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Abstract

The key to the accuracy of time series forecasting is to find the most appropriate forecasting method. Therefore, the forecasting

model selection of time series has become a new research hotspot in the data analysis field. However, most of the existing

forecasting model selection methods reduce the forecasting efficiency for relying on subjective manual selection of features. In

this paper, an automatic time series feature extraction framework is proposed for forecasting model selection based on the idea

of meta learning. Inspired by computer vision, we transform one -dimensional time series into two-dimensional images, and use

convolution neural network (CNN) to train and classify time series images (model selection). Moreover, in order to deal with

the over fitting problem caused by small sample datasets, the sliding window data augmentation method is used to improve the

accuracy of small datasets model selection. A large-scale empirical study on M3 datasets shows that the proposed framework

has better model selection accuracy and smaller forecasting error(MAPE) than Support vector machine(SVM) and traditional time

series image algorithms. Moreover, the classification rate(model selection accuracy) of the proposed algorithm are increased by

6.5% and 4.4% compare with the traditional time series image method and Support vector machine respectively in average.

c©

Keywords: CNN-based Forecast-model Selection, Data Augmentation , Time series image(TSI), automatic feature extraction,

meta-learning

1. Introduction

Time series forecasting analysis is an important role of financial industry, from forecasting economic phenomena to

forecasting product sales(Morwitz et al., 2007). In recent decades, a great quantity of time series prediction methods

have been applied, aiming to improve the forecast accuracy. However, from the ”no free lunch” theorem(Macready)

everyone know that no method is applicable in any time series.

In the past period of time, time series forecasting model selection is chiefly relied on feature selection. Scholars have

2



/ 00 (2021) 2–20 3

made a lot of attempts on the feature-based single variable time series forecasting model selection method. For ex-

ample, based on 26 time series features, Shah constructed multiple individual selection rules by discriminant analysis

Shah(Shah, 1997); Wang, Smith miles and Hyndman(Kang et al., 2017) according to the meta characteristics of time

series, supervised and unsupervised learning methods are applied to generate rules for selecting the optimal forecast-

ing model; Lemke and Gabrys(Lemke & Gabrys, 2010) provided a new set of time series feature element learning

method for NN3 and NN5 data sets, and analyzes the results; Widodo and Budi(Widodo & Budi, 2013)used princi-

pal component analysis to reduce the feature dimension, so as to optimize the forecasting model selection method;

Petropoulos et al.(F Petropoulos, 2014) proposed the ”horse for course” in M3 dataset(Makridakis et al., 2001), and

counted the effects of 7 different time series features on the performance of 14 good forecasting methods. Recently,

Talagala et al.(Talagala et al., 2018) proposed a novel framework using random forests as classifiers and meta learn-

ing for forecasting model. Therefore, the selection of features plays an important role in the selection of time series

forecasting model.

At present, most feature-based time series forecasting model selection algorithms rely on manual feature selection.

However, with the advent of the era of automation, manual feature selection seem to be outdated. And it is true that

manual feature selection is too cumbersome and consumes a lot of manpower and computing resources. Therefore,

the deep learning framework for automatically extracting time series features gives scholars great inspiration.

In recent years, deep learning is widely used in time series forecasting. Connor and Martin(Connor et al., 2002) pro-

posed recurrent neural network (RNN) for the first time, and taken the original characteristics of time series as input to

predict the subsequent trend; On this basis, Gers proposed an improved RNN network called long and short term mem-

ory neural network (LSTM) to do some prediction(F.A. Gers, 2001). Naduvil-Vadukootu et al.(Naduvilvadukootu

et al., 2017) proposed a pipeline framework, which combined the mainstream time series forecasting methods with

deep neural network (DNN), so as to improve the forecasting accuracy of time series.

Deep learning needs a lot of data to train the time series. However, in many real-world datasets (such as agricultural

product price, sales volume, etc.) the small sample training set problem remains. So the insufficient of data can also

be a problem for time series analysis, which leads to over fitting and the low performance.

Data augmentation has been proved to be an effective way to reduce the over fitting of neural network model (Shorten

& Khoshgoftaar, 2019). In real life, the amount of data in many fields hard to meet the requirements of deep learning

model training, so the use of data augmentation can help the network overcome the problem of too small datasets

or class imbalance(Hasibi et al., 2019). Although generalization and regularization methods can be used to reduce

over fitting, data augmentation solves the problem from the data preprocessing point without changing the structure

of neural network models.

This paper aims to propose an improved meta learning framework to overcome the problem of time series feature se-

lection manually and over fitting of small sample datasets. Get inspired from the achievement of Hatami et al.(Hatami

et al., 2019) and Wang and Oates(Wang & Oates, 2015) in image processing, this paper combines the idea of time

series imaging and meta learning framework using convolution neural network (CNN) to select best time series fore-

casting model. This framework can automatically extract time series features and avoid the problem of different

standards caused by subjective factors in feature selection. At the same time, window slicing data augmentation is

used to solve the problem of over fitting of small datasets in the process of deep learning training, which can improve

the accuracy of model selection. And the proposed algorithm in this paper achieve better result in forecasting model

selection compare with traditional time series imaging algorithm and support vector machine(SVM).

