. The artificial dataset is divided into the training dataset, validation dataset
and test dataset according to a ratio of 7:2:1.

Table 1 Dataset partitioning details (Date format: yyyy/mm/dd)

Dataset Training data period Validation data period Test data period

TEC 2003/01/01–2015/12/31 2016/01/01–2016/12/31 2017/01/01–2017/08/11

AQ 2015/01/01–2019/12/31 2020/01/01–2020/12/31 2021/01/01–2021/03/27
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Table 2 Hyperparameters for LSTM and TCN

Dataset Model Parameters

W n b f k d r

TEC LSTM 36 120 36 – – – 0.2

TCN 36 – 36 32 2 (1, 2, 4, 8, 16) 0.2

AQ LSTM 3 64 36 – – – 0.3

TCN 3 – 36 32 2 (1, 2) 0.3

4.3 Parameter Setting of theModel

There are three parameters in the basic LSTM model and five parameters in the basic TCN
model. These parameters are the length of time window W , the size of hidden units n in
LSTM, the batchsize b, the number of filters f , the filter size k, the dilation factor d and the
rate of dropout r , as shown in Table 2.

4.4 Univariate Experiment

After a series of preprocessing, the CEEMDAN algorithm is applied to decompose the
artificial data and TEC data. In the decomposition process, the operation of adding white
Gaussian noise was performed 30 times to construct 30 noisy signals, and the decom-
position results of artificial data and TEC data are presented in Figs. 10 and 11. As
can be seen in Figs. 10 and 11, the frequency of the IMFs gradually decreases with
the increasing order. Therefore, the prediction of an IMF and the residual can enhance
the forecast precision. Then, the forecasting model is constructed for each component.
Eventually, the prediction results are obtained by summing up the outputs of all compo-
nents.

Fig. 10 Results of CEEMDAN decomposition of the artificial data

123



4410 C. Guo et al.

Fig. 11 Results of CEEMDAN decomposition of TEC data of Nanchang

To evaluate the performance of the proposed model numerically, four evaluation metrics
are adopted, including root mean square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE) and determination coefficient R2. They are calculated as
follows:

RMSE �
√√√√ 1

N

N∑

t�1

(
yt − ŷt

)2 (16)

MAE � 1

N

N∑

t�1

∣∣yt − ŷt
∣∣ (17)

MAPE � 100 × 1

N

N∑

t�1

∣∣∣∣
yt − ŷt

yt

∣∣∣∣ (18)

R2 � 1 −
∑N

t�1

(
yt − ŷt

)2
∑N

t�1(yt − y)2
(19)

where y is the average of the sequence values of yt . Smaller values ofRMSE,MAEandMAPE
indicate a smaller deviation for the predicted value from the ground-truth. The determination
coefficient R2 ∈ (0, 1) represents the degree of model fitting to the data. An R2 value close
to 1 means prediction value very close to the ground-truth.

In the univariate experiment, 9 models are selected for comparison, namely ARIMA, EA-
LSTM, TreNet, BPNN, LSTM, TCN, EMD-LSTM, EMD-TCN, CEEMDAN-LSTM and
CEEMDAN-TCN, among which EA-LSTM and TreNet are the state-of-the-arts.

The evaluation metrics of different models on artificial data and TEC data are shown in
Tables 3 and 4, respectively. Focusing on the RMSE, MAE and MAPE in Tables 3 and 4,
it can be seen that the ARIMA and BPNN were the poor performers and all combination
models (the last four) achieved better prediction performance. Furthermore, the proposed
CEEMDAN-TCN obtained the best forecast results in all the ten prediction models in terms
of all the evaluation metrics. As a result, it can be concluded that CEEMDAN-TCN has a
more stable and accurate prediction ability.
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Table 3 Evaluation metrics of different models on artificial data

Model Evaluation metrics

RMSE MAE MAPE(%) R2

ARIMA 0.8033 0.6248 13.8972 0.9733

EA-LSTM 0.6830 0.5543 9.7748 0.9821

TreNet 0.7832 0.6173 13.7154 0.9762

BPNN 0.8306 0.6412 15.4487 0.9713

LSTM 0.7474 0.5859 12.8791 0.9785

TCN 0.7058 0.5712 10.9157 0.9804

EMD-LSTM 0.5097 0.4034 6.3489 0.9902

EMD-TCN 0.4615 0.3258 5.4321 0.9919

CEEMDAN-LSTM 0.4842 0.3690 5.8347 0.9910

CEEMDAN-TCN 0.4404 0.3298 5.0024 0.9924

Bold represents the proposed model

Table 4 Evaluation metrics of different models on TEC data

Model Evaluation metrics

RMSE MAE MAPE(%) R2

ARIMA 3.41 2.95 20.10 0.80

EA-LSTM 2.07 1.47 10.23 0.93

TreNet 2.13 1.51 10.43 0.92

BPNN 3.04 2.23 16.72 0.83

LSTM 2.55 1.75 14.00 0.88

TCN 2.38 1.68 13.19 0.89

EMD-LSTM 2.25 1.63 12.99 0.91

EMD-TCN 1.97 1.45 11.67 0.92

CEEMDAN-LSTM 2.17 1.56 10.90 0.92

CEEMDAN-TCN 1.84 1.38 9.52 0.94

Bold represents the proposed model

In order to make a cost analysis for the proposed model, the numbers of model parameters
are used for comparison, as shown in Table 5. From Table 5, it can be seen that the parameters
of TCN is smaller than that of LSTM which indicates the TCN is simpler in structure than
the LSTM network. The number of parameters of CEEMDAN-TCN is 9 times that of TCN
in that the original data is decomposed into 9 sub-sequences in CEEMDAN, and the nine
sub-sequences need to be modeled separately. Considering its significant performance gain,
the proposed CEEMDAN-TCN has an acceptable complexity in network structure.