2. Forecasting Model Selection

2.1. Meta-learning forecasting model selection

John Rice is the first proposer of meta learning in 1976, which called algorithm selection problem(Rice, 1976). The

selection structure of Rice algorithm mainly consists of four parts. The problem space P represents the data set

involved in the experiment. Feature space F is the set of all features in problem space P. Algorithm space A is a group

of excellent candidate algorithms to solve problem space P problem. Performance metric Y is a measure of algorithm

performance such as classification accuracy and running speed. Smith Miles(Smith-Miles., 2009) put forward a clear

definition of algorithm selection in 2009.

Algorithm selection problem(ASP).For a given problem instance x ∈ P, with features f (x) ∈ F, find the se-

lection mapping S ( f (x)) into algorithm space A, such that the selected algorithm α ∈ A maximizes the performance
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mapping y(α(x)) ∈ Y .

The main bottleneck of ASP is to recognize the selection mapping from feature space to algorithm space. Although

Rice’s framework shows the concept of ASP, it does not specify how to obtain S , so it introduces the meta learning

method.

With the wide application of machine learning, the term meta learning also appears in the time series literature. Pru-

deNcio and ludermir(Prudencio & Ludermir, 2004) was the ancestor of applying meta learning to time series, and dis-

cussed the influence of meta learning methods on model selection. Wang, Smith-Miles and Hyndman(Smith-Miles.,

2009) introduces a new model selection method based on meta learning framework, called simple percentage better

(SPB), whose model selection accuracy changes with the forecasting accuracy error of random walk model. Later,

Widodo and Budi (Widodo & Budi, 2013) proposed a novel meta learning framework for prediction model selection,

which is based on a set of features proposed by Wang, Smith-Miles and Hyndman. Recently, KüCK, Crone and Fre-

itag(Kuck et al., 2016) combined neural network with meta learning to select the forecasting model, constructed a set

of new features based on forecasting error, and used the mean absolute forecasting error as the evaluation standard to

determine the best forecasting model of each time series.

2.2. CNN-based Forecast-model Selection(CFMS)

The proposed CFMS framework is presented in Figure 1. The frame diagram shows the original time series set stage

and the new time series set stage respectively. The model selection (meta learner) is trained in the original time series

stage, and the trained algorithm is used to select the appropriate forecasting model for the new time series. For making

our trained classification algorithm perform better, large number of time series which consistent with the type we are

going to forecasting are necessary.We suppose that there are a large number of time series populations, and they are

used as samples to train the classification algorithm. Therefore, the newly input time series in this framework is

regarded as additional data similar to the data type of training set, which can be called the ”target type” of time series.

In fact, the classification accuracy can be improved by simulating and expanding the data similar to the time series

of the training set (we will discuss it in detail in Section 2.2 below). In this paper, the total set of time series used to

train classifiers is expressed as ”reference set”. Each time series in the reference set is divided into training period

and testing period. Each training cycle in the convolution neural network will fit a candidate forecasting model, that

is a classification algorithm. We apply the model trained in the training set to the forecasting error calculated (such as

MAPE) in the test set, and determine the ”best” model of each time series according to the forecasting error. These

models considered the ”best” form the output label of the classification algorithm. Algorithm 1 below gives the pseudo

code of our proposed framework. In the following section, we briefly discuss some aspects of training the original

time series phase. The duty of model selection algorithm is to assign the ”best” forecasting method to a given time

series. It is impossible to train classifiers for all possible model classes, so in this paper, we choose six most popular

time series forecasting models. The selected candidate models will depend on the type of time series. For example,

if the time series only have non seasonal instead chaotic feature, the candidate forecasting model are limited by white

noise, random walk, ARIMA and ETS processes. So even in this simple scenario, the number of matching models

can be quite large.

Since each candidate model must be calculated and compared in each time series in the reference set, this step is the

most computationally intensive and time-consuming step. The more candidate models are, the longer the calculation

time is and the return may be a significant improvement in forecasting accuracy. This step is the most computationally

intensive and time-consuming because each candidate model must be applied to each time series in the reference set.

The more candidate models are, the longer the calculation time is and the return may be a significant improvement in

forecasting accuracy.

The pseudo code for our proposed framework is presented in Algorithm 1 below.

Algorithm 1

Train the classification

Given:

O=x1, x2, ..., xn: the classification of n observed time series;
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Figure 1: CFMS(CNN-based Forecast-model Selection) framework

C: the set of CNNs(e.g. Resnet-18,VGG-19,Densenet-121);

L: the set of class labels(e.g. ARIMA,ETS,THETA, and so on);

I: the set of time series image(e.g. MTF, RP, GAFs).

Output:

A trained SoftMax classifier.

Data preprocessing:

For i=1 to N

1. Split xi into a training period and test period;

2. The training set is processed with sliding window length of 2 and step size of 1;

3. Transform xi into four kinds of images: MTF, RP, and GAFs;

4. Fit L models to the training period;

5. Calculate forecasts for the test period from each model;

6. Calculate forecast error measure over the test period for all models in L;

7. Select the model with the minimum forecast error.

Prepare the meta framework based CNN:

8. Input time series images into CNNs;

9. Train the SoftMax classifier.

Forecast a new time series

Given:

the trained classifier from step 9.

Output:

Class labels from new time series xnew.

10. xnew repeat the step 2 and step 3;

11. Let C(xnew) be the class forecasting of our framework. Then calculate forecasting error according to label.

2.3. The candidate prediction model

The six candidate forecasting models (it is also called labels in supervised learning) are used in this article: (a) White

noise (WN);(b) ARIMA;(c) Random walk with drift (RWD); (d) Random walk (RW); (e) Theta; (f) Exponential

Smoothing Model (ETS). The several time series forecasting models used in this paper are as follows:

2.3.1. Exponential Smoothing

This model has been developed for several decades and was first proposed by Brown(Brown, 1977). It is the basis

of many popular time series prediction algorithms. In exponential smoothing method, time series usually models the

four parts of time series such as seasonality and damping by multiplication or addition(Winters, 1976). The ”ZZZ”

model used in this paper refers to the best ETS model automatically selected by R software package according to AIC

criteria ([Aut & [Aut, 2018).
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2.3.2. Theta Method

Theta method is a single variable method for non-seasonal time series forecasting. Theta method is based on decom-

posing the original time series into“theta line” and solve the second-order difference equation to obtain a new time

series. Each decomposed line is calculated by the forecasting algorithm, and the prediction results are reorganized

to obtain the prediction results of the original time series(Assimakopoulos & Nikolopoulos, 2000). The algorithm is

implemented by R package forcetheta(Fiorucci, 2016).

2.3.3. Random Walk and Random Walk with draft

Random walk (RW) is often used in financial data statistical models because of its effectiveness. The model assumes

that adjacent observation points provide guidance for the next predicted value [39]. The mathematical expression of

RW model is as follows:

yt − yt−1 = ǫt (1)

where yt−1 and yt are the observed value of time series, and ǫt is a white noise. The white noise term obeys the normal

distribution, its mean value is zero and has constant variance σ2.

2.3.4. ARIMA

In ARIMA model, the forecasting value of a variable is related to several known observations and linear functions

of random errors. In terms of mathematical expression, the basic process of generating time series has the following

characteristics:

yt = θ0 + φ1yt−1 + φ2yt−2 + ... + φpyt−p + ǫt − θ1ǫt−1 − θ2ǫt−2 − ... − θqǫt−q (2)

yt and ǫt is the actual value and random error of time period t respectively; φi(i = 1, 2, ..., p) and φ j( j = 0, 1, 2, ..., q) is

the model parameter. Integers p and q are usually called the order of the model. The mean value of random error ǫt is

zero and the variance is constant σ2. Several special cases of ARIMA are included in equation (2). If q = 0, then (2)

becomes a p-order AR model. When p = 0, the model is simplified to a q-order MA model. One of the core tasks of

ARIMA model construction is to determine the appropriate model order (p, q)?.

2.4. Data augmentation

In order to test whether the proposed framework can identify best forecasting models, M3 datasets are applied in this

paper. Table 1 shows the types of M3 datasets. However, there are only 3003 time series in M3 competition. So a data

augmentation method is considered to extend the datasets.

In the research of time series forecasting, data augmentation is also widely used, which can be regarded as the prior

knowledge about data invariance injection for some transformations. The enhanced data can expand the training set,

prevent over fitting and improve the robustness of the deep learning model(Adhikari & Agrawal, 2014). Perm, for

example, is a simple method to disturb the time position of events in a random window. In order to disturb the position

of data in a single window, the time series are divided into N segments with the same length, and then randomly arrange

N fragments to generate a new sequence. Time warping (TimeW) is also a way to interfere with time position. By

smoothing the time interval between the samples, the time position of the samples is changed. Whether the original

label is retained depends on the magnitude of the distortion change. Scaling changes the length of data in the window

by multiplying the scaling factor, while amplitude distortion changes the size of each sample by convoluting the data

window, so that the smooth curve changes around a sample. In addition, jitter is also a method of data enhancement

by increasing noise. These data enhancement methods can improve the robustness and generalization ability of the

training model and improve the performance. Finally, crop is similar to image clipping in(Heaton & Jeff, 2017) to

reduce the dependence on event location. In addition, using random position for clipping in different periods will

get an optimal sliding window step. It is worth noting that clips may retain non information areas, resulting in label

changes. Compared with image recognition, small changes caused by dithering, zooming, clipping, twisting and

rotation may not change the data label.

In this paper, window slicing method of Le Guennec et al.(Guennec et al., 2016) are applied to extract multiple small
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windows from a single window, and shorten part of the data window to augment the data. One of the advantages of

our framework is to expand the smaller datasets to meet the experimental conditions. At present, most public datasets

or real life datasets, such as agricultural product prices, financial series, are often limited in size. In order to solve this

problem, this paper proposes a data augmentation technology based on the original datasets to avoid over fitting and

improve the generalization ability. For massive datasets with rich training data, data expansion may not be necessary.

The proposed data augmentation of window slicing as follow: For time series T = t1, t2, .., tn, window slice is the

fragment of original time series, defined as S i: j = ti, ti+1, ..., t j, 1 ≤ i ≤ j ≤ n. Assuming that the length of a given time

series is n and the slice length is s, our slicing operation will generate a set of n − s + 1 slice time series:

S licing(T, s) = S 1:s, S 2:s+1, ..., S n−s+1:n (3)

where all the time series in S licing(T, s) have the same label as their original time series T does. In this paper,

because the length of each time series in M3 datasets is different, the value of S is variable. We choose s = n − 2.

Therefore, the enhanced time series becomes three times the original one. The reason why we choose the multiple of

data augmentation m = 3 is that the best window slice length in(Guennec et al., 2016) is 90% of the original.