Figure 12 shows the prediction curves and the histogram of evaluation metrics on the
artificial data. From Fig. 12, it can be seen that the prediction curves of all models can fit the
original data well, and the superiority of the proposed CEEMDAN-TCN can be seen more
apparently.
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Table 5 Parameters of different models on TEC data

Model ARIMA EA-LSTM TreNet BPNN LSTM

# parameters – 14,941 146,028 5892 15,612

Model TCN EMD-LSTM EMD-TCN CEEMDAN-LSTM CEEMDAN-TCN

# parameters 11,340 140,508 102,060 140,508 102,060

Fig. 12 Prediction curves (upper) andbar chart (lower) of evaluationmetrics on the artificial data. (AR:ARIMA;
EA: EA-LSTM; Tre: TreNet; EL: EMD-LSTM; ET: EMD-TCN; CL: CEEMDAN-LSTM; CT: CEEMDAN-
TCN)

Figure 13 shows the short-term prediction curves of all models on TEC data to provide
a clearer assessment of the performance. Figure 14 shows the prediction curves and bar
chart of evaluation metrics on TEC data in order to visually demonstrate the accuracy of the
CEEMDAN-TCN. It can be seen from Figs. 13 and 14 that the prediction error of BPNN is
the largest and its prediction curve deviates from the actual data. Moreover, the prediction
curve of combination models, especially CEEMDAN-TCN, are closer to the actual data than
that of single models. Therefore, it can be concluded that the combination models performed
better than single models, and among all combination models, the proposed CEEMDAN-
TCN performed the best.

4.5 Multivariate Experiment

There are 6 sequences in AQ dataset and the PM2.5 sequence is chosen as the target series
for prediction. Then the CEEMDAN operation is carried out on the 6 sequences respectively,
and several corresponding IMF components and residuals are obtained. In this paper, only
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Fig. 13 Short-term prediction curves on the TEC data

Fig. 14 Prediction curves (upper) and bar chart (lower) of evaluation metrics on the TEC data

the decomposition results of PM2.5 are shown in Fig. 15. The IMF components of the same
order decomposed from different sequences are combined into six 6-dimensional inputs,
which are fed respectively into the TCN model for training, and the final prediction result
is obtained by summing up the training results of all inputs. Figure 16 shows the first-order
IMF components of the 6 sequences of Nanchang.

In the experiment, RMSE, MAE, MAPE and R2 are again selected as the performance
evaluation metrics of the models and 7 comparison models are selected, namely LSTM,
TCN, EMD-LSTM, EMD-TCN, CEEMDAN-LSTM, CEEMDAN-TCN and EA-LSTM. As
can be seen in Table 6, the RMSE, MAE and MAPE of the proposed model are the smallest
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Fig. 15 Results of CEEMDAN decomposition of AQ data of Nanchang

Fig. 16 First-order IMF components of 6 AQ sequences of Nanchang

among these models, and the R2 is the closest to 1, which indicates that the proposed model
performs better than all other models. In addition, the fitting performances of the prediction
results of the models with the real data are drawn in Fig. 17. As can be seen more intuitively
in the figures, the fitting effect of the proposed CEEMDAN-TCN model is superior to all
other models.
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Table 6 Evaluation indexes of different models on AQ data

Model Evaluation metrics

RMSE MAE MAPE(%) R2

LSTM 14.34 12.10 12.55 0.83

TCN 12.86 10.69 10.79 0.86

EMD-LSTM 12.26 10.35 10.60 0.88

EMD-TCN 10.43 8.81 9.05 0.91

EA-LSTM 10.27 8.77 8.83 0.91

CEEMDAN-LSTM 10.06 8.54 8.67 0.92

CEEMDAN-TCN 9.52 8.10 8.50 0.93

Bold represents the proposed model

Fig. 17 Prediction curves (upper) and bar chart (lower) of evaluation metrics on the AQ data

5 Conclusion

In this paper, a novel hybrid model is proposed which combines the CEEMDAN algorithm
and TCN. The CEEMDAN algorithm, as an advanced data-adaptive time series process-
ing technology, is applied to decompose the complicated time series into several relatively
simple IMF components for facilitation of deliberate analysis and accurate prediction. In
the meantime, considering the characteristics of time series, such as causal constraints, TCN
model, as a powerful deep learning network, is introduced. Compared theCEEMDAN-LSTM
and CEEMDAN-TCN with ARIMA, BPNN, LSTM, TCN, EMD-LSTM, EMD-TCN, EA-
LSTM and TreNet, it can be concluded that the time series decomposed by CEEMDAN
is more favorable to function-fitting and subsequent model convergence. By Comparing the
CEEMDAN-TCNwith CEEMDAN-LSTM, it can be concluded that TCN can better preserve
the temporal features than LSTM. Besides, the proposed model performs well in univariate
and multivariable prediction, and the parameters of the model are acceptable, which reflects
its flexibility and expansibility. Finally, in prospect, the proposed model could be able to

123



4416 C. Guo et al.

employ in other time series prediction, such as prediction of finance and weather sequence
data.
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