Later, Mooseop Kim et al.(Kim & Chi, 2020) compared the effect of data augmentation methods with different window

slicing ratio using sensor data, and show this by figures. The results show that when the scaling factor is 0.1, that is,

the length of time series slice window is 90% of the original length, the classification accuracy is the highest. On the

basis of(Kim & Chi, 2020), a mathematical expression is fitted according to the known data and orange line in figure

2

y = a · e
−(x−0.1)2

b 0 ≪ x ≪ 1 (4)

Where y is the classification rate, x is scaling factor, a and b are constants. It can be concluded that the local Gaussian

function reaches the maximum when scaling factor x = 0.1.

Because in this case, the sliced time series not only meets the data augmentation, but also retains the periodicity, trend

and other features of the original series. The length of M3 time series selected in this paper is mostly about 20, so

when the augmentation factor m = 3, the length of original time series is 18, which satisfies the condition in(Guennec

et al., 2016). The data augmentation method used in this paper is shown in Figure 3.

All time series are sliced in a given training datasets and these sliced time series are regarded as independent training

Figure 2: The relationship between classification accuracy and scaling factor in reference(Kim & Chi, 2020)

data. The experimental results show that the sliced label (best forecasting model) may not consistent with the original

one.
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Figure 3: Data augmentation diagram when slice window is 3

3. Time series image and Convolution neural network

3.1. Time series image

This paper uses four algorithms to transform time series into images. They are Gramian Angle Summation Field(GASF),

Gramian Angle Difference Field(GADF)(Wang & Oates, 2015), Markov Transition Field(MTF)(Campanharo et al.,

2011) and Recurrence Plot(RP)(Eckmann, 1987).

3.1.1. Gramian Angular Field

Gramian Angular Field(GAF) can be divided into Gramian Angular summation field (GASF) and Gramian Angular

difference field (GADF). In GAF(Wang & Oates, 2015), the polar coordinate system is used to represent the time

series but not traditional Cartesian coordinate system. In the Gramian matrix, each element is actually the cosine or

sine of the sum of angles. Given a time-series X = x1, x2, ..., xn with length n, normalize X so that all values are scaled

at [−1, 1] or [0, 1] by:

x̃i
−1 =

(xi − max(X)) + xi − min(X)

max(x) − min(x)
(5)

or

x̃i
0 =

(xi − −min(X)

max(x) − min(x)
(6)

Therefore, by encoding the value of the time series X̃ as angular cosine and the time point as radius, the normalized

time series can be expressed in polar coordinates, and the formula is as follows:



















φ = arccos(x̃i),−1 ≤ x̃i ≤ 1, x̃i ∈ X̃i
−1

r =
ti

N
, ti ∈ N

(7)

In the equation above,ti is the time point and N is a constant parameter used to regularize the radius of the polar

coordinate system, which is a novel time series visualization method. In the Cartesian coordinate system, the area

formula is expressed as:

S i, j =

∫ x( j)

x(i)

f (x(t)) dx(t), (8)

among that

S i,i+k = S j, j+k (9)

If f (x(t)) has the same values on [i, i + k] and [ j, j + k]. However, in polar coordinates, if the area is defined as

S
′

i, j =

∫ φ( j)

φ(i)

r[φ(t)]2 dφ(t), (10)

Then S
′

i,i+k
, S

′

j, j+k
. That is, the area formed in the polar coordinate system from time point i to time point j depends

not only on the time interval |i − j|, but also on the absolute values of i and j.

8
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Rescaled data in different intervals have different angular bounds. [0, 1] corresponds to the cosine function in [0, π
2
] ,

while cosine values in the interval [-1,1] fall into the angular bounds [0, π]. The formula of GAF is as follows:

G =



































cos(φ1 + φ1) cos(φ1 + φ2) . . . cos(φ1 + φn)

cos(φ2 + φ) cos(φ2 + φ2) . . . cos(φ2 + φn)
...

... . . .
...

cos(φn + φ1) cos(φn + φ2) . . . cos(φn + φn)



































(11)

The Gramian Angular Summation Field (GASF) and Gramian Angular Difference Field (GADF) are defined as fol-

lows:

GAS F = [cos(φi + φ j)]

= X̃
′ · X̃ −

√

I − X̃2
′ ·
√

I − X̃2
(12)

GADF = [sin(φi + φ j)]

=

√

I − X̃2
′ · X̃ −

√

I − X̃2 · X̃′
(13)

I is the unit row vector [1, 1, ..., 1]. After transforming to the polar coordinate system, we take time-series at each

time step as a 1-D metric space. By defining the inner product < x, y >= x · y −
√

1 − x2 ·
√

1 − y2 and < x, y >=√
1 − x2 · y −

√

1 − y2 · x two types of Gramian Angular Fields(GAFs) are actually quasi-Gramian matrices [〈x, y〈]:

G =

























[〈x̃1, x̃1〈] . . . [〈x̃1, x̃n〈]
... . . .

...

[〈x̃n, x̃1〈] . . . [〈x̃n, x̃n〈]

























(14)

The GAFs have several advantages. First, they provide a way to preserve temporal dependency, since time increases as

the position moves from top-left to bottom-right. The GAFs contain temporal correlations because G|i− j|=k represents

the correlation when the time interval is Gi,i. when k = 0, it is a special case. It represents the angle containing only

the main diagonal element and the original value, the GAFs are large because the size of the Gramian matrix is n × n

when the length of the raw time-series is n.

The transformation maintains the time dependence between the values, and provides time correlation due to the

superposition in the direction relative to the time interval, athe bijection matrix is formed. Therefore, the inverse

function of the original data is an absolute reconstruction. As shown in Figure 4.
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Figure 4: Illustration of the proposed encoding map of Gramian Angular Fields. Taking GADF as an example, the formation of GASF is similar.

X is a sequence of rescaled time-series in the M3 datasets and transform X into a polar coordinate system by eq. (7) and finally calculate its GASF

images with eqs. (12)

3.1.2. Markov Transition Field

We get inspiration from Campanharo et al.(Campanharo et al., 2011). time series X determine Q quantile bins, and

assign each xi to the corresponding storage unit qi( j ∈ [1,Q]). Thus we construct a Q × Q weighted adjacency matrix

W by counting transitions among quantile bins in the manner of a first-order Markov chain based on the time axis. wi, j

is given by the transition probability of a point in quantile q j is followed by a point in quantile qi.After normalization

by
∑

j ωi, j = 1 W is the Markov transition matrix. It is irrelevant to the distribution of X and temporal dependency

on time steps ti.However, our experimental results on W demonstrate that getting rid of the temporal dependency

results in too much information loss in matrix W. In order to overcome this disadvantage, the mathematical formula

of Markov transfer field (MTF) is as follows:

M =



































ωi j|x1∈qi,x1∈q j
ωi j|x1∈qi,x2∈q j

. . . ωi j|x1∈qi,xn∈q j

ωi j|x2∈qi,x1∈q j
ωi j|x2∈qi,x2∈q j

. . . ωi j|x2∈qi,xn∈q j

...
... . . .

...

ωi j|xn∈qi,x1∈q j
ωi j|xn∈qi,x2∈q j

. . . ωi j|xn∈qi,xn∈q j



































(15)

A Q × Q Markov transition matrix is established by dividing the data into Q quantile bins. Mi, j in the MTF denotes

the transition probability of qi → q j.That is, by considering the time and location, the matrix W is extended to an

MTF matrix containing the transition probability on the magnitude axis. By forming the probability of quantiles from

time step i to time step j at each pixel Mi j , the essence of MTF is the multi span transition probability of coded time

series. Mi, j|i− j|=k represents the transition probability of two points with time interval k. Figure 5 shows the procedure

to encode time-series to MTF.

10
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Figure 5: Illustration of the proposed encoding map of Markov Transition Fields. X is a sequence of time-series in the M3 dataset . X is first

discretized into Q quantile bins. In this image, we take Q = 4. Then we calculate its Markov Transition Matrix W and finally build its MTF with

eq. (15)

3.1.3. Recurrence plot

In this part,recurrence plots (RP) is applied to transform time series into images. The recurrence plots provides a

method for visualizing the periodicity of trajectories through phase space(Eckmann, 1987), and it can contain most of

the relevant dynamic features in the time series.The recurrence plots of time series x can be expressed as:

R(i, j) = Θ(ǫ||xi − x j||) (16)

where R(i,j) is the element of recurrence matrix R; i indexes time on the x-axis of the recurrence plot, j indexes time

on the y-axis. ǫ is a predefined threshold, and Θ(·) is the Heaviside function. In short, a black spot will appear when

the distance from xi and x j are smaller than ǫ. The following modified RP is used to balance binary output with

thresholdless RP (Thiel et al., 2004).

R(i, j) =











ǫ, ||xi − x j > ǫ||
||xi − x j||, otherwise

(17)

Compared with the binary method, it generates more dense points and can generate color images. As we can see in

Fig 6.

Figure 6: Illustration of the proposed encoding map of recurrence plots. X is a sequence of time-series in the M3 dataset. We finally build its RP

with eq. (17).

3.2. Data augmentation time series image(DA-TSI)

This paper combines data augmentation method with time series image transformation, and proposes an integrated

and innovative data augmentation time series imaging(DA-TSI) algorithm. The time series image augmentation al-

gorithm proposed in this paper is different from the traditional image augmentation technology. In the field of image

11
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recognition, data augmentation has become a convention. Most of the most advanced convolution neural network

(CNN)(Y. Lecun & Haffner, 2013) structures use some form of data expansion. For example, Alexnet(Krizhevsky,

2012) is one of the first deep CNN that created a record benchmark on Imagenet large-scale visual recognition chal-

lenge (ILSVRC) datasets(Russakovsky et al., 2015), uses clipping, mirroring, and color augmentation to optimize

the network. Other examples include the original proposal for the VGG network(Simonyan & Zisserman, 2014),

which uses scaling and clipping, the Resnet work(He et al., 2016) using scaling, clipping, and color augmentation,

Densenet(Huang et al., 2016) using translation and mirroring, and perception network using clipping and mirroring.

The DA-TSI algorithm proposed in this paper preprocesses the time series (see Section 2.4 for details), and then uses

the time series image conversion algorithm to generate images.The advantage of this is that it can better protect the

features of the original time series from being lost after image augmentation. Because the image generated by time

series is close to mosaic, if image augmentation is carried out on the basis of mosaic, there will be a lot of time series

feature loss. Therefore, DA-TSI algorithm has advantages in theory.

3.3. Convolution neural networks

Convolution neural networks(CNNs) have made remarkable achievements in image classification(Technicolor et al.,

2012), natural language processing(Devlin et al., 2018) and reinforcement learning(Silver D, 2016). For time series

forecasting, CNNs can reflect the subtle differences of underlying datasets and customize the corresponding archi-

tecture(Baxter, 2000) and complex data representation(Bengio et al., 2012) to reduce the work of manual feature

engineering and model design.

In this paper, Three deep learning frameworks are applied to test the generalization performance of the proposed

algorithm. The three deep convolution neural network models have different network depth and network structure,

so if the algorithm can perform well in the three convolution neural network models, it can be applied to other deep

learning models.

3.3.1. Basic idea of residual learning

He et al.(He et al., 2016) put forward an improved CNN model for image classification, which is called deep residual

network. The main difference between residual network and traditional CNN is that they have different network

structures and information transmission modes, as shown in Figure 7. For the traditional CNN model, the input layer,

convolution layer, pooling layer and output layer are combined in a cascade manner. But for the rest of the network,

it has a shortcut that connects input and output directly together. Mathematically speaking, different from the direct

approximation of basic function H (x), residual learning emphasizes the fitting of residual mapping f (x)

F(x) = H(x) − x (18)

The special mapping of residual network block is F(x) + x, which is the output of a traditional CNN, namely H(x).

However, as He et al. pointed, compared with the original mapping H(x), the fitting residual mapping F(x) is more

effective, especially when H(x) is an identity or approximate identity mapping. The characteristics of the residual

network will increase the depth greatly, but will not reduce the classification accuracy of the network.

Figure 7: Basic building blocks in different CNN models. Left: a basic building block in a typical CNN model. Right: a basic building block in a

residual network

12
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3.3.2. Basic idea of Visual Geometry Group network

Visual Geometry Group network (VGGnet) is a multi-layer neural network. VGGnet is very useful because it will

3 × 3 size convolution layer is installed on the top, which increases the depth of the network. In order to reduce the

size of convolution kernel, max pool layer is used in VGGnet. There are 4096 neurons in two FC layers. As shown in

Figure 8.

In the training stage, convolution layer is used to extract features, and maximum pool layer and partial convolution

layer are used to reduce feature dimension. In the first convolution layer, 64 kernels (3 · 3 filter size) convolution

kernel. All connected layers are used to construct eigenvectors. Finally, in the test phase, Softmax activation function

is used to classify the images.

VGGnet systematically studies the influence of network depth on classification performance, and constructs a deeper

structure on the basis of shallow layer (Jaworek-Korjakowska J, 2019).

Figure 8: The architecture of Vggnet.

3.3.3. Brief introduction of Densenet

Densenet(Zhu & Newsam, 2017) is a CNN architecture proposed in recent years. It has a new connection mode: dense

block connection. In dense blocks, each layer is connected to all other layers. In this case, all layers can access the

output features of the previous layer, which enhances the correlation of features. The effect of this framework makes

the model is more dense to prevent over fitting. All these excellent features make Densenet more suitable for image

recognition, which not only achieves the most advanced performance, but also does not need pre training or additional

post-processing.

Traditional CNNs, such as FlowNets, calculate the output of the lth layer by applying a nonlinear transformation H to

the previous layer’s output xl−1

xl = Hl(xl−1) (19)

After the convolution layer and pooling layer processing, the traditional convolution neural network can obtain se-

mantic features at the top, but these features are too rough, and the fine image details often disappear in the network.

In order to improve the information exchange between layers, Densnet an improved connection mode: the first layer

takes the feature maps of other layers as input:

xl = Hl(x0, x1, . . . , xl−1) (20)

where [x0, x1, . . . , xl−1] is a single tensor formed by concatenating the output feature maps of the previous layer. It

is a single tensor formed by concatenating the output eigenvectors of the previous layer. In this way, even the last

layer network can share features with the first layer. The loss function directly supervises each layer through quick

connection. As we can see in Fig 9.

Figure 9: The architecture of Densenet.
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4. Experiment and result analysis

In this section, the experimental effect of data augmentation time series image(DA-TSI) algorithm are applied in a

small number of datasets, and make theoretical analysis combined with the experimental results. Finally, DA-TSI

algorithm is compared with time series image(TSI) baseline algorithm(GAFs, MTF, RP) and traditional machine

learning classification algorithm support vector machine (SVM).

4.1. Baseline algorithm

The TSI of deep CNN without data augmentation and traditional machine learning classifier SVM are applied as the

base comparison algorithm in this paper. In this paper, control variables are controlled in order to achieve scientific

experimental results. Three different network structures of Resnet-18, VGG-11 and Densenet-121 are used as the

general training models of deep learning method and applied to the benchmark deep CNN time series image method.

In machine learning method, SVM is used as a classifier to train the time series after data augmentation.

4.2. Datasets

Time series of M3 datasets is applied in this paper. M3 datasets includes more complex Micro-economic and Industrial

data, and is conducive to verify the generalization ability of the proposed method. The specific classification is shown

in Table 1.

Table 1: Category of 3003 datasets of M3 competition

Types Yearly Quarterly Monthly Other Total

Micro 146 204 474 4 828

Industry 102 83 334 519

Macro 83 336 312 731

Finance 58 76 145 29 308

Demographic 245 57 111 413

Other 11 52 141 204

4.3. Model evaluation

The evaluation criteria to verify the correctness of the model selection are the classification accuracy rate obtained by

comparing the label of the test set with the optimal label, and the Mean Absolute Percentage Error (MAPE) obtained

according to the model selection results. Therefore, this paper has two standards. One is classification accuracy, the

other is forecasting error.

The classification accuracy can be expressed as

accuracy =
(T P + T N)

All
(21)

Where True positives(TP) is the number of positive examples correctly divided, and True negatives(TN) is the number

of negative cases correctly divided.

The forecasting error used in this paper is the Mean absolute percentage error (MAPE). The benchmark model in this

paper is four different single image generation methods and six econometric model methods.

MAPE =

n
∑

t=1

|
Yt − Ŷt

Yt

× 100

n
(22)

where Yt is the real value of the time-series at point t, Ŷt is the forecast, n is the forecasting horizon.
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4.4. Parameter setting

In our experiment, we used Python 3.7 and R. The size of four kinds of single pictures is 359× 359, and after resizing

the size of combined image(GADF-GASF-MTF-RP) is also 359 × 359. The parameters for pre-trained CNN models

are set as follows:

Dimension of the output of the pre trained VGG-11bn: 1000.

Dimension of the output of the pre trained resnet-18: 512.

Dimension of the output of the pre trained densenet-121: 1000.

The iteration rate of CNNs is 0.001, and the batch size is 16.

4.5. Result analysis

Three deep learning models Resnet-18, Densenet-121 and VGG-19 with different network structures are applied to

M3 datasets. M3 datasets is divided into training set, verification set and test set according to the ratio of 8:1:1. Then

four kinds of TSIs generated from M3 datasets and four DA-TSIs are input into three convolution neural networks to

compare the classification accuracy (model selection accuracy). In order to save space, this algorithm did not show

the complete results on the single channel image.

Through the analysis of the experimental results, some conclusions come to us:

1. As we can see Table 2, 3 and 4, the average classification rates of GADF and GASF under three depth CNN

are 6.6% and 5.5% higher than MTF respectively. And after data augmentation, the average classification rates of

DA-GADF and DA-GASF under three depth CNNs were 2.8% and 3.6% higher than that of DA-MTF respectively.

In addition to the potential risk of over fitting, we find that after three different CNNs training, the classification rate

of MTF in the test set is generally slightly lower than that of GAFs under the same algorithm. This may be due to the

uncertainty of the inverse mapping of MTF relative to GAF. Although both GAF and MTF time series image maps

after time series standardization are epimorphic, on the [0, 1] standardized time series, the mapping function of GAF

is bijective, while MTF is not bijective. The original time series can be reconstructed from the diagonal of GAFs, but

it is very difficult to roughly recover the signal from MTF.

2. Experimental results show that the DA-TSI algorithm proposed in this paper is basically suitable for all deep learn-

ing models, different time series visualization methods and different step sizes, and can improve the classification rate

of the original TSI algorithm. As we can see the Table 2, 3 and 4, When the steps are 1, 3 and 6, the classification rates

of time series images after data enhancement in CNN classifier are improved by 2.0%, 5.7% and 11.0% respectively

compared with traditional time series images. On the whole, with the increase of forecasting step, the classification

accuracy of DA-TSI algorithm proposed in this paper will be improved. The reason may be that with the increase of

forecasting step, the fluctuation of time series increases, so the discrimination of time series images is more obvious,

which is conducive to the higher classification rate of CNNs. It shows that this algorithm has better effect on the

medium and long-term forecasting of small datasets.

3. From tables 2 and 6, the classification rate of DA-TSI-MTF algorithm is improved compared with the original

MTF algorithm after input into Densenet and VGG network, but the forecasting error MAPE increased by 0.14 and

0.06. The reason is that there may be a huge forecasting error in some wrongly selected forecasting models, which

will affect the overall average error, resulting in the phenomenon that the classification rate increases but the error also

raises. On the contrary, the classification rate of DA-TSI-GASF algorithm input into VGG network is slightly lower

than that of TSI-GASF algorithm, but the forecasting error MAPE is reduced 0.27, which also shows that the pros and

cons of an algorithm should be judged by multiple criteria.

4. From table 4 and 8, when the forecasting step is 6, the classification effect of various CNNs for DA-TSI image

algorithm has best results compared with other steps, but the error is also the largest. Because even if the classification

rate increases due to the increase of step size, that is, the accuracy of model selection increases, but the step size is 6,

it belongs to medium and long-term forecasting, so even the forecasting result of the optimal forecasting model has a

large standard deviation.

5. From the results of classification rate, the highest classification accuracy (model selection accuracy) of DA-TSI

algorithm proposed in this paper has increased significantly compared with the traditional TSI algorithm. At the same

time, compared with table 9, after data augmentation of the same scale, the DA-TSI-CNN algorithm proposed in this

paper is obviously superior to the traditional machine learning algorithm. From the perspective of prediction error

MAPE, in order to show the advantages of this algorithm more intuitively, we simply average the errors of all DA-TSI
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algorithms and TSI algorithms combined with different CNNs, as shown in Figure 10. In different steps, the error of

the algorithm is the lowest, which can fully demonstrate the superiority of the algorithm proposed in this paper.

6. In order to show the advantages of this algorithm more intuitively, we combine tables 2, 3 and 4, as shown in

table 10. It can be seen from the table that when the step size is 1, the advantage of the proposed data augmentation

imaging (DA-TSI) algorithm is not obvious compared with the traditional time series imaging (TSI) algorithm, and

the maximum improvement of3.6% is reflected in the Densenet network. On the one hand, the Densenet network

is more suitable for short-term time image classification, On the other hand, its dense network structure has better

classification effect. With the increase of step size, the classification effect of DA-TSI algorithm is better on different

CNNs models. When the step size is 6, the DA-TSI algorithm achieves 54.2% classification rate when combined with

VGG network, which compared with the six classification problem with an average classification rate of 16.7% and

TSI-VGG with an average classification rate of 42.4%, this method has a significant improvement. It can be more

intuitive in Figure 11.

Table 2: Comparison of classification rates between DA-TSI algorithm and traditional image algorithms by three different CNNs when the step

size h=1

Classification rate GADF DA-TSI-GADF GASF DA-TSI-GASF MTF DA-TSI-MTF RP DA-TSI-RP

Resnet 0.392 0.395 0.405 0.435 0.349 0.375 0.415 0.429

Densenet 0.385 0.435 0.352 0.425 0.346 0.369 0.419 0.419

VGG 0.392 0.395 0.449 0.435 0.362 0.382 0.412 0.429

Table 3: Comparison of classification rates between DA-TSI algorithm and traditional image algorithms by three different CNNs when the step

size h=3

Classification rate GADF DA-TSI-GADF GASF DA-TSI-GASF MTF DA-TSI-MTF RP DA-TSI-RP

Resnet 0.435 0.468 0.379 0.445 0.309 0.419 0.369 0.415

Densenet 0.379 0.445 0.379 0.468 0.362 0.449 0.399 0.462

VGG 0.469 0.419 0.435 0.438 0.282 0.445 0.401 0.419

Table 4: Comparison of classification rates between DA-TSI algorithm and traditional image algorithms by three different CNNs when the step

size h=6

classification rate GADF DA-TSI-GADF GASF DA-TSI-GASF MTF DA-TSI-MTF RP DA-TSI-RP

Resnet 0.449 0.542 0.422 0.508 0.385 0.522 0.412 0.515

Densenet 0.429 0.538 0.435 0.545 0.389 0.495 0.442 0.551

VGG 0.445 0.555 0.422 0.575 0.395 0.495 0.432 0.542

Table 5: The average value of the forecasting error MAPE of the six forecasting models on the test set under different step sizes

Forecasting Model ARIMA ETS WN RWd RW THETA Average

MAPE(h=1) 11.65 12.1 13.72 12.83 12.92 11.98 12.53

MAPE(h=3) 15.45 15.42 18.03 17.03 17.13 15.22 16.38

MAPE(h=6) 19.44 20.07 22.56 21.74 21.76 19.33 20.82
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Table 6: Comparison of test set forecasting error MAPE between DA-TSI algorithm and traditional image algorithms by three different CNNs

when the step size h=1

Classification rates GADF DA-TSI-GADF GASF DA-TSI-GASF MTF DA-TSI-MTF RP DA-TSI-RP

Resnet 11.41 11.32 11.54 11.41 11.23 11.21 11.48 11.47

Densenet 11.36 11.13 11.49 11.18 11.18 11.32 11.52 11.37

VGG 11.32 11.10 11.42 11.15 11.29 11.35 11.06 11.03

Table 7: Comparison of test set forecasting error MAPE between DA-TSI algorithm and traditional image algorithms by three different CNNs

when the step size h=3

Classification rates GADF DA-TSI-GADF GASF DA-TSI-GASF MTF DA-TSI-MTF RP DA-TSI-RP

Resnet 15.33 13.82 15.44 13.99 15.57 13.79 15.33 14.01

Densenet 15.08 14.04 15.45 14.08 15.31 14.09 15.57 13.95

VGG 15.42 14.03 15.27 14.24 15.76 13.67 15.34 14.22

Table 8: Comparison of test set forecasting error MAPE between DA-TSI algorithm and traditional image algorithms by three different CNNs

when the step size h=6

Classification rates GADF DA-TSI-GADF GASF DA-TSI-GASF MTF DA-TSI-MTF RP DA-TSI-RP

Resnet 16.68 16.36 16.68 16.26 16.77 16.61 16.53 16.02

Densenet 16.51 15.94 16.68 16.25 16.93 16.22 16.84 16.15

VGG 16.38 15.94 16.31 15.92 17.01 16.32 16.41 16.04

Table 9: The average classification rate of TSI algorithm and DA-TSI algorithm in different CNNs

Rates TSI-Res DA-TSI-Res Improve TSI-Dense DA-TSI-Dense Improve TSI-VGG DA-TSI-VGG Improve

h=1 0.390 0.409 0.019 0.376 0.412 0.036 0.404 0.410 0.006

h=3 0.373 0.437 0.064 0.380 0.456 0.076 0.397 0.448 0.051

h=6 0.417 0.522 0.105 0.424 0.532 0.108 0.424 0.542 0.118

Figure 10: The average MAPE of DA-TSI-CNN, TSI-CNN, Single model and SVM in different step size
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Figure 11: The average classification rate of different method in different step size

5. Conclusion and future work

This work investigated meta-learning based CNNs time series image for time series prediction with the aim to link

problem-specific knowledge to well performing forecasting methods and apply them in similar situations. In the

improved meta learning framework proposed in this paper, we use computer vision algorithm instead of Feature

Engineering, and use convolution neural network to automatically extract features from time series images, so as to

reduce the workload. In addition, in order to deal with the over fitting problem of small datasets in deep convolution

network, we propose data augmentation imaging (DA-TSI) algorithm, which can effectively solve the problem of over

fitting caused by insufficient data in real life. M3 datasets is applied to this algorithm, the experimental results show

that this algorithm can automatically extract time series features, and has stronger advantages than the original time

series image algorithm and machine learning algorithm.

In the future work, we will continue to explore the significance of Gaussian function between data augmentation

sliding window cut length (multiple of data increase) and time series classification. And try other classification

methods to enrich the meta learning framework proposed in this paper.
